Supplementary Information

A one-pot two-step synthesis of tertiary alcohols combining the biocatalytic laccase/TEMPO oxidation system with organolithium reagents in aerobic aqueous media at room temperature

Marina Ramos-Martín,^a Ramón Lecuna,^a Luciana Cicco,^b Paola Vitale,^b Vito Capriati,^b Nicolas Ríos-Lombardía,^c Javier Gonzalez-Sabín,^{c,*} Alejandro Presa Soto^{a,*} and Joaquín García-Álvarez^{a,*}

^a Departamento de Química Orgánica e Inorgánica (IUQOEM), Centro de Innovación en Química Avanzada (ORFEO-CINQA), Facultad de Química, Universidad de Oviedo, E-33071, Oviedo, Spain

^b Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari "Aldo Moro", Consorzio C.I.N.M.P.I.S., Via E. Orabona 4, Bari I-70125, Italy

^c EntreChem SL, Vivero Ciencias de la Salud. Santo Domingo de Guzmán, 33011, Oviedo, Spain.

Table of Contents

1 General Methods	S 2
2 Protocols	S 3
3 Characterization of new compounds 3g and 3j	S5
4 NMR spectra data	S6
5 Infrared spectra of compounds 3g and 3j	S16
6 References	S17

1.- General Methods

All reagents were obtained from commercial suppliers and used without further purification. Alcohols **1a-f** were purchased from commercial source. Laccase from *Trametes versicolor* or *Rhus Vernicifera* and TEMPO were purchased from Sigma Aldrich. Organolithium and organomagnesium reagents were purchased from Sigma Aldrich: *i*) 2.5 M solution of *n*-BuLi in hexanes; *ii*) 1.6 M solution of MeLi in Et₂O; *iii*) 1.4 M solution of *s*-BuLi in cyclohexane; *iv*) 1.7 M solution of *t*-BuLi in pentane; *iv*) 1.9 M solution of PhLi in dibutyl ether; and *v*) 1.0 M solution of PhMgBr in THF. Concentrations of all organolithium reagents were checked by titration with *L*-menthol,¹ and for the Grignard reagent, titrating against iodine was employed.² All the rest of reagents and solvents were of the highest quality available.

NMR spectra (CDCl₃) were obtained using a Bruker DPX-300 (¹H, 300.13 MHz; ¹³C{¹H}, 75.4 MHz) spectrometer and employing the δ scale (ppm) for chemical shifts. Calibration was made on the signal of the solvent (¹H: CDCl₃, 7.26 ppm; ¹³C: CDCl₃, 77.0 ppm). Gas chromatography (GC) analyses were performed on an Agilent Technologies 7820A chromatograph equipped with a HP-5 (30 m x 0.32 mm x 0.25 µm) column.

Spectroscopic data of ketones $2\mathbf{a}$ - $\mathbf{f}^{3,4}$ and tertiary alcohols $3\mathbf{a}$, $^{4} 3\mathbf{b}$, $^{4} 3\mathbf{c}$, $^{4} 3\mathbf{d}$, $^{5} 3\mathbf{e}$, $^{4} 3\mathbf{f}$, $^{6} 3\mathbf{h}$, $^{7} 3\mathbf{i}^{7}$ are in agreement with those reported in the literature.

2.- Protocols

General Procedure for oxidation of secondary alcohols 1a-f into ketones 2a-f promoted by the system laccase/TEMPO in water

T. versicolor laccase (14 mg, 10 U/mg) and TEMPO (12 mg, 10 mol%) were added to a 0.73 mmol (0.1 mL) of the secondary alcohol **1a** in water (1 mL) and the mixture was stirred vigorously in an open-to-air vial at room temperature for 24 h (the oxidation reaction was monitored by GC analysis). Then, the reaction mixture was extracted with ethyl acetate (3 x 5 mL), the organic layers were combined, washed, dried with MgSO₄ and the solvents evaporated under vacuum. The identity of the resulting ketone **1a** was confirmed by ¹H-RMN analysis of the crude product after comparison with reported spectra.³

Procedure for direct conversion of 1-phenylpropan-1-ol (1a) into tertiary alcohols 3a-e through one-pot combination of the laccase/TEMPO oxidation system with the chemoselective addition of RLi/RMgX in biphasic aqueous media, at room temperature and in the presence of air

T. versicolor laccase (7 mg, 10 U/mg) and TEMPO (6 mg, 10 mol%) were added to 0.365 mmol (0.05 mL) of the secondary alcohol **1a** in water (0.5 mL) and the mixture was stirred vigorously in an open-to-air vial at room temperature for 24 h (the oxidation reaction was monitored by GC analysis). Once the oxidation reaction was completed (GC analysis, 24 h), 0.5 mL of CPME were added to form a biphasic reaction medium. Next, 3 equivalents of the corresponding organolithium (RLi) or Grignard (RMgX) reagents were added to the reaction mixture at room temperature, under air. After 3 s, 2.5 mL of saturated aqueous solution of NH₄Cl were added, and the mixture was extracted with ethyl acetate (3 x 5 mL). The combined organic phases were washed, dried over anhydrous MgSO₄, and the solvent was concentrated *in vacuo*.

Procedure for direct conversion of secondary alcohols 1a-f into tertiary alcohols 3ej through one-pot combination of the laccase/TEMPO oxidation system with the chemoselective addition of PhLi in biphasic aqueous media, at room temperature and in the presence of air

T. versicolor laccase (7 mg, 10 U/mg) and TEMPO (6 mg, 10 mol%) were added to a 0.365 mmol of the desired secondary alcohol **1a-f** in water (0.5 mL) and the mixture was stirred vigorously in an open-to-air vial at room temperature for 24 h (the oxidation reaction was monitored by GC analysis). Once the oxidation reaction was completed (GC analysis, 24 h), 0.5 mL of CPME were added to form a biphasic reaction medium. Next, 3 equivalents of the PhLi (0.58 mL) were added to the reaction mixture at room temperature, under air. After 3 s, 2.5 mL of saturated aqueous solution of NH₄Cl were added, and the mixture was extracted with ethyl acetate (3 x 5 mL). The combined organic phases were washed, dried over anhydrous MgSO₄, and the solvent was concentrated *in vacuo*.

3.- Characterization of new compounds 3g and 3j

1-(4-chlorophenyl)-1-phenylpropan-1-ol (3g): yellow oil, ¹H NMR (300 MHz, CDCl₃) δ 0.91 (t, J = 7.2, 3H), 2.08 (s, OH), 2.33 (q, J = 7.2, 2H), 7.26-7.44 (m, 9H); ¹³C{¹H} NMR (300 MHz, CDCl₃) δ 8.1, 34.4, 78.2, 126.0, 127.1, 127.6, 128.2, 128.3 132.6,

145.4, 146.5; FT-IR (film, cm⁻¹): 3510 (v_{OH}); 3060, 3031 (aromatic v_{CH}); 2975, 2937, 2876 (v_{CH} sp³); 1685, 1587, 1570 (aromatic v_{C=C}); 1087 (v_{C-OH}); 800 (aromatic δ_{CH} *para*-substitution); 738, 701 (aromatic δ_{CH} *mono*-substitution).

1-phenyl-1-(o-tolyl)ethan-1-ol (3j): yellow oil, ¹H NMR (300 MHz, CDCl₃) δ 1.96 (s, 3H), 2.02 (s, 3H), 2.15 (s, OH), 7.12-7.15 (m, 1H), 7.23-7.35 (m, 7H), 7.71-7.74 (m, 1H); ¹³C{¹H} NMR (300 MHz, CDCl₃) δ 21.4, 32.2, 76.8, 125.3, 125.4, 126.0, 126.6, 127.7, 128.1, 132.5, 137.2, 144.6, 148.0; FT-IR (film, cm⁻¹): 3445 (voh); 3059, 3024

(aromatic v_{CH}); 2973, 2927 (v_{CH} sp³); 1601, 1486, 1447 (aromatic v_{C=C}); 757 (aromatic δ_{CH} ortho-disubstitution); 728, 701 (aromatic δ_{CH} mono-substitution).

4.- NMR spectra data

¹H and ¹³C NMR spectra of 2-phenylbutan-2-ol (3b)

Figure S4. ¹³C{¹H}-NMR full chart for **3b** in CDCl₃.

Figure S6. ¹³C{¹H}-NMR full chart for **3c** in CDCl₃.

¹H and ¹³C NMR spectra of 2,2-dimethyl-3-phenylpentan-3-ol (3d)

¹H and ¹³C NMR spectra of 4-methyl-3-phenyl-hexan-3-ol (3e)

Figure S10. ¹³C{¹H}-NMR full chart for 3e in CDCl₃.

Figure S11. ¹H-NMR full chart for 3f in CDCl₃.

Figure S12. ¹³C{¹H}-NMR full chart for 3f in CDCl₃.

¹H and ¹³C NMR spectra of 1-(4-chlorophenyl)-1-phenylpropan-1-ol (3g)

Figure S14. ¹³C{¹H}-NMR full chart for 3g in CDCl₃.

¹H and ¹³C NMR spectra of 1-(4-bromophenyl)-1-phenylethan-1-ol (3h)

Figure S16. ¹³C{¹H}-NMR full chart for **3h** in CDCl₃.

¹H and ¹³C NMR spectra of 1-phenyl-1-(p-tolyl)propan-1-ol (3i)

Figure S18. ¹³C{¹H}-NMR full chart for **3i** in CDCl₃.

¹H and ¹³C NMR spectra of 1-phenyl-1-(o-tolyl)ethan-1-ol (3j)

Figure S20. ¹³C{¹H}-NMR full chart for 3j in CDCl₃

5.- Infrared spectra of compounds 3g and 3j

Figure S21. Infrared spectra of 3g.

Figure S22. Infrared spectra of 3j.

6.- References

- [1] (a) S. C. Watson and J. F. Eastham, J. Organomet. Chem., 1967, 9, 165; (b) H.S. Lin and L. A. Paquette, Synth. Commun., 2007, 24, 2503.
- [2] A. Krasovskiy and P. Knochel, Synthesis, 2006, 5, 890.
- [3] E. Liardo, N. Ríos-Lombardía, F. Morís, J. González-Sabín and F. Rebolledo, Eur. J. Org. Chem., 2018, 3031.
- [4] D. Elorriaga, M. J. Rodríguez-Álvarez, N. Ríos-Lombardía, F. Morís, A. Presa Soto,
 J. González-Sabín, E. Hevia and J. García-Álvarez, *Chem. Commun.*, 2020, 56, 8932
- [5] S. Andersson and T. Drakenberg, Org. Magn. Reson., 1983, 21, 730.
- [6] M. Hantano, O. Ito, S. Suzuki and K. Ishihara, Chem. Commun., 2010, 46, 2674.
- [7] H. Namai, H. Ikeda, N. Kato and K. Mizuno, J. Phys. Chem. A, 2007, 11, 4436