Electronic Supplementary Material (ESI) for ChemComm. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Migratory Cycloisomerization of 1,3-Dien-5-ynes Conjugated with Pseudopeptides in Assembly of Benzo[7]annulenes

Hormoz Khosravi,^a Helya Janatian Ghazvini,^a Mohammad Kamangar,^a Frank Rominger,^b Saeed Balalaie,^{a,*}

^aPeptide Chemistry Research Institute, Department of Chemistry, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran. E-mail: <u>balalaie@kntu.ac.ir</u> ^bOrganisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany.

Table of Contents

1.	General Considerations	S2
2.	Experimental Procedures	S3
3.	Computational details	S6
4.	Compounds Characterization Data	S9
5.	References	S17
6.	X-Ray Crystallographic Analysis	S17
7.	Z-matrices	S19
8.	¹ H-NMR and ¹³ C-NMR of unknown compounds	S61

1. General Considerations

- All final reactions were run in a flame-dried tube schlenk flask 50 mL filled with 10 mm magnetic stirrer bar. Solvents and liquid reagents were added by Argon flushed syringes or cannulas.
- All other reagents and catalysts were purchased from commercial suppliers and used without further purification.
- Solvents employed for column chromatography and work-up were purchased in analytically pure grade and used without further purification. Solvents used for air and moisture sensitive reactions were freshly distilled before using.
- TLC (Thin Layer Chromatography) was performed on silica gel pre-coated aluminum plates (Merck, 60 F-254) and were visualized by UV lamp (λ=254 nm).
- Flash Column Chromatography was performed using normal phase silica column packed with silica gel 60, (230-400 mesh)
 from Macherey-Nagel GmbH&Co.
- NMR (Nuclear Magnetic Resonance) spectra were recorded using Bruker Avance 400 spectrometer (400 MHz and 101 MHz for ¹H and ¹³C, respectively) and/or on a Bruker DRX 500 (500 MHz and 126 MHz for ¹H and 13C, respectively). spectrometer in CDCl₃. Chemical shifts (δ) are given in ppm, relative to the signals for CDCl₃ (1H NMR: δ= 7.27 ppm, 13C NMR: δ= 77.00 ppm). Coupling constants (J) are reported in Hertz. Multiplicities for ¹H NMR are stated as follow: singlet (s), doublet (d), triplet (t), quartet (q), multiplet (m) and broad (br).
- HRMS (High Resolution Mass Spectra) were recorded using a THERMO SCIENTIFIC Advantage and a THERMO SCIENTIFIC Executive instrument.
- X-ray crystal data were collected on Bruker APEX-II Quazar area detector. Methanol was used as the solvent at room temperature for crystal preparation.

2. Experimental Procedures

* 2.1. General procedures for the synthesis of acids S2a-h.

- Step 1: Sonogashira coupling reactions were performed according to the known procedures.^{S1} To a solution of the corresponding 2-bromobenzaldehyde (1 eq), PdCl₂(PPh₃)₂ (2 mol%), and CuI (1 mol%) in NEt₃ (0.25 M) was added the appropriate acetylene (1.2 eq). The resulting mixture was heated under argon atmosphere in an oil bath at 50°C for 6-18 hours. After the reaction was completed, the reaction mixture was quenched by addition of distilled water and extracted with DCM (three times). The combined organic layers were washed with brine, dried over Na₂SO₄, filtrated, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel, eluting with *n*-hexane and ethyl acetate (100:1) to afford the desired products S1a-h.
- Step 2: A mixture of 1.25 g malonic acid (12 mmol, 1.2 equiv.), benzaldehyde (10 mmol, 1.0 equiv.), and 400 µL pyridine (50 mol%) in ethanol (5 mL) was heated in an oil bath for 12h. After cooling, the resulting solution was poured to ice-water, acidified with conc. HCl and allowed to precipitate a white solid. The solid was filtered and washed with cold water to give pure S2a-h. As an alternative workup, the result mixture concentrated under reduced pressure and purified by column chromatography on silica gel, eluting with n-hexane and ethyl acetate (5:3) to afford the corresponding products.

✤ 2.2. General procedures for the synthesis of Ugi and Passerini products 1a-u.

To a solution of aldehydes **S3a-I** (0.4 mmol, 1 equiv) in methanol (0.5 M) or TFE (used for S2g and S2h) were added amine **S4a-d** (1.2 equiv) and acid **S2a-h** (1.2 equiv) and stirred for 30 min at room temperature. Next, Isonitrile **S5a-c** (1.2 equiv) was added to the reaction mixture and further stirred for 24 h at the same temperature. After completion of the reaction, the solid was filtered and washed with cold methanol to give pure **1a-u**. In some cases, NMR spectra are not very characteristic due to two rotamers of Ugi adducts.^{S2}

2. 3. Typical procedure for the formation of Benzo[7]annulenes.

2.3.1. General Procedure:

A schlenk tube was flamed-dried under vacuum and backfilled with argon for three times and cooled to room temperature by using a standard Schlenk line apparatus. To the tube was added 1,3-Dien-5-ynes **1a-u** (0.2 mmol, 1.0 equiv) and cesium carbonate (2.0 equiv), and evacuated and backfilled with argon for three times. Then dryed DMF (1 mL, 0.2 M) were added via a syringe under the flow of argon. The sealed reaction vial was placed in oil bath and stirred at 110 °C for 12 h. After the completion of the reaction, the mixture was filtrated through celite and washed with ethyl acetate, the solvent was removed under reduced pressure and the residue was chromatographed on silica gel using cyclohexane/EtOAc (9:1) as an eluent to afford the products **2a-u**. It should be noted, argon did not improve the yield of the product but it could help to recovery of amines.

2.3.2. Representative Procedure for Synthesis of 2a from 1aa:

A schlenk tube was flamed-dried under vacuum and backfilled with argon for three times and cooled to room temperature by using a standard Schlenk line apparatus. To the tube was added 1,3-Dien-5-ynes **1aa** (108 mg, 0.2 mmol, 1.0 equiv) and cesium carbonate (130 mg, 0.4 mmol, 2.0 equiv), and evacuated and backfilled with argon for three times. Then dryed DMF (1 mL, 0.2 M) were added via a syringe under the flow of argon. The sealed reaction vial was placed in oil bath and stirred at 110 °C for 12 h. After the completion of the reaction, the mixture was filtrated through celite and washed with ethyl acetate, the solvent was removed under reduced pressure and the residue was chromatographed on silica gel using cyclohexane/EtOAc (20:1) as an eluent to afford the products **2a** in 87% yield.

2.3.3. Representative Procedure for Synthesis of 1a in gram-scale reaction:

A schlenk tube was flamed-dried under vacuum and backfilled with argon for three times and cooled to room temperature by using a standard Schlenk line apparatus. To the tube was added 1,3-Dien-5-ynes **1aa** (2100 mg, 3.9 mmol, 1.0 equiv) and cesium carbonate (2542 mg, 7.8 mmol, 2.0 equiv), and evacuated and backfilled with argon for three times. Then dryed DMF (19.5 mL, 0.2 M) were added via a syringe under the flow of argon. The sealed reaction vial was placed in oil bath and stirred at 110 °C for 12 h. After the completion of the reaction, the mixture was filtrated through celite and washed with ethyl acetate, the solvent was removed under reduced pressure and the residue was chromatographed on silica gel using cyclohexane/EtOAc (20:1) as an eluent to afford the products **2c** in 81% yield (1478 mg).

3. Computational details

All the DFT calculations have been carried out with the Gaussian 16 package of program^{S3} and visualization of computed structures were generated using CYLView.^{S4} Full geometry optimization and Gibbs free energy correction were performed with the B3LYP/6-31G(d) level in the gas phase (T=298 K, P=1 bar).^{S5} The correctness of the optimized transition states (TS) and stable structures have been verified by intrinsic reaction coordinate (IRC) and the analytical frequency calculations respectively. Single point energies (E^{SP}) and solvation energy corrections were calculated with the B3LYP/6-311++G(d,p) level and using the SMD model (with DMF as the solvent) based on the gas-phase optimized structures.^{S6} The Thermal Correction to Free Energy (G^{Corr}) and the electronic energy (E^{SP}) were used to calculate the free energy of each structure based on the following equation:

$G = E^{SP} + G^{Corr}$

NMR analysis has been done using the B3LYP/6-31G(d) level and the SMD model (with DMF as the solvent). (*E*)-N-(2-(isopropylamino)-2-oxo-1-phenylethyl)-N-phenyl-3-(2-(prop-1-yn-1-yl)phenyl)acrylamide have selected as the models for starting material.

3.1. The reaction mechanism investigation

Carbonate anion and **1 mod**. have been chosen as the models for base and starting materials, respectively (Figure S1, S2, and S3). In comparison to the proton of the chiral center, the amide moiety proton has more kinetic (comparison of TS1-A and TS1-B) and thermodynamic (comparison of INT1-A and INT1-B) acidity. In addition, anion **INT1-B** formed through the protonation of amide is more reactive than anion **INT1-A**. **INT1-B** generates **INT3-B** upon a stepwise transamidation that includes intramolecular nucleophilic addition (TS2-B, 14.9 kcal/mol) and a barrierless ring-opening reaction (14.9 kcal/mol), which gives rise to **INT4-B** through a proton-shuttle reaction with bicarbonate anion (TS3-B, 20.6 kcal/mol). Subsequent a 5-*exo*-trig cyclization and the related protonation (the rate determining step, TS5-B) form **INT6-B** (1.6 kcal/mol), which further goes through a stepwise β -elimination of phenylamide (TS6-B and TS7-B) provides **INT8-B**. Deprotonation of this intermediate leads to **INT9-B**. Comparing path **A** with path **B** (Figure 3) proves that the rate-determining steps (RDS) of two paths are proton transfer of *exo*-trig cyclization (TS3-A and TS5-B), in which the RDS of path **B** is more stable than that of path **A** ($\Delta\Delta$ G[‡]= 2.2 kcal/mol).

Figure S1. Potential energy surfaces (PES) of path A. All relative Gibbs energies are in kcal/mol

Figure S2. Potential energy surfaces (PES) of path B. All relative Gibbs energies are in kcal/mol

Figure S3. Potential energy surfaces (PES) of the formation of INT9-B from INT4-A. All relative Gibbs energies are in kcal/mol

4. Compounds Characterization Data

(E)-3-(2-(Phenylethynyl)phenyl)acrylic acid (S2a)

White solid (1.910 g, Yield 77%); $R_f = 0.33$ (40:60 ethyl acetate/hexane); ¹**H-NMR** (400 MHz, Chloroform-d): $\delta_H = 11.60$ (s, 1H), 8.45 (d, J = 16.0 Hz, 1H), 7.75 – 7.69 (m, 1H), 7.65 – 7.59 (m, 3H), 7.43 – 7.36 (m, 5H), 6.63 (d, J = 16.0 Hz, 1H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): 172.2, 144.9, 135.3, 132.9, 131.7, 130.2, 128.7, 128.6, 128.5, 126.6, 124.4, 122.8, 118.9, 95.8, 86.9 ppm; **HRMS-ESI** (m/z): calculated for $C_{17}H_{12}O_2$ [M-H]⁻ 247.0765 found 247.0765.

(E)-3-(2-(Hept-1-yn-1-yl)phenyl)acrylic acid (S2b)

White solid (1.575 g, Yield 65%); $R_f = 0.40$ (40:60 ethyl acetate/hexane); ¹**H-NMR** (400 MHz, Chloroform-d): $\delta_H = 11.94$ (s, 1H), 8.32 (d, J = 16.1 Hz, 1H), 7.67 – 7.55 (m, 1H), 7.49 – 7.38 (m, 1H), 7.31 (tt, J = 7.4, 5.6 Hz, 2H), 6.52 (d, J = 16.1 Hz, 1H), 2.50 (t, J = 7.1 Hz, 2H), 1.67 (dt, J = 14.8, 7.1 Hz, 2H), 1.57 – 1.43 (m, 2H), 1.43 – 1.30 (m, 3H), 0.93 (s, 3H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): $\delta_C = 172.5$, 145.4, 133.0, 130.1, 127.9, 126.4, 125.4, 118.5, 97.5, 78.3, 31.2, 28.4, 22.3, 19.7, 14.1 ppm; **HRMS-ESI** (m/z): calculated for C₁₆H₁₈O₂ [M-H]⁻ 241.1234 found 241.1235.

(E)-3-(2-((4-Methoxyphenyl)ethynyl)phenyl)acrylic acid (S2c)

White solid (2.010 g, Yield 72%); $R_f = 0.30$ (40:60 ethyl acetate/hexane); ¹**H-NMR** (400 MHz, Chloroformd): $\delta_H = 11.55$ (s, 1H), 8.41 (d, J = 16.0 Hz, 1H), 7.67 (dd, J = 7.6, 1.6 Hz, 1H), 7.60 – 7.50 (m, 3H), 7.36 (dtd, J = 16.5, 7.4, 1.6 Hz, 2H), 6.95 – 6.85 (m, 2H), 6.60 (d, J = 16.0 Hz, 1H), 3.83 (s, 3H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): $\delta_C = 172.2$, 160.1, 145.1, 135.1, 133.3, 132.8, 130.2, 128.3, 126.7, 124.8, 118.8, 115.0, 114.2, 96.1, 85.8, 77.3, 77.1, 76.8, 55.4 ppm; **HRMS-ESI** (m/z): calculated for C₁₈H₁₄O₃ [M-H]⁻ 277.0870 found 277.0869.

(E)-3-(5-Methoxy-2-(phenylethynyl)phenyl)acrylic acid (S2d)

White solid (1.724 g, Yield 62%); $R_f = 0.30$ (40:60 ethyl acetate/hexane); ¹**H-NMR** (400 MHz, Chloroformd): $\delta_H = 11.36$ (s, 1H), 8.37 (d, J = 16.0 Hz, 1H), 7.60 – 7.55 (m, 2H), 7.53 (d, J = 8.6 Hz, 1H), 7.40 – 7.28 (m, 3H), 7.16 (d, J = 2.6 Hz, 1H), 6.95 (dd, J = 8.6, 2.6 Hz, 1H), 6.58 (d, J = 16.0 Hz, 1H), 3.87 (s, 3H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): $\delta_C = 171.6$, 159.8, 145.1, 136.8, 134.3, 131.6, 128.5, 128.4, 123.3, 119.0, 116.9, 111.3, 94.5, 87.0, 55.6 ppm; **HRMS-ESI** (m/z): calculated for C₁₈H₁₄O₃ [M-H]⁻ 277.0870 found 277.0870.

(E)-3-(4-Chloro-2-(phenylethynyl)phenyl)acrylic acid (S2e)

White solid (459 mg, Yield 65%, 2.5 mmol scale); R_f = 0.24 (40:60 ethyl acetate/hexane); ¹**H-NMR** (400 MHz, DMSO- d_6) δ_H = 12.65 (s, 1H), 8.02 (d, *J* = 16.0 Hz, 1H), 7.96 (d, *J* = 8.6 Hz, 1H), 7.72 (d, *J* = 2.3 Hz, 1H), 7.62 – 7.57 (m, 2H), 7.53 – 7.45 (m, 4H), 6.73 (d, *J* = 16.0 Hz, 1H) ppm; ¹³**C-NMR** (101 MHz, DMSO) δ_C = 167.7, 140.1, 135.0, 134.5, 132.2, 131.9, 130.0, 129.8, 129.4, 129.0, 124.8, 122.5, 121.9, 96.6, 86.1, 40.6, 40.4, 40.2, 39.9, 39.7, 39.5, 39.3 ppm; **HRMS-ESI** (m/z): calculated for C₁₇H₁₁ClO₂ [M-H]⁻ 283.0520 found 283.0529.

(E)-3-(2-((Trimethylsilyl)ethynyl)phenyl)acrylic acid (S2f)

Pale yellow solid (1159 mg, Yield 82%, 5.0 mmol scale); $R_f = 0.35$ (40:60 ethyl acetate/hexane); ¹H-NMR (500 MHz, DMSO- d_6) $\delta_H = 12.49$ (s, 1H), 8.02 (d, J = 16.1 Hz, 1H), 7.88 (d, J = 7.7 Hz, 1H), 7.52 (dt, J = 7.5, 1.7 Hz, 1H), 7.46 – 7.38 (m, 2H), 6.66 (d, J = 16.1 Hz, 1H), 0.27 (s, 9H) ppm; ¹³C-NMR (126 MHz, DMSO) $\delta_C = 167.8$, 141.3, 136.1, 133.0, 130.5, 129.9, 127.2, 123.0, 121.8, 103.2, 101.2, 0.2 ppm; HRMS-ESI (m/z): calculated for $C_{14}H_{17}O_2Si$ [M-H]⁻ 245.0993 found 245.0990.

(E)-N-(2-(Cyclohexylamino)-2-oxo-1-phenylethyl)-N-phenyl-3-(2-(phenylethynyl)phenyl)acrylamide (1aa)

White solid (624 mg, Yield 58%); Rf = 0.25 (15:85 ethyl acetate/hexane); 1H-NMR (400 MHz, Chloroform*d*): (mixture of two rotamers (60 : 40)) $\delta_{\rm H}$ = 8.16 (d, J = 15.5 Hz, 1H), 7.67 – 6.97 (m, 19H), 6.41 – 6.07 (m, 2H), 5.83 (d, J = 8.2 Hz, 1H), 3.86 (tdt, J = 11.4, 8.0, 3.9 Hz, 1H), 2.06 – 1.77 (m, 2H), 1.72 – 1.59 (m, 3H), 1.45 – 1.26 (m, 2H), 1.23 – 0.99 (m, 3H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): δ_{C} = 168.8, 166.6, 166.1, 141.0, 140.5, 139.9, 139.9, 136.6, 135.4, 135.0, 134.9, 133.4, 133.0, 131.9, 130.7, 130.7, 130.5, 130.3, 130.3, 129.1, 129.0, 128.9, 128.6, 128.5, 128.5, 128.4, 128.4, 128.4, 128.3, 128.2, 128.1, 127.9, 127.5, 126.4, 125.2, 123.9, 123.2, 121.9, 120.8, 95.3, 87.3, 65.9, 65.7, 48.8, 48.8, 33.0, 33.0, 32.9, 25.6, 24.9, 24.9, 24.8, 24.8; HRMS-ESI (m/z): calculated for $C_{37}H_{35}N_2O_2$ [M+H]⁺ 539.2693 found 539.2694.

(E)-N-(2-(Cyclohexylamino)-2-oxo-1-phenylethyl)-N-(4-methoxyphenyl)-3-(2-(phenylethynyl)phenyl)acrylamide (1ab)

White solid (141 mg, Yield 62%); Rr = 0.23 (15:85 ethyl acetate/hexane); ¹H-NMR (400 MHz, Chloroform-*a*): $\delta_{\rm H}$ = 8.28 (d, J = 15.6 Hz, 1H), 7.61 – 7.47 (m, 3H), 7.40 – 7.30 (m, 3H), 7.28 – 7.09 (m, 10H), 6.67 (m, 2H), 6.37 (d, J = 15.6 Hz, 1H), 6.23 (s, 1H), 5.84 (d, J = 8.1 Hz, 1H), 3.89 - 3.81 (m, 1H), 3.75 (m, 3H), 1.99 – 1.84 (m, 2H), 1.68 – 1.54 (m, 3H), 1.40 – 1.27 (m, 2H), 1.20 – 1.03 (m, 3H) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ_C = 168.9, 166.9, 159.0, 140.4, 136.6, 135.0, 132.9, 132.3, 131.9, 131.8, 130.4, 129.1, 128.5, 128.4, 128.3, 128.3, 126.3, 123.8, 123.1, 120.7, 113.9, 95.2, 87.2, 65.2, 55.4, 48.7, 32.9, 32.9, 25.6, 24.9, 24.8 ppm; HRMS-ESI (m/z): calculated for C₃₈H₃₇N₂O₃ [M+H]⁺ 569.2799 found

569.2798

(E)-N-(2-(Cyclohexylamino)-2-oxo-1-phenylethyl)-3-(2-(phenylethynyl)phenyl)-N-(4-(trifluoromethyl)phenyl)acrylamide (1ac)

White solid (158 mg, Yield 65%); Rr = 0.20 (15:85 ethyl acetate/hexane); ¹H-NMR (400 MHz, Chloroform-d): δ_{H} = 8.30 (d, J = 15.5 Hz, 1H), 7.58 – 7.54 (m, 2H), 7.53 – 7.50 (m, 1H), 7.40 – 7.35 (m, 5H), 7.28 – 7.18 (m, 8H), 7.17 – 7.14 (m, 2H), 6.30 (d, J = 15.5 Hz, 1H), 6.27 (s, 1H), 5.67 (d, J = 8.2 Hz, 1H), 3.85 (dddd, J = 14.6, 10.6, 8.0, 3.9 Hz, 1H), 2.05 – 1.81 (m, 2H), 1.70 – 1.58 (m, 3H), 1.44 – 1.28 (m, 2H), 1.19 – 1.01 (m, 3H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): $\delta_{C} = 168.5$, 166.2, 143.0, 141.5, 134.5, 133.1, 131.4, 130.3, 130.2, 129.9, 129.4, 128.7, 128.7, 128.6, 128.4, 126.6, 125.9, 125.8, 124.9, 123.8, 122.7, 120.1, 95.3, 87.2, 65.1, 48.9, 32.9, 32.9, 25.6, 24.9, 24.8 ppm; HRMS-ESI (m/z): calculated for C₃₈H₃₄F₃N₂O₂ [M+H]⁺ 607.2567 found 607.2573.

2-(Cyclohexylamino)-2-oxo-1-phenylethyl (E)-3-(2-(phenylethynyl)phenyl)acrylate (1ad)

White solid (95 mg, Yield 51%); R_f = 0.33 (15:85 ethyl acetate/hexane); ¹H-NMR (400 MHz, Chloroformd): δ_H = 8.39 (d, J = 16.1 Hz, 1H), 7.68 (dd, J = 7.1, 2.0 Hz, 1H), 7.63 – 7.57 (m, 1H), 7.57 – 7.51 (m, 2H), 7.50 – 7.45 (m, 2H), 7.42 – 7.31 (m, 8H), 6.69 (d, J = 16.0 Hz, 1H), 6.22 (s, 1H), 6.02 (d, J = 8.3 Hz, 1H), 3.79 (dddd, J = 14.7, 10.7, 8.1, 4.0 Hz, 1H), 1.88 (ddd, J = 12.4, 7.3, 3.6 Hz, 2H), 1.70 – 1.57 (m, 3H), 1.39 – 1.19 (m, 2H), 1.11 (m, 3H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): $\delta_{\rm C} = 167.4, 165.0, 144.4, 136.0, 133.1, 131.7, 130.3, 128.9, 128.9, 128.8, 128.7, 128.6, 126.5, 122.8, 118.5, 95.9, 86.9, 75.6, 126.5,$ 48.3, 33.0, 33.0, 25.5, 24.8, 24.8 ppm; **HRMS-ESI** (m/z): calculated for C₃₁H₃₀NO₃ [M+H]⁺ 464.2220.

found 464.2223.

(E)-N-Cyclohexyl-3-methyl-2-(N-phenyl-3-(2-(phenylethynyl)phenyl)acrylamido)butanamide (1b)

Pale yellow solid (111 mg, Yield 55%); Rr = 0.35 (15:85 ethyl acetate/hexane); ¹H-NMR (400 MHz, Chloroform-d): δ_{H} = 8.27 (d, J = 15.5 Hz, 1H), 7.63 – 7.57 (m, 2H), 7.54 (dd, J = 7.6, 1.2 Hz, 1H), 7.38 (dddd, J = 13.0, 5.3, 4.0, 1.7 Hz, 6H), 7.32 - 7.22 (m, 5H), 6.37 (d, J = 15.5 Hz, 1H), 4.38 (d, J = 10.3 Hz, 1H), 3.88 – 3.71 (m, 1H), 2.62 – 2.37 (m, 1H), 1.92 (dt, J = 12.6, 3.9 Hz, 2H), 1.74 – 1.68 (m, 2H), 1.58 (dt, J = 12.9, 4.2 Hz, 1H), 1.44 – 1.32 (m, 3H), 1.27 – 1.16 (m, 3H), 1.06 (d, J = 6.5 Hz, 3H), 1.01 (d, J = 6.6 Hz, 3H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): $\delta_{C} = 169.7$, 167.5, 140.9, 140.3, 136.3, 132.9, 131.7, 129.4, 129.2, 128.9, 128.6, 128.4, 128.4, 128.2, 126.2, 123.8, 123.0, 121.1, 95.3, 87.1, 47.8, 32.9, 32.8, 29.7, 27.0, 25.6, 24.6, 24.6, 20.2, 19.8 ppm; HRMS-ESI (m/z): calculated for C₃₄H₃₇N₂O₂ [M+H]⁺ 505.2850 found 505.2855.

(E)-N-(2-(Cyclohexylamino)-2-oxo-1-(p-tolyl)ethyl)-N-phenyl-3-(2-(phenylethynyl)phenyl)acrylamide (1c)

White solid (133 mg, Yield 60%); $R_f = 0.25$ (15:85 ethyl acetate/hexane); ¹H-NMR (300 MHz, Chloroform-*d*): (mixture of two rotamers (55 : 45)) δ_{H} = 8.21 (d, J = 15.6 Hz, 1H), 7.54 – 7.41 (m, 2H), 7.34 – 7.22 (m, 2H), 7.20 – 6.89 (m, 14H), 6.31 – 5.95 (m, 3H), 5.72 (d, J = 8.2 Hz, 1H), 3.76 (ddd, J = 14.6, 7.6, 3.6 Hz, 1H), 2.20 (m, 3H), 1.86 (m, 2H), 1.68 – 1.42 (m, 3H), 1.26 (dddt, J = 13.1, 9.9, 6.5, 1.7 Hz, 2H), 1.12 – 0.89 (m, 3H) ppm; ¹³C-NMR (101 MHz, $CDCI_3$): δ_C = 169.0, 168.8, 166.5, 166.0, 140.9, 140.4, 140.0, 138.3, 138.2, 136.6, 135.5, 133.4, 133.0, 131.9, 131.8, 130.7, 130.7, 130.5, 130.2, 130.2, 129.2, 129.2, 129.1, 129.1, 128.9, 128.9, 128.5, 128.3, 128.1, 128.1, 127.9, 127.4, 126.4, 125.2, 123.9, 123.2, 122.1, 120.9, 95.3, 87.3, 65.7, 65.5, 58.5, 48.8, 48.7, 33.0, 33.0, 32.9, 31.0, 25.6, 24.9,

24.9, 24.8, 24.8, 21.2, 18.5 ppm; HRMS-ESI (m/z): calculated for C₃₈H₃₇N₂O₂ [M+H]⁺ 553.2850 found 553.2852.

(E)-N-(2-(Cyclohexylamino)-1-(3-methoxyphenyl)-2-oxoethyl)-N-phenyl-3-(2-(phenylethynyl)phenyl)acrylamide (1e)

569.2803.

(E)-N-(2-(Cyclohexylamino)-1-(3-nitrophenyl)-2-oxoethyl)-N-phenyl-3-(2-(phenylethynyl)phenyl)acrylamide (1f)

584.2547.

White solid (135 mg, Yield 58%); $R_f = 0.18$ (15:85 ethyl acetate/hexane); ¹**H-NMR** (500 MHz, Chloroform-*d*): (mixture of two rotamers) $\delta_H = 8.39 - 7.97$ (m, 3H), 7.67 - 7.40 (m, 4H), 7.39 - 7.34 (m, 3H), 7.33 - 6.93 (m, 9H), 6.53 - 6.09 (m, 3H), 3.87 (tdt, J = 10.1, 7.9, 3.9 Hz, 1H), 2.06 - 1.84 (m, 2H), 1.70 (m, 2H), 1.61 (dd, J = 8.4, 4.3 Hz, 1H), 1.45 - 1.15 (m, 5H) ppm; ¹³**C-NMR** (126 MHz, CDCl₃): $\delta_c = 167.9, 167.8, 166.9, 166.4, 162.5, 148.0, 147.1, 142.0, 141.6, 139.1, 139.0, 136.8, 136.7, 136.3, 135.0, 133.5, 133.0, 131.8, 130.9, 130.3, 130.2, 129.5, 129.2, 129.1, 128.9, 128.8, 128.7, 128.4, 127.9, 127.5, 126.5, 125.4, 125.4, 125.3, 124.0, 123.4, 123.3, 123.0, 121.1, 119.9, 95.5, 87.1, 64.5, 64.4, 49.0, 48.9, 32.9, 32.9, 25.6, 24.8, 24.8;$ **HRMS-ESI**(m/z): calculated for C₃₇H₃₄N₃O₄ [M+H]⁺ 584.2544 found

White solid (143 mg, Yield 63%); $R_f = 0.20$ (15:85 ethyl acetate/hexane); ¹**H-NMR** (400 MHz, Chloroform-*d*): $\delta_H = 8.28$ (d, J = 15.6 Hz, 1H), 7.60 – 7.54 (m, 2H), 7.50 (dd, J = 7.6, 1.3 Hz, 1H), 7.36 (dd, J = 5.0, 1.9 Hz, 3H), 7.27 – 7.14 (m, 8H), 7.11 (d, J = 7.9 Hz, 1H), 6.82 – 6.69 (m, 3H), 6.36 (d, J = 15.6 Hz, 1H), 6.17 (s, 1H), 5.90 (d, J = 8.1 Hz, 1H), 3.88 – 3.80 (m, 1H), 3.63 (s, 3H), 2.01 – 1.83 (m, 2H), 1.63 (m, 3H), 1.41 – 1.28 (m, 2H), 1.23 – 1.02 (m, 3H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): $\delta_C =$

168.7, 166.5, 159.5, 140.5, 139.9, 136.6, 136.3, 132.9, 131.9, 130.7, 129.3, 129.1, 128.9, 128.5, 128.4, 128.3, 128.1, 126.4, 123.9, 123.1, 122.7, 120.7, 115.4, 114.7, 95.3, 87.2, 65.5, 55.5, 55.3, 48.8, 32.9,

32.9, 25.6, 24.9, 24.8 ppm; HRMS-ESI (m/z): calculated for C₃₈H₃₇N₂O₃ [M+H]⁺ 569.2799 found

(E)-N-(1-(2-Bromophenyl)-2-(cyclohexylamino)-2-oxoethyl)-N-phenyl-3-(2-(phenylethynyl)phenyl)acrylamide (1g)

White solid (128 mg, Yield 52%); $R_f = 0.30$ (15:85 ethyl acetate/hexane); ¹**H-NMR** (400 MHz, Chloroform-*d*): $\delta_H = 8.34$ (d, J = 15.6 Hz, 1H), 7.60 (dd, J = 6.7, 2.9 Hz, 2H), 7.53 (dt, J = 7.7, 1.7 Hz, 2H), 7.44 – 7.30 (m, 4H), 7.30 – 7.07 (m, 8H), 7.07 – 6.95 (m, 2H), 6.60 (s, 1H), 6.39 (d, J = 15.6 Hz, 1H), 5.78 (d, J = 8.1 Hz, 1H), 3.90 (tdt, J = 11.1, 7.8, 3.9 Hz, 1H), 2.12 – 1.98 (m, 1H), 1.97 – 1.84 (m, 1H), 1.67 (m, 3H), 1.44 – 1.30 (m, 2H), 1.27 – 1.02 (m, 3H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): $\delta_C = 168.5$, 166.3, 140.4, 139.0, 136.4, 134.3, 132.9, 132.8, 132.1, 131.8, 130.5, 129.9, 129.1, 128.7, 128.5, 128.3, 128.2, 128.1, 127.2, 126.4, 126.2, 123.8, 123.0, 120.3, 95.2, 87.2, 64.0, 48.9, 32.9, 32.8, 25.5, 24.9, 24.8 ppm; **HRMS-ESI** (m/z): calculated for $C_{37}H_{34}BrN_2O_2$ [M+H]⁺ 617.1798 found 617.1795.

(E)-N-(1-(4-Chlorophenyl)-2-(cyclohexylamino)-2-oxoethyl)-N-phenyl-3-(2-(phenylethynyl)phenyl)acrylamide (1h)

White solid (156 mg, Yield 68%); $R_f = 0.26$ (15:85 ethyl acetate/hexane); ¹**H-NMR** (400 MHz, Chloroform-*d*): (mixture of two rotamers (56 : 44)) δ_{H} = 8.18 (d, J = 15.5 Hz, 1H), 7.60 – 7.52 (m, 2H), 7.38 (q, J = 2.8 Hz, 2H), 7.30 – 7.07 (m, 12H), 6.40 – 6.14 (m, 2H), 6.06 (d, J = 8.1 Hz, 1H), 3.87 (tdt, J = 11.0, 7.9, 3.9 Hz, 1H), 2.00 (dd, J = 10.5, 6.3 Hz, 1H), 1.92 – 1.86 (m, 1H), 1.74 – 1.58 (m, 3H), 1.43 – 1.31 (m, 2H), 1.27 – 1.08 (m, 3H) ppm; ¹³C-NMR (101 MHz, CDCl₃): $\delta_C = 168.4$, 168.3, 166.6, 166.1, 141.2, 140.8, 139.4, 139.3, 136.3, 135.1, 134.4, 134.3, 133.3, 133.2, 133.2, 132.9, 131.8, 131.7, 131.6, 130.6, 130.6, 130.5, 130.0, 129.2, 129.1, 129.1, 128.7, 128.5, 128.5, 128.4, 128.3, 128.3, 128.0, 127.8, 127.4, 126.3, 125.2, 123.8, 123.0, 121.5, 120.3, 95.3, 87.1, 64.7, 64.5, 48.8, 48.7, 32.9, 32.9, 32.8, 25.5, 24.8, 24.8, 24.7 ppm; HRMS-ESI (m/z): calculated for C₃₇H₃₃ClN₂O₂ [M+H]⁺ 573.2303 found 573.2303.

(E)-N-(2-(Cyclohexylamino)-2-oxo-1-(pyridin-4-yl)ethyl)-N-phenyl-3-(2-(phenylethynyl)phenyl)acrylamide (1i)

White solid (121 mg, Yield 56%); $R_f = 0.17$ (15:85 ethyl acetate/hexane); ¹**H-NMR** (400 MHz, Chloroform-*d*): $\delta_H = 8.48$ (d, J = 5.1 Hz, 2H), 8.29 (d, J = 15.6 Hz, 1H), 7.61 – 7.48 (m, 3H), 7.40 – 7.32 (m, 3H), 7.29 – 7.12 (m, 10H), 6.51 – 6.23 (m, 2H), 6.05 (s, 1H), 3.87 (dd, J = 12.1, 6.8 Hz, 1H), 2.08 – 1.81 (m, 2H), 1.72 – 1.59 (m, 3H), 1.37 (t, J = 11.6 Hz, 2H), 1.20 (m, 3H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): $\delta_C = 167.6$, 166.9, 149.9, 143.7, 141.5, 139.9, 136.2, 133.0, 131.8, 129.9, 129.5, 129.4, 128.7, 128.4, 128.4, 126.5, 124.5, 124.0, 123.0, 120.0, 95.5, 87.1, 65.5, 48.8, 32.9, 25.6, 24.8, 24.7 ppm; **HRMS-ESI** (m/z): calculated for $C_{36}H_{34}N_3O_2$ [M+H]⁺ 540.2646 found 540.2647.

(E)-N-(2-(Cyclohexylamino)-2-oxo-1-phenylethyl)-3-(2-(hept-1-yn-1-yl)phenyl)-N-phenylacrylamide (1j)

White solid (154 mg, Yield 72%); $R_f = 0.32$ (15:85 ethyl acetate/hexane); ¹**H-NMR** (400 MHz, Chloroform-*d*): $\delta_H = 8.17$ (d, J = 15.6 Hz, 1H), 7.36 (dd, J = 7.7, 1.3 Hz, 1H), 7.27 – 6.99 (m, 13H), 6.33 (d, J = 15.6 Hz, 1H), 6.17 (s, 1H), 5.87 (d, J = 8.1 Hz, 1H), 3.86 (dddd, J = 14.4, 10.5, 7.9, 3.9 Hz, 1H), 2.40 (t, J = 7.2 Hz, 2H), 2.03 – 1.84 (m, 2H), 1.68 – 1.57 (m, 5H), 1.49 – 1.28 (m, 6H), 1.22 – 1.02 (m, 3H), 0.94 (t, J = 7.1 Hz, 3H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): $\delta_C = 168.8$, 166.7, 141.0, 140.1, 136.3, 135.0, 133.1, 130.7, 130.3, 130.2, 129.0, 128.9, 128.6, 128.5, 128.4, 128.4, 128.3, 128.1, 127.7, 127.5, 126.3, 120.2, 96.9, 78.5, 65.8, 48.8, 33.0, 32.9, 31.3, 28.5, 25.6, 24.9, 24.8, 22.3, 19.7 ppm; **HRMS-ESI** (m/z): calculated for $C_{36}H_{41}N_2O_2$ [M+H]* 533.3163 found 533.3161.

(E)-N-(2-(Cyclohexylamino)-2-oxo-1-phenylethyl)-N-phenyl-3-(2-((trimethylsilyl)ethynyl)phenyl)acrylamide (1k)

White solid (812 mg, Yield 39%, 4.0 mmol scale); $R_f = 0.22$ (10:40 ethyl acetate/hexane); ¹H-NMR (500 MHz, Chloroform-*d*): $\delta_H = 8.30 - 8.17$ (m, 1H), 7.45 (d, J = 7.6 Hz, 1H), 7.29 (d, J = 1.5 Hz, 1H), 7.25 - 7.19 (m, 9H), 7.15 (d, J = 6.1 Hz, 3H), 6.27 (d, J = 15.6 Hz, 1H), 6.22 (s, 1H), 5.98 (d, J = 7.7 Hz, 1H), 3.98 - 3.78 (m, 1H), 2.04 - 1.88 (m, 2H), 1.64 (m, 3H), 1.38 (m, 2H), 1.22 - 1.08 (m, 3H), 0.33 (s, 9H) ppm; ¹³C-NMR (126 MHz, CDCl₃): δ_C = 168.8, 166.4, 142.3, 140.2, 139.9, 136.9, 134.9, 133.1, 130.6, 130.2, 128.9, 128.9, 128.4, 128.3, 128.3, 128.1, 125.6, 123.8, 120.6, 102.6, 100.7, 65.6, 48.7, 32.9, 32.8, 25.6, 24.8, 24.8, 0.0 ppm; HRMS-ESI (m/z): calculated for C₃₄H₃₉N₂O₂Si [M+H]⁺ 535.2776 found

535.2775.

(E)-N-(2-(Cyclohexylamino)-2-oxo-1-phenylethyl)-3-(2-((4-methoxyphenyl)ethynyl)phenyl)-N-phenylacrylamide (11)

Yellow solid (139 mg, Yield 61%); $R_f = 0.28$ (15:85 ethyl acetate/hexane); ¹H-NMR (400 MHz, Chloroform-*d*): $\delta_H = 8.29$ (d, J = 15.6 Hz, 1H), 7.55 – 7.41 (m, 3H), 7.29 – 7.04 (m, 13H), 6.93 – 6.82 (m, 2H), 6.34 (d, J = 15.6 Hz, 1H), 6.20 (s, 1H), 5.89 (d, J = 8.1 Hz, 1H), 3.85 (s, 4H), 2.04 – 1.82 (m, 2H), 1.63 (m, 3H), 1.42 – 1.25 (m, 2H), 1.23 – 0.99 (m, 3H) ppm; ¹³C-NMR (101 MHz, CDCl₃): $\delta_C = 168.8$, 166.6, 159.9, 140.7, 139.9, 136.4, 135.0, 133.4, 132.8, 130.7, 130.3, 129.1, 128.9, 128.4, 128.3, 128.1, 128.0, 126.3, 124.3, 120.5, 115.3, 114.1, 95.5, 86.1, 65.7, 55.4, 48.8, 33.0, 32.9, 25.6, 24.9, 24.8 ppm; HRMS-ESI (m/z): calculated for C₃₈H₃₇N₂O₃ [M+H]⁺ 569.2799 found 569.2802.

(*E*)-*N*-(2-(Cyclohexylamino)-1-(4-methoxyphenyl)-2-oxoethyl)-3-(5-methoxy-2-(phenylethynyl)phenyl)-*N*-phenylacrylamide (1m)

White solid (153 mg, Yield 64%); $R_f = 0.30$ (15:85 ethyl acetate/hexane); ¹**H-NMR** (400 MHz, Chloroform-*d*): $\delta_H = 8.21$ (d, J = 15.6 Hz, 1H), 7.60 – 7.48 (m, 2H), 7.43 (d, J = 8.6 Hz, 1H), 7.38 – 7.29 (m, 3H), 7.27 – 7.02 (m, 7H), 6.80 (dd, J = 8.6, 2.6 Hz, 1H), 6.74 – 6.64 (m, 3H), 6.31 (d, J = 15.5 Hz, 1H), 6.17 (s, 1H), 5.83 (d, J = 8.1 Hz, 1H), 3.85 (dddd, J = 14.5, 10.6, 7.9, 3.8 Hz, 1H), 3.74 (s, 3H), 3.71 (s, 3H), 2.01 – 1.83 (m, 2H), 1.68 – 1.53 (m, 3H), 1.34 (dddd, J = 19.9, 15.0, 9.3, 3.4 Hz, 2H), 1.22 – 1.01 (m, 3H) ppm; ¹³C-NMR (101 MHz, CDCl₃): $\delta_C = 169.0$, 166.4, 159.6, 159.4, 140.4, 139.8, 138.1, 134.3, 131.7, 131.7, 130.8, 128.9, 128.3, 128.2, 128.1, 126.9, 123.5, 121.2, 116.4, 115.0, 113.8, 111.8, 93.8, 87.3, 64.8, 55.3, 55.3, 48.7, 33.0, 33.0, 25.6, 24.9, 24.8 ppm; HRMS-ESI (m/z): calculated for $C_{39}H_{39}N_2O_4$ [M+H]⁺ 599.2904 found 599.2911.

(E)-N-(2-(Cyclohexylamino)-2-oxo-1-phenylethyl)-3-(5-methoxy-2-(phenylethynyl)phenyl)-N-phenylacrylamide (1n)

White solid (134 mg, Yield 59%); R_f = 0.28 (15:85 ethyl acetate/hexane); $^1\text{H-NMR}$ (400 MHz, Chloroform-d): (mixture of two rotamers) δ_{H} = 8.24 (d, J = 15.7 Hz, 1H), 7.62 – 7.40 (m, 5H), 7.39 – 7.29 (m, 5H), 7.19 – 7.06 (m, 5H), 6.94 – 6.52 (m, 3H), 6.33 (d, J = 15.7 Hz, 1H), 6.19 (s, 1H), 5.88 (d, J = 8.1 Hz, 1H), 3.86 (m, 1H), 3.71 (s, 3H), 2.03 – 1.86 (m, 2H), 1.67 – 1.57 (m, 3H), 1.43 – 1.25 (m, 2H), 1.23 – 1.00 (m, 3H) ppm; $^{13}\text{C-NMR}$ (101 MHz, CDCl₃): δ_{C} = 166.8, 166.5, 159.7, 159.4, 142.6, 140.5, 139.9, 138.1, 137.3, 134.9, 134.3, 134.2, 131.7, 131.5, 130.6, 130.3, 128.9, 128.4, 128.4, 128.2, 128.1, 123.5, 123.4, 121.1, 120.1, 116.7, 116.4, 116.4, 115.1, 111.8, 111.0, 94.2, 93.8, 123.4, 123

87.2, 87.2, 65.7, 55.5, 55.3, 48.8, 32.9, 32.9, 25.6, 24.9, 24.8 ppm; **HRMS-ESI** (m/z): calculated for $C_{38}H_{37}N_2O_3$ [M+H]⁺ 569.2799 found 569.2803.

(E)-3-(4-Chloro-2-(phenylethynyl)phenyl)-N-(2-(cyclohexylamino)-2-oxo-1-phenylethyl)-N-phenylacrylamide (10)

White solid (117 mg, Yield 52%); $R_f = 0.27$ (15:85 ethyl acetate/hexane); ¹H NMR (400 MHz,) $\delta_H = 8.23$ (d, J = 15.6 Hz, 1H), 7.58 (tt, J = 5.9, 2.8 Hz, 2H), 7.51 (d, J = 1.5 Hz, 1H), 7.43 – 7.35 (m, 3H), 7.35 – 7.03 (m, 12H), 6.34 (d, J = 15.6 Hz, 1H), 6.22 (s, 1H), 5.84 (d, J = 8.1 Hz, 1H), 3.87 (ddq, J = 11.0, 7.5, 4.1, 3.7 Hz, 1H), 2.00 (m, 1H), 1.89 (m, 1H), 1.73 – 1.58 (m, 3H), 1.36 (m, 2H), 1.27 – 0.99 (m, 3H) ppm; ¹³C NMR (101 MHz, CDCl₃) $\delta_C = 168.7$, 166.2, 139.6, 139.2, 134.9, 134.8, 134.7, 132.4, 131.9, 130.6, 130.4, 130.3, 128.8, 128.6, 128.4, 128.4, 128.3, 128.1, 127.4, 125.2, 122.5, 120.9, 96.3, 85.9, 77.4, 77.1, 76.7, 65.6, 48.7, 32.9, 32.8, 25.5, 24.8, 24.7 ppm; HRMS-ESI (m/z): calculated for fourth 573 2306

C₃₇H₃₃ClN₂O₂ [M+H]⁺ 573.2303 found 573.2306.

(E)-N-(2-(Cyclohexylamino)-2-oxo-1-phenylethyl)-3-(5-nitro-2-(phenylethynyl)phenyl)-N-phenylacrylamide (1p)

White solid (159 mg, Yield 68%); $R_f = 0.20$ (15:85 ethyl acetate/hexane); ¹**H-NMR** (400 MHz, Chloroform-*d*): $\delta_H = 8.25$ (d, J = 15.6 Hz, 1H), 8.07 (dd, J = 8.5, 2.3 Hz, 1H), 8.02 (d, J = 2.3 Hz, 1H), 7.71 – 7.52 (m, 3H), 7.41 (p, J = 5.3, 4.5 Hz, 3H), 7.30 – 7.08 (m, 10H), 6.44 (d, J = 15.6 Hz, 1H), 6.18 (s, 1H), 5.73 (d, J = 8.2 Hz, 1H), 3.87 (tdt, J = 11.2, 7.9, 3.8 Hz, 1H), 2.01 – 1.84 (m, 2H), 1.72 – 1.59 (m, 3H), 1.36 (ddtd, J = 15.6, 11.7, 8.1, 3.5 Hz, 2H), 1.12 (m, 3H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): $\delta_C = 168.5, 165.8, 147.1, 139.5, 138.3, 138.0, 134.7, 133.6, 132.6, 132.2, 131.8, 130.6, 130.5, 130.4, 130.4, 129.9, 129.5, 129.3, 129.1, 128.7, 128.6, 128.6, 128.5, 124.3, 123.4, 123.3, 128.7, 128.6, 128.6, 128.5, 124.3, 123.4, 123.3, 128.7, 128.6, 128.5, 124.3, 123.4, 123.3, 128.7, 128.6, 128.5, 124.3, 123.4, 123.3, 128.7, 128.6, 128.6, 128.5, 124.3, 123.4, 123.3, 128.7, 128.6, 128.6, 128.5, 124.3, 123.4, 123.3, 128.7, 128.6, 128.5, 124.3, 124.3, 123.4, 123.3, 128.7, 128.6, 128.5, 124.3, 123.4,$

122.1, 121.3, 100.5, 85.9, 65.9, 48.9, 33.0, 32.9, 25.6, 24.9, 24.8 ppm; **HRMS-ESI** (m/z): calculated for C₃₇H₃₄N₃O₄ [M+H]⁺ 584.2544 found 584.2546.

(E)-N-(2-(Cyclohexylamino)-2-oxo-1-phenylethyl)-3-(2-((4-nitrophenyl)ethynyl)phenyl)-N-phenylacrylamide (1q)

Yellow solid (124 mg, Yield 53%); $R_f = 0.20$ (15:85 ethyl acetate/hexane);¹**H-NMR** (400 MHz, Chloroform-*d*) $\delta_H = 8.42 - 8.13$ (m, 3H), 7.73 (d, J = 8.3 Hz, 2H), 7.54 (d, J = 7.4 Hz, 1H), 7.31 - 7.13 (m, 13H), 6.36 (d, J = 15.5 Hz, 1H), 6.22 (s, 1H), 5.77 (d, J = 8.1 Hz, 1H), 3.87 (dq, J = 15.1, 4.2 Hz, 1H), 1.94 (dd, J = 42.0, 11.5 Hz, 2H), 1.72 - 1.52 (m, 3H), 1.41 - 1.30 (m, 2H), 1.18 - 0.97 (m, 3H) ppm; 1³**C-NMR** (101 MHz, CDCl₃) $\delta_C = 168.6$, 166.2, 147.1, 139.8, 139.6, 136.9, 134.7, 133.0, 132.5, 130.7, 130.4, 130.3, 129.9, 129.3, 129.2, 128.8, 128.4, 128.3, 128.1, 126.2, 123.6, 122.6, 121.0, 93.1, 92.4, 77.4, 77.1, 76.8, 65.9, 48.8, 32.9, 32.8, 25.5, 24.9, 24.8 ppm; **HRMS-ESI** (m/z): calculated for $C_{37}H_{34}N_3O_4$ [M+H]⁺ 584.2544 found 584.2543.

(E)-N-(2-(tert-Butylamino)-2-oxo-1-phenylethyl)-N-phenyl-3-(2-(phenylethynyl)phenyl)acrylamide (1r)

White solid (113 mg, Yield 55%); $R_f = 0.35$ (15:85 ethyl acetate/hexane); ¹**H-NMR** (400 MHz, Chloroform-*d*): $\delta_H = 8.32$ (d, J = 15.6 Hz, 1H), 7.60 (dd, J = 6.6, 3.0 Hz, 2H), 7.53 (dd, J = 7.7, 1.3 Hz, 1H), 7.41 – 7.36 (m, 3H), 7.29 – 7.01 (m, 13H), 6.37 (d, J = 15.6 Hz, 1H), 6.16 (s, 1H), 5.92 (s, 1H), 1.39 (s, 9H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): $\delta_C = 168.9$, 166.4, 140.4, 139.7, 136.5, 134.9, 132.8, 131.8, 130.6, 130.2, 129.1, 128.8, 128.5, 128.3, 128.3, 128.3, 128.2, 128.0, 126.2, 123.8, 123.0, 120.7, 95.2, 87.2, 66.0, 51.6, 28.7 ppm; **HRMS-ESI** (m/z): calculated for $C_{35}H_{32}N_2O_2$ [M+H]⁺ 513.2537 found 513.2539.

(E)-N-(2-(tert-Butylamino)-1-(4-methoxyphenyl)-2-oxoethyl)-N-phenyl-3-(2-(phenylethynyl)phenyl)acrylamide (1s)

White solid (137 mg, Yield 63%); $R_f = 0.33$ (15:85 ethyl acetate/hexane); ¹H-NMR (400 MHz, Chloroform-*d*): $\delta_H = 8.28$ (d, J = 15.6 Hz, 1H), 7.61 – 7.48 (m, 3H), 7.39 – 7.33 (m, 3H), 7.25 – 7.05 (m, 9H), 6.76 – 6.64 (m, 2H), 6.33 (d, J = 15.6 Hz, 1H), 6.12 (s, 1H), 5.85 (s, 1H), 3.74 (s, 3H), 1.36 (s, 9H) ppm; ¹³C-NMR (101 MHz, CDCl₃): $\delta_C = 169.2$, 166.4, 159.5, 140.3, 139.8, 136.7, 132.9, 131.9, 131.7, 130.8, 129.0, 128.9, 128.5, 128.3, 128.1, 127.0, 126.3, 123.2, 121.0, 113.7, 95.3, 87.3, 77.4, 65.1, 55.3, 51.6, 28.8; HRMS-ESI (m/z): calculated for $C_{36}H_{35}N_2O_3$ [M+H]⁺ 543.2642 found 543.2643.

(E)-N-(2-(tert-Butylamino)-2-oxo-1-(4-(trifluoromethyl)phenyl)ethyl)-N-phenyl-3-(2-(phenylethynyl)phenyl)acrylamide (1t)

White solid (167 mg, Yield 72%); $R_f = 0.35$ (15:85 ethyl acetate/hexane); ¹**H-NMR** (400 MHz, Chloroform-*d*): $\delta_H = 8.30$ (d, J = 15.6 Hz, 1H), 7.58 – 7.45 (m, 5H), 7.39 – 7.34 (m, 5H), 7.29 – 7.10 (m, 8H), 6.35 (d, J = 15.6 Hz, 1H), 6.19 (s, 1H), 6.15 (s, 1H), 1.39 (s, 9H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): $\delta_C = 168.3$, 166.8, 141.1, 139.6, 138.9, 138.9, 136.4, 133.0, 131.8, 130.6, 130.5, 130.3, 130.3, 129.3, 129.3, 128.6, 128.5, 128.4, 128.4, 126.4, 125.3, 125.2, 124.0, 123.1, 122.6, 120.3, 95.5, 87.2, 65.6, 51.8, 28.8 ppm; **HRMS-ESI** (m/z): calculated for $C_{36}H_{32}F_3N_2O_2$ [M+H]⁺ 581.2410 found 581.2415.

ethyl (E)-(2-(N-Phenyl-3-(2-(phenylethynyl)phenyl)acrylamido)-2-(p-tolyl)acetyl)glycinate (1u)

White solid (120 mg, Yield 54%); $R_f = 0.25$ (15:85 ethyl acetate/hexane); ¹**H-NMR** (400 MHz, Chloroform-*d*): $\delta_H = 8.29$ (d, J = 15.6 Hz, 1H), 7.62 – 7.54 (m, 2H), 7.50 (dd, J = 7.6, 1.2 Hz, 1H), 7.42 – 7.32 (m, 3H), 7.29 – 7.07 (m, 10H), 7.02 (d, J = 7.9 Hz, 2H), 6.51 (t, J = 5.4 Hz, 1H), 6.37 (d, J = 15.6 Hz, 1H), 6.23 (s, 1H), 4.18 (q, J = 7.1 Hz, 2H), 4.10 (d, J = 5.3 Hz, 2H), 2.27 (s, 3H), 1.25 (t, J = 7.1 Hz, 3H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): $\delta_C = 170.1$, 169.7, 166.6, 140.7, 139.9, 138.4, 136.5, 133.0, 131.2, 130.6, 130.4, 129.2, 129.1, 129.0, 128.5, 128.4, 128.3, 128.2, 126.4, 123.9, 123.1, 120.6, 95.3, 87.2, 65.5, 61.5, 41.8, 21.2, 14.2 ppm; **HRMS-ESI** (m/z): calculated for $C_{36}H_{33}N_2O_4$ [M+H]⁺ 557.2435 found 557.2435.

(E)-N-Cyclohexyl-3,3-dimethyl-2-(N-phenyl-3-(2-(phenylethynyl)phenyl)acrylamido)butanamide (1v)

Brown oil (106 mg, Yield 51%); $R_f = 0.35$ (15:85 ethyl acetate/hexane); ¹**H-NMR** (400 MHz, Chloroformd): δ_{H} = 8.25 (d, J = 15.5 Hz, 1H), 7.61 – 7.56 (m, 2H), 7.52 (dd, J = 7.5, 1.0 Hz, 1H), 7.40 – 7.31 (m, 8H), 7.28 – 7.24 (m, 1H), 7.20 (dd, J = 4.1, 1.3 Hz, 2H), 6.83 (s, 1H), 6.39 (d, J = 15.5 Hz, 1H), 5.02 (s, 1H), 3.82 (dddd, J = 14.0, 10.0, 7.9, 3.9 Hz, 1H), 1.96 – 1.89 (m, 2H), 1.70 (tt, J = 8.4, 4.2 Hz, 2H), 1.56 (dp, J = 12.6, 4.0 Hz, 1H), 1.42 – 1.32 (m, 2H), 1.28 – 1.15 (m, 3H), 1.01 (s, 9H) ppm; ¹³C-NMR (101 MHz, CDCl₃): $\delta_C = 169.9$, 168.1, 140.5, 136.5, 132.9, 131.8, 129.6, 129.3, 129.2, 128.6, 128.4, 128.4, 126.3, 123.9, 123.1, 120.8, 95.4, 87.2, 48.0, 34.9, 33.0, 32.8, 28.2, 25.7, 24.8, 24.7 ppm: HRMS-ESI (m/z):

calculated for $C_{35}H_{39}N_2O_2$ [M+H]⁺ 519.3006 found 519.3007.

N-(2-(Cyclohexylamino)-2-oxo-1-phenylethyl)-N-phenylcinnamamide (1w)

White solid (125 mg, Yield 72%); $R_f = 0.30$ (15:85 ethyl acetate/hexane); ¹H-NMR (400 MHz, Chloroform-*d*): $\delta_H = 7.71$ (d, J = 15.6 Hz, 1H), 7.34 – 7.03 (m, 15H), 6.22 (d, J = 15.5 Hz, 1H), 6.12 (s, 1H), 5.87 (d, J = 8.1 Hz, 1H), 3.87 (dddd, J = 14.5, 10.5, 7.9, 3.9 Hz, 1H), 2.05 – 1.83 (m, 2H), 1.73 – 1.51 (m, 3H), 1.42 – 1.27 (m, 2H), 1.24 – 1.00 (m, 3H) ppm; ¹³C-NMR (101 MHz, CDCl₃): $\delta_C = 168.7$, 166.7, 142.6, 140.1, 135.2, 135.0, 130.6, 130.3, 130.3, 130.1, 129.6, 128.9, 128.7, 128.6, 128.5, 128.4, 128.4, 128.1, 127.9, 127.6, 119.0, 66.0, 48.8, 48.7, 33.0, 32.9, 25.6, 24.9, 24.8 ppm; ; **HRMS-ESI** (m/z):

calculated for C₂₉H₃₁N₂O₂ [M+H]⁺ 439.2380 found 439.2379.

2-Cyclohexyl-10,10a-diphenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2a)

White solid (89 mg, Yield 87%); R_f = 0.25 (1:10 ethyl acetate/hexane); ¹**H-NMR** (500 MHz, Chloroform-*d*): $\delta_{H} = \delta$ 7.97 (s, 1H), 7.52 – 7.45 (m, 1H), 7.41 – 7.27 (m, 5H), 7.26 – 7.14 (m, 5H), 7.08 – 6.97 (m, 3H), 6.80 (s, 1H), 4.04 (tt, *J* = 12.4, 3.9 Hz, 1H), 2.09 (qt, *J* = 12.5, 3.7 Hz, 2H), 1.83 – 1.71 (m, 2H), 1.65 – 1.58 (m, 1H), 1.59 – 1.56 (m, 1H), 1.34 – 1.13 (m, 3H) ppm; ¹³**C-NMR** (126 MHz, CDCl₃): $\delta_{C} = {}^{13}$ C NMR (126 MHz, CDCl₃) δ 175.0, 168.1, 144.7, 141.4, 137.7, 131.9, 131.3, 131.1, 130.7, 128.8, 128.6, 128.1, 127.9, 127.8, 127.4, 127.0, 57.2, 52.1, 28.9, 28.6, 25.9, 25.8, 25.1 ppm; **HRMS-ESI** (m/z): calculated for C₃₁H₂₇NO₂ [M+Na+H]⁺ 469.1911 found 469.1911.

2-Cyclohexyl-10a-isopropyl-10-phenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2b)

White solid (35 mg, Yield 43%); R_f = 0.27 (1:10 ethyl acetate/hexane); ¹**H-NMR** (500 MHz, Chloroform-*d*): $\delta_{H} = 7.79$ (s, 1H), 7.59 (dd, J = 7.6, 1.3 Hz, 1H), 7.45 – 7.34 (m, 3H), 7.33 – 7.28 (m, 3H), 7.23 – 7.12 (m, 2H), 6.70 (s, 1H), 4.07 (tt, J = 12.3, 3.9 Hz, 1H), 2.16 (dqd, J = 41.7, 12.6, 3.8 Hz, 2H), 1.89 – 1.76 (m, 3H), 1.64 (d, J = 12.7 Hz, 2H), 1.32 (ddt, J = 22.3, 9.2, 4.1 Hz, 4H), 1.13 (d, J = 6.8 Hz, 3H), 0.64 (d, J = 6.8 Hz, 3H) ppm; ¹³**C**-**NMR** (126 MHz, CDCl₃): $\delta_{C} = 175.0$, 168.2, 143.7, 142.2, 136.8, 132.7, 131.9, 131.9, 131.1, 130.1, 129.8, 129.0, 128.5, 128.3, 127.8, 127.6, 127.4, 127.1, 77.3, 77.1, 76.8, 56.5, 51.7, 31.6, 29.8, 28.9, 28.7, 26.0, 26.0, 25.1, 17.3 ppm; **HRMS-ESI** (m/z): calculated for C₂₈H₂₉NO₂ [M+H]⁺ 412.2271 found 412.2271.

2-Cyclohexyl-10-phenyl-10a-(p-tolyl)benzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2c)

White solid (81 mg, Yield 88%); $R_f = 0.26$ (1:10 ethyl acetate/hexane); ¹**H-NMR** (500 MHz, Chloroform-*d*): $\delta_H = 7.95$ (s, 1H), 7.49 (q, J = 4.2, 3.4 Hz, 1H), 7.42 – 7.30 (m, 5H), 7.26 – 7.19 (m, 3H), 7.10 – 7.01 (m, 2H), 6.84 (d, J = 8.0 Hz, 2H), 6.78 (s, 1H), 4.03 (tt, J = 12.3, 3.9 Hz, 1H), 2.13 (s, 3H), 2.08 (dddd, J = 16.5, 12.7, 7.3, 4.3 Hz, 2H), 1.82 – 1.71 (m, 2H), 1.64 – 1.57 (m, 1H), 1.54 (d, J = 3.7 Hz, 1H), 1.36 – 1.06 (m, 4H) ppm; ¹³C-NMR (126 MHz, CDCl₃): $\delta_C = 175.2$, 168.2, 144.7, 141.5, 137.0, 136.8, 134.8, 132.8, 132.6, 131.8, 131.2, 131.1, 130.8, 128.8, 128.7, 128.6, 128.0, 127.8, 127.0, 126.7, 56.9, 52.0, 28.9, 28.6, 25.9, 25.8, 25.1, 21.0 ppm; HRMS-ESI (m/z): calculated for $C_{32}H_{30}NO_2$ [M+H]⁺ 460.2271 found 460.2274.

2-Cyclohexyl-10a-(4-isopropylphenyl)-10-phenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2d)

White solid (74 mg, Yield 76%); R_f = 0.28 (1:10 ethyl acetate/hexane); ¹**H-NMR** (500 MHz, Chloroform-*d*): $\delta_{H} = 7.95$ (s, 1H), 7.53 – 7.44 (m, 1H), 7.38 – 7.33 (m, 5H), 7.25 – 7.19 (m, 3H), 7.11 – 7.04 (m, 2H), 6.90 – 6.85 (m, 2H), 6.78 (s, 1H), 4.03 (tt, *J* = 12.3, 3.9 Hz, 1H), 2.68 (hept, *J* = 6.9 Hz, 1H), 2.10 (qt, *J* = 12.6, 3.9 Hz, 2H), 1.82 – 1.72 (m, 2H), 1.65 – 1.57 (m, 2H), 1.30 – 1.14 (m, 4H), 1.07 (dd, *J* = 6.9, 1.5 Hz, 6H) ppm; ¹³**C-NMR** (126 MHz, CDCl₃): $\delta_{C} = 175.2$, 168.2, 144.7, 141.6, 136.8, 135.0, 132.7, 132.6, 131.8, 131.3, 131.2, 130.8, 128.7, 128.6, 128.0, 127.7, 126.9, 126.7, 126.0, 56.9, 52.0, 33.5, 29.0, 28.6, 25.9, 25.8, 25.1, 23.8 ppm; **HRMS-ESI** (m/z): calculated for C₃₄H₃₃NO₂ [M+H]⁺ 488.2584 found 488.2586.

2-Cyclohexyl-10a-(3-methoxyphenyl)-10-phenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2e)

White solid (75 mg, Yield 79%); $R_f = 0.16$ (1:10 ethyl acetate/hexane); ¹**H-NMR** (400 MHz, Chloroform-*d*): $\delta_H = 7.97$ (s, 1H), 7.54 – 7.43 (m, 1H), 7.43 – 7.31 (m, 5H), 7.28 – 7.17 (m, 3H), 6.96 (t, J = 8.2 Hz, 1H), 6.86 – 6.69 (m, 3H), 6.56 (ddd, J = 8.2, 2.5, 0.9 Hz, 1H), 4.05 (tt, J = 12.3, 3.9 Hz, 1H), 3.64 (s, 3H), 2.11 (qdd, J = 13.4, 6.5, 4.1 Hz, 2H), 1.86 – 1.71 (m, 2H), 1.67 – 1.57 (m, 2H), 1.35 – 1.13 (m, 4H) ppm; ¹³**C**-NMR (101 MHz, CDCl₃): $\delta_C = 174.8$, 168.0, 159.0, 144.4, 141.3, 139.2, 136.7, 132.7, 132.4, 131.9, 131.4, 131.1, 130.8, 128.8, 128.8, 128.6, 128.0, 127.8, 127.0, 119.4, 113.3, 112.7, 57.2, 55.1, 52.1, 28.9, 28.6, 25.9, 25.8, 25.0 ppm; HRMS-ESI (m/z): calculated for $C_{32}H_{30}NO_3$ [M+H]⁺ 476.22220 found 476.2222.

2-Cyclohexyl-10a-(3-nitrophenyl)-10-phenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2f)

White solid (39 mg, Yield 40%); R_f = 0.25 (1:4 ethyl acetate/hexane); ¹**H-NMR** (400 MHz, Chloroform-*d*): δ_{H} = 8.06 (t, *J* = 2.1 Hz, 1H), 8.05 (s, 1H), 7.89 (ddd, *J* = 8.2, 2.3, 1.0 Hz, 1H), 7.59 – 7.53 (m, 2H), 7.42 – 7.37 (m, 5H), 7.25 (d, *J* = 2.5 Hz, 4H), 6.85 (s, 1H), 4.05 (tt, *J* = 12.3, 3.9 Hz, 1H), 2.12 – 2.01 (m, 2H), 1.79 (d, *J* = 9.5 Hz, 2H), 1.57 (s, 2H), 1.37 – 1.10 (m, 4H) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ_{C} = ¹³C NMR (101 MHz, CDCl₃) δ 174.2, 167.4, 147.7, 144.4, 140.5, 139.8, 136.4, 133.1, 132.7, 132.6, 131.6, 131.3, 131.2, 130.8, 129.3, 128.9, 128.6, 128.4, 128.2, 127.5, 122.6, 122.1, 56.8, 52.4, 29.0, 28.7, 25.9, 25.8, 25.0 ppm; **HRMS-ESI** (m/z): calculated for C₃₁H₂₆N₂O₄ [M+H]⁺ 491.1965 found 491.1968.

10a-(2-Bromophenyl)-2-cyclohexyl-10-phenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2g)

White solid (74 mg, Yield 71%); $R_f = 0.23$ (1:10 ethyl acetate/hexane); ¹**H-NMR** (400 MHz, Chloroform-*d*): $\delta_H = 7.73$ (s, 1H), 7.69 (dd, J = 8.0, 1.7 Hz, 1H), 7.45 (dd, J = 7.8, 1.3 Hz, 1H), 7.42 – 7.37 (m, 2H), 7.36 – 7.29 (m, 4H), 7.29 – 7.20 (m, 2H), 7.18 (td, J = 7.5, 1.5 Hz, 1H), 7.05 (td, J = 7.7, 1.4 Hz, 1H), 6.98 (s, 1H), 6.88 (td, J = 7.6, 1.7 Hz, 1H), 3.95 (tt, J = 12.3, 3.9 Hz, 1H), 2.08 (qd, J = 12.6, 3.8 Hz, 1H), 1.88 – 1.65 (m, 3H), 1.60 – 1.56 (m, 2H), 1.31 – 1.10 (m, 4H) ppm; ¹³C-NMR (101 MHz, CDCl₃): $\delta_C = 174.3$, 168.1, 142.3, 139.5, 136.4, 134.8, 134.6, 132.5, 132.4, 132.0, 131.9, 130.5, 129.9, 129.6, 129.2, 128.3, 128.3, 128.2, 127.8, 127.0, 126.5, 59.6, 52.3, 51.8, 28.3, 27.8, 25.8, 25.2 ppm; HRMS-ESI (m/z): calculated for C₃₁H₂₇BrNO₂ [M+H]⁺ 524.1220 found 524.1221.

10a-(4-Chlorophenyl)-2-cyclohexyl-10-phenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2h)

White solid (61 mg, Yield 64%); R_f = 0.26 (1:10 ethyl acetate/hexane); ¹**H-NMR** (400 MHz, Chloroform-*d*): δ_{H} = 7.98 (s, 1H), 7.54 – 7.47 (m, 1H), 7.41 – 7.33 (m, 5H), 7.27 – 7.25 (m, 3H), 7.17 – 7.11 (m, 2H), 7.05 – 6.98 (m, 2H), 6.79 (s, 1H), 4.03 (tt, *J* = 12.3, 3.9 Hz, 1H), 2.07 (qdd, *J* = 12.7, 5.2, 3.9 Hz, 2H), 1.83 – 1.74 (m, 2H), 1.62 (dt, *J* = 12.6, 3.5 Hz, 1H), 1.58 – 1.52 (m, 2H), 1.31 – 1.14 (m, 3H) ppm; ¹³C-NMR (126 MHz, CDCl₃): δ_{C} = 174.7, 167.8, 144.5, 141.1, 136.6, 136.3, 133.3, 132.7, 132.2, 131.9, 131.4, 131.1, 130.8, 129.1, 128.5, 128.3, 128.2, 128.2, 127.9, 127.3, 56.7, 52.2, 28.9, 28.6, 25.9, 25.8, 25.0 ppm; HRMS-ESI (m/z): calculated for C₃₁H₂₇CINO₂ [M+H]⁺ 480.1725 found 480.1723

2-Cyclohexyl-10-phenyl-10a-(pyridin-4-yl)benzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2i)

White solid (48 mg, Yield 54%); R_f = 0.23 (1:4 ethyl acetate/hexane); ¹**H-NMR** (400 MHz, Chloroform-*d*): $\delta_{H} = 8.44 - 8.18$ (m, 2H), 8.01 (s, 1H), 7.51 (td, *J* = 4.5, 3.9, 2.5 Hz, 1H), 7.44 - 7.28 (m, 5H), 7.26 (d, *J* = 3.3 Hz, 3H), 7.16 - 7.04 (m, 2H), 6.83 (s, 1H), 4.04 (tt, *J* = 12.3, 3.9 Hz, 1H), 2.07 (qt, *J* = 12.7, 4.0 Hz, 2H), 1.82 - 1.75 (m, 2H), 1.59 (ddt, *J* = 27.4, 12.3, 2.9 Hz, 3H), 1.32 - 1.13 (m, 3H) ppm; ¹³C-NMR (101 MHz, CDCl₃): $\delta_{C} = 173.8$, 167.5, 149.4, 146.8, 143.6, 140.7, 136.4, 132.6, 132.5, 131.7, 131.2, 130.9, 130.9, 129.3, 128.6, 128.3, 128.1, 127.5, 122.1, 56.8, 52.4, 28.9, 28.6, 25.9, 25.8, 25.0 ppm; HRMS-ESI (m/z): calculated for $C_{30}H_{26}N_2O_2$ [M+H]⁺ 447.2067 found 447.2065.

2-Cyclohexyl-10-pentyl-10a-phenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2j)

White solid (64 mg, Yield 73%); R_f = 0.20 (1:10 ethyl acetate/hexane); ¹**H-NMR** (400 MHz, Chloroform-*d*): δ_H = 7.87 (s, 1H), 7.49 – 7.35 (m, 1H), 7.20 – 7.08 (m, 3H), 7.10 – 6.84 (m, 5H), 6.65 (s, 1H), 4.15 (tt, *J* = 12.3, 3.9 Hz, 1H), 2.98 – 2.78 (m, 1H), 2.65 (dtd, *J* = 14.6, 8.2, 1.1 Hz, 1H), 2.24 (dqd, *J* = 37.8, 12.5, 3.6 Hz, 2H), 1.84 (dddd, *J* = 10.5, 7.2, 5.3, 2.6 Hz, 2H), 1.67 (m, 3H), 1.48 – 1.27 (m, 9H), 0.91 – 0.86 (m, 3H) ppm; ¹³C-NMR (101 MHz, CDCl₃): δ_C = 175.7, 145.1, 138.1, 137.3, 132.5, 131.9, 131.6, 131.0, 130.4, 128.6, 127.8, 127.4, 127.2, 126.7, 126.5, 126.3, 55.5, 52.1, 36.9, 31.6, 29.4, 28.9, 28.9, 26.0, 25.9, 25.2, 22.6, 14.1 ppm; ; HRMS-ESI (m/z): calculated for C₃₀H₃₃NO₂ [M+H]⁺ 440.2584 found 440.2585.

2-Cyclohexyl-10a-phenyl-10-(trimethylsilyl)benzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2k)

White solid (55 mg, Yield 75%); $R_f = 0.60$ (1:4 ethyl acetate/hexane); ¹**H-NMR** (500 MHz, Chloroform-*d*): $\delta_H = 7.88$ (s, 1H), 7.49 (d, J = 7.1 Hz, 1H), 7.20 – 7.30 (m, 5H), 7.18 – 7.08 (m, 3H), 6.84 (d, J = 10.8 Hz, 1H), 6.58 (d, J = 10.8 Hz, 1H), 4.05 – 4.15 (m, 1H), 2.30 – 2.13 (m, 2H), 1.90 – 1.81 (m, 2H), 1.60 – 1.70 (m, 3H), 1.37 – 1.24 (m, 3H) ppm; ¹³**C-NMR** (126 MHz, CDCl₃): $\delta_C = 177.0$, 168.7, 142.3, 138.9, 136.6, 132.8, 132.6, 132.5, 131.6, 131.4, 131.3, 130.6, 129.2, 128.4, 127.6, 127.5, 126.0, 53.6, 52.1, 29.1, 28.7, 25.9, 25.8, 25.1 ppm; **HRMS-ESI** (m/z): calculated for $C_{25}H_{24}NO_2$ [M+H]⁺ 370.1802 found 370.1807.

2-Cyclohexyl-10-(4-methoxyphenyl)-10a-phenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2I)

White solid (88 mg, Yield 92%); R_f = 0.18 (1:10 ethyl acetate/hexane); ¹**H-NMR** (400 MHz, Chloroform-*d*): δ_{H} = 7.94 (s, 1H), 7.47 (q, *J* = 4.0, 3.3 Hz, 1H), 7.37 – 7.29 (m, 2H), 7.25 – 7.17 (m, 5H), 7.05 – 6.97 (m, 3H), 6.93 – 6.86 (m, 2H), 6.77 (s, 1H), 4.03 (tt, *J* = 12.2, 3.9 Hz, 1H), 3.84 (s, 3H), 2.10 (qt, *J* = 13.2, 3.8 Hz, 2H), 1.78 (dq, *J* = 8.6, 3.0 Hz, 2H), 1.60 (d, *J* = 31.0 Hz, 2H), 1.33 – 1.15 (m, 3H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): δ_{C} = 175.1, 168.1, 159.3, 144.3, 137.8, 136.9, 133.6, 132.6, 131.7, 131.1, 131.0, 130.6, 130.1, 130.0, 128.7, 128.2, 127.9, 127.3, 127.0, 126.8, 113.4, 57.4, 55.3, 52.1, 29.0, 28.7, 25.9, 25.1 ppm; **HRMS-ESI** (m/z): calculated for C₃₂H₂₉NO₃ [M+H]⁺ 476.2220 found 476.2222.

2-Cyclohexyl-6-methoxy-10a-(4-methoxyphenyl)-10-phenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2m)

White solid (101 mg, Yield 99%); $R_f = 0.24$ (1:10 ethyl acetate/hexane); ¹**H-NMR** (400 MHz, Chloroformd): $\delta_H = 7.88$ (s, 1H), 7.42 – 7.29 (m, 5H), 7.20 – 7.07 (m, 3H), 6.96 (d, J = 2.7 Hz, 1H), 6.83 (dd, J = 8.7, 2.7 Hz, 1H), 6.72 (s, 1H), 6.62 – 6.55 (m, 2H), 4.02 (tt, J = 12.3, 3.9 Hz, 1H), 3.81 (s, 3H), 3.65 (s, 3H), 2.09 (dtd, J = 19.2, 12.5, 4.4 Hz, 2H), 1.77 (dd, J = 12.2, 4.0 Hz, 2H), 1.64 – 1.55 (m, 2H), 1.41 – 1.06 (m, 4H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): $\delta_C = 175.4$, 168.2, 158.7, 157.9, 142.3, 141.6, 134.0, 132.5, 132.4, 131.5, 131.0, 130.2, 130.0, 129.4, 128.7, 128.0, 128.0, 127.6, 118.6, 116.3, 115.2, 114.2, 113.4, 56.5, 55.4, 55.1, 52.0, 28.9, 28.7, 25.9, 25.1 ppm; **HRMS-ESI** (m/z): calculated for C₃₃H₃₀NO₄ [M+H]⁺ 506.2326 found 506.2327.

2-Cyclohexyl-6-methoxy-10,10a-diphenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2n)

White solid (87 mg, Yield 92%); $R_f = 0.17$ (1:10 ethyl acetate/hexane); ¹**H-NMR** (400 MHz, Chloroformd): $\delta_H = 7.90$ (s, 1H), 7.39 – 7.28 (m, 5H), 7.23 – 7.14 (m, 3H), 7.09 – 6.99 (m, 3H), 6.95 (d, J = 2.7 Hz, 1H), 6.81 (dd, J = 8.7, 2.7 Hz, 1H), 6.74 (s, 1H), 4.03 (tt, J = 12.3, 3.9 Hz, 1H), 3.80 (s, 3H), 2.08 (dddd, J = 15.5, 11.0, 7.7, 3.8 Hz, 2H), 1.78 (dd, J = 13.1, 3.2 Hz, 2H), 1.65 – 1.55 (m, 2H), 1.35 – 1.12 (m, 4H) ppm; ; ¹³C-NMR (101 MHz, CDCl₃): $\delta_C = 175.1$, 168.2, 157.9, 142.0, 141.6, 137.9, 134.0, 132.4, 132.3, 131.6, 131.1, 130.2, 128.7, 128.0, 127.7, 127.3, 126.9, 116.4, 114.1, 55.4, 52.1, 28.9, 28.6, 25.9, 25.8, calculated for $C_{29}H_{29}NO_2$ [M+H]⁺ 476 2220 found 476 2221

25.1 ppm; HRMS-ESI (m/z): calculated for $C_{32}H_{29}NO_3$ [M+H]⁺ 476.2220 found 476.2221.

7-Chloro-2-cyclohexyl-10,10a-diphenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2o)

White solid (75 mg, Yield 78%); $R_f = 0.25$ (1:10 ethyl acetate/hexane); ¹**H-NMR** (400 MHz,) $\delta_H = 7.95$ (s, 1H), 7.45 – 7.37 (m, 6H), 7.25 (d, J = 2.2 Hz, 1H), 7.23 – 7.18 (m, 3H), 7.09 (dtd, J = 6.8, 4.9, 4.1, 1.8 Hz, 3H), 6.74 (s, 1H), 4.07 (tt, J = 12.3, 3.8 Hz, 1H), 2.10 (td, J = 12.6, 3.7 Hz, 2H), 1.84 – 1.75 (m, 2H), 1.69 – 1.52 (m, 4H), 1.36 – 1.08 (m, 3H) ppm; ¹³**C-NMR** (101 MHz, CDCI₃) $\delta_C = 174.6$, 167.8, 146.1, 140.9, 138.0, 137.4, 134.5, 132.7, 132.4, 131.2, 130.8, 130.2, 130.0, 128.4, 128.1, 128.0, 128.0, 127.6, 127.3, 126.8, 77.4, 77.1, 76.8, 57.1, 52.1, 28.8, 28.5, 28.4, 25.8, 25.8, 25.0 ppm; **HRMS-ESI** (m/z): calculated for 25 found 480 47206

 $C_{31}H_{27}CINO_2 [M+H]^+ 480.1725$ found 480.1726.

2-(tert-Butyl)-10,10a-diphenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2r)

White solid (70 mg, Yield 83%); R_f = 0.30 (1:10 ethyl acetate/hexane); ¹**H-NMR** (400 MHz, Chloroform-*d*): δ_{H} = 7.93 (s, 1H), 7.50 – 7.34 (m, 6H), 7.26 – 7.17 (m, 5H), 7.08 – 6.99 (m, 3H), 6.81 (s, 1H), 1.52 (s, 9H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): δ_{C} = 176.0, 169.0, 144.8, 141.1, 137.9, 136.7, 133.2, 132.9, 130.9, 130.9, 130.5, 128.9, 128.5, 128.0, 127.8, 127.7, 127.2, 127.1, 126.9, 58.9, 57.4, 28.4 ppm; **HRMS-ESI** (m/z): calculated for C₂₉H₂₆NO₂ [M+H]⁺ 420.1958 found 420.1954.

2-(tert-Butyl)-10a-(4-methoxyphenyl)-10-phenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2s)

White solid (66 mg, Yield 73%); R_f = 0.18 (1:10 ethyl acetate/hexane); ¹**H-NMR** (400 MHz, Chloroform-*d*): $\delta_{H} = 7.91$ (s, 1H), 7.51 – 7.45 (m, 1H), 7.43 – 7.31 (m, 5H), 7.25 – 7.18 (m, 3H), 7.14 – 7.08 (m, 2H), 6.78 (s, 1H), 6.61 – 6.53 (m, 2H), 3.63 (s, 3H), 1.50 (s, 9H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): $\delta_{C} = 176.3$, 169.0, 158.6, 145.0, 141.2, 136.8, 133.2, 130.9, 130.9, 130.8, 130.6, 130.0, 128.9, 128.5, 128.2, 128.0, 127.8, 126.9, 113.2, 58.9, 56.8, 55.1, 28.4 ppm; **HRMS-ESI** (m/z): calculated for C₃₀H₂₇NO₃ [M+H]* 450.2064 found 450.2065.

2-(tert-Butyl)-10-phenyl-10a-(4-(trifluoromethyl)phenyl)benzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2t)

White solid (51 mg, Yield 52%); $R_f = 0.18$ (1:9 ethyl acetate/hexane); ¹**H-NMR** (400 MHz, Chloroform-*d*): $\delta_H = 7.96$ (s, 1H), 7.53 – 7.47 (m, 1H), 7.43 – 7.36 (m, 5H), 7.35 – 7.28 (m, 4H), 7.25 – 7.20 (m, 3H), 6.83 (s, 1H), 1.50 (s, 9H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): $\delta_C = 175.4$, 168.7, 144.2, 142.0, 140.7, 136.4, 132.8, 132.2, 131.4, 131.3, 131.0, 130.7, 129.50 (q, J = 32.4 Hz), 128.9, 128.2, 128.1, 127.5, 127.3, 125.3, 124.78 (q, J = 3.8 Hz), 122.6, 119.9, 59.2, 57.3, 28.4 ppm; **HRMS-ESI** (m/z): calculated for $C_{30}H_{25}F_3NO_2$ [M+H]⁺ 488.1832 found 488.1833.

Ethyl 2-(1,3-dioxo-10,10a-diphenyl-3,10a-dihydrobenzo[4,5]cyclohepta[1,2-c]pyrrol-2(1H)-yl)acetate (2u)

White solid (17 mg, Yield 19%); $R_f = 0.16$ (1:9 ethyl acetate/hexane); ¹**H-NMR** (400 MHz, Chloroform-*d*): $\delta_H = 8.04$ (d, J = 2.1 Hz, 1H), 7.49 (dq, J = 5.8, 2.2, 1.5 Hz, 3H), 7.42 – 7.30 (m, 3H), 7.27 (d, J = 3.0 Hz, 4H), 7.16 (dd, J = 8.4, 2.1 Hz, 2H), 6.87 (d, J = 7.7 Hz, 2H), 6.84 (d, J = 2.2 Hz, 1H), 4.37 – 4.16 (m, 4H), 2.14 (d, J = 2.0 Hz, 3H), 1.24 (td, J = 7.2, 2.2 Hz, 3H) ppm; ¹³**C-NMR** (101 MHz, CDCl₃): $\delta_C = 174.5$, 167.4, 166.6, 144.5, 141.3, 137.3, 137.0, 134.5, 133.2, 132.3, 132.0, 131.8, 131.4, 131.0, 129.2, 129.0, 128.8, 128.1, 127.8, 127.1, 126.9, 61.9, 57.8, 40.2, 21.0, 14.1 ppm; **HRMS-ESI** (m/z): calculated for C₂₉H₂₃NO₄ [M+H]* 450.1700 found 450.1700.

(E)-N-Cyclohexyl-3,3-dimethyl-2-(phenylamino)-N-(3-(2-(phenylethynyl)phenyl)acryloyl)butanamide (2v)

White solid (19 mg, Yield 18%); R_f = 0.15 (1:9 ethyl acetate/hexane); ¹**H-NMR** (300 MHz, Chloroform-*d*): $\delta_{H} = 8.05$ (d, J = 15.7 Hz, 1H), 7.63 – 7.21 (m, 12H), 7.15 – 6.90 (m, 2H), 6.53 (d, J = 15.7 Hz, 1H), 6.27 (d, J = 9.9 Hz, 1H), 4.56 – 4.30 (m, 2H), 1.88 (d, J = 11.9 Hz, 1H), 1.67 (m, 2H), 1.50 (m, 2H), 1.43 – 1.10 (m, 4H), 0.84 (s, 9H) ppm; ¹³**C-NMR** (126 MHz, CDCI₃): $\delta_{C} = 171.1$, 164.5, 138.7, 138.2, 136.3, 133.0, 131.8, 131.4, 130.0, 129.7, 129.1, 128.6, 128.6, 128.5, 128.4, 128.4, 126.2, 123.7, 123.1, 123.1, 95.3, 87.4, 56.5, 55.3, 36.1, 32.4, 30.9, 26.8, 26.0, 25.8, 25.4 ppm; **HRMS-ESI** (m/z): calculated for C₃₅H₃₉N₂O₂ [M+H]⁺ 519.3006 found 519.3005.

Structural information of the compound **2S** was elucidated by employing various 2D-homo (DQF-COSY, Figure S110) and hetero-nuclear (edHSQC, Figure S111)) experiments in $CDCI_3$, and the key correlations which assisted in deciding the structure are marked with curved arrows.

(E)-2-Benzyl-N-cyclohexyl-3-phenylacrylamide (2w)

White solid (10 mg, Yield 15%); R_f = 0.25 (1:9 ethyl acetate/hexane); ¹**H-NMR** (400 MHz, Chloroform-*d*): δ_H = 7.64 (s, 1H), 7.36 – 7.27 (m, 7H), 7.26 – 7.21 (m, 3H), 5.55 (d, *J* = 8.0 Hz, 1H), 3.91 (s, 2H), 3.84 – 3.76 (m, 1H), 1.81 – 1.71 (m, 2H), 1.51 (s, 1H), 1.36 – 1.25 (m, 3H), 1.18 – 0.85 (m, 4H) ppm; ¹³**C-NMR** (126 MHz, CDCl₃): δ_C = 167.7, 138.8, 136.0, 134.6, 129.0, 128.9, 128.6, 128.2, 128.2, 126.8, 48.2, 33.8, 32.8, 32.3, 25.6, 24.5 ppm; **HRMS-ESI** (m/z): calculated for C₂₂H₂₅NO [M+H]⁺ 320.2009 found 320.2013. Structural information of the compound **2t** was elucidated by employing various 2D-homo (DQF-COSY and NOESY, Figure S114 and S115) and hetero-nuclear (edHSQC, Figure S116)) experiments in CDCl₃,

and the key correlations which assisted in deciding the structure are marked with curved arrows.

5. References

- [S1] J. H. Park, S. V. Bhilare, S. W. Youn, Org. Lett. 2011, 13, 2228-2231.
- [S2] A. Kumar, Z. Li, S. K. Sharma, V. S. Parmar, E. V. Van der Eycken, Org. Lett. 2013, 15, 1874–1877.
- [S3] Gaussian 16, Revision C.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.
- [S4] CYLview20; C. Y. Legault, Université de Sherbrooke, 2020 (http://www.cylview.org).
- [S5] J. Tirado-Rives, W. L. Jorgensen, J. Chem. Theory and Comput. 2008, 4, 297-306.
- [S6] A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.

6. X-Ray Crystallographic Analysis

Table S1. Crystal data and structure refinement for sba165 (2c).

2c: colourless crystal (brick), dimensions 0.147 x 0.121 x 0.045 mm³, crystal system triclinic, space group P $\overline{1}$, Z=2, a=10.0831(6) Å, b=11.0488(7) Å, c=12.1046(8) Å, alpha=89.0099(13) deg, beta=65.3981(12) deg, gamma=86.2373(13) deg, V=1223.39(13) Å³, rho=1.248 g/cm³, T=200(2) K, Theta_{max}= 26.854 deg, radiation MoK α , lambda=0.71073 Å, 0.5 deg omega-scans with CCD area detector, covering the asymmetric unit in reciprocal space with a mean redundancy of 3.37and a completeness of 99.8% to a resolution of 0.79 Å, 17663 reflections measured, 5235 unique (R(int)=0.0378), 3790 observed (I > 2 σ (I)), intensities were corrected for Lorentz and polarization effects, an empirical scaling and absorption correction was applied using SADABS^[1] based on the Laue symmetry of the reciprocal space, mu=0.08mm⁻¹, T_{min}=0.91, T_{max}=0.96, structure solved with SHELXT-2014 (Sheldrick 2014)^[2] and refined against F² with a Full-matrix least-squares algorithm using the SHELXL-2018/3 (Sheldrick, 2018) software^[3], 317 parameters refined, hydrogen atoms were treated using appropriate riding models, goodness of fit 1.02 for observed reflections, final residual values R1(F)=0.048, wR(F²)=0.103 for observed reflections, residual electron density -0.20 to 0.21 eÅ⁻³. **CCDC 2118335** contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

Lit. 1: (SADABS-2016/2 - Bruker AXS area detector scaling and absorption correction) Krause, L., Herbst-Irmer, R., Sheldrick G.M. & Stalke D., J. Appl. Cryst. 48 (2015) 3-10.

Lit. 2: (SHELXT - Integrated space-group and crystal structure determination) Sheldrick G. M., Acta Cryst. A71 (2015) 3-8.

Lit. 3: (program SHELXL-2018/3 (Sheldrick, 2018) for structure refinement) Sheldrick G. M., Acta Cryst. (2015). C71, 3-8

Lit. APEX, APEX2, SMART, SAINT, SAINT-Plus: Bruker (2007). "Program name(s)". Bruker AXS Inc., Madison, Wisconsin, USA.

Supp	orting Info	rmation					
				C	3.15025800	-1.37229600	1.62049200
7.	Z-matrices			C	3.78253800	-1.40037300	-0.70469800
TS1-A				С	4.85935700	-2.23658000	-0.40443000
С	-4.80543800	-1.78416900	0.04910000	С	4.21660600	-2.22010100	1.91717500
С	-6.94771900	-0.01789600	0.14914000	С	1.92788100	0.78523100	-1.26259200
С	-6.10304600	-2.26994400	0.07035100	0	1.48223900	0.42121300	-2.37203800
С	-4.51153700	-0.39725600	0.07714800	Ν	2.67294600	1.88719800	-1.06527500
С	-5.63742600	0.49576900	0.12969700	C	2.88019900	2.87305900	-2.11054000
С	-7.19464600	-1.38607700	0.12019700	C	1.76608600	3.93405700	-2.04917000
С	-5.45463900	1.91085600	0.16872500	C	4.26862300	3.50408000	-1.92697300
С	-5.28763700	3.11304400	0.20544400	н	-3.97946400	-2.48797700	0.00683600
С	-5.01990600	4.54645500	0.25572500	н	-7.77453300	0.68760900	0.18946800
С	-3.15836400	0.11885500	0.04885600	н	-6.27319200	-3.34504200	0.04661400
С	-2.00460900	-0.60043700	0.03308600	Н	-8.21515400	-1.76212100	0.13607300
С	-0.69736800	0.09527200	0.00902000	н	-5.48278400	5.01850400	1.13349300
0	-0.61931900	1.32352800	-0.05574400	н	-3.94056900	4.73339600	0.31194900
N	0.44528200	-0.70451700	0.06240200	н	-5.39947500	5.06635200	-0.63512200
С	0.37019300	-2.10627300	-0.21504500	Н	-3.04371500	1.19916100	0.04192300
С	0.22854700	-4.85256000	-0.77808900	Н	-2.02042000	-1.68363000	0.04358000
С	0.63596900	-2.57576000	-1.51053400	н	0.17260000	-5.91742100	-0.99794700
С	0.05482500	-3.02177200	0.79789300	н	0.89230400	-1.83407700	-2.26344200
С	-0.02398100	-4.38761100	0.51340300	н	-0.12711400	-2.64654000	1.80051100
С	0.56437900	-3.94003000	-1.78553000	н	-0.27270600	-5.08953500	1.30761000
С	1.74629300	-0.02758700	0.02116800	н	0.76533900	-4.29592100	-2.79475700
С	2.90011400	-0.95934500	0.29715700	Н	1.78024900	0.78515400	1.06459100
С	5.07788900	-2.66134300	0.90778400	н	5.91691800	-3.31514200	1.14386200

Suppor	ting Info	rmation					
Н	2.53217600	-0.95299500	2.40849600	С	2.93738600	-5.77826700	-0.47434700
Н	3.60693200	-1.08757900	-1.73026100	С	2.30186200	-2.29393100	0.66364900
н	5.52578200	-2.56424900	-1.20217300	С	2.58486800	-1.30017300	1.30443800
н	4.39389800	-2.51717700	2.95013300	С	2.88644200	-0.08823400	2.05583100
Н	2.84539500	2.24372300	-0.05580900	С	0.10689800	-2.70164400	-1.46048500
н	2.82377200	2.35487400	-3.07598100	С	-0.40640900	-1.66422100	-0.77246400
н	1.77764500	4.41290700	-1.06347200	С	-1.49458300	-0.86949300	-1.42172800
н	1.89241200	4.70423800	-2.82621700	0	-1.87550800	-1.13473300	-2.56907500
Н	0.79187500	3.45222400	-2.17803200	Ν	-2.03054200	0.17517500	-0.67330200
н	4.43761400	4.31580800	-2.64967600	С	-1.51836200	0.52586800	0.64492000
н	5.05577300	2.75156200	-2.05878300	С	-0.39330600	1.41784000	0.72014400
н	4.35582100	3.90446000	-0.91041600	0	0.17088600	1.76894800	1.78849500
С	2.64367600	2.45347800	2.35573700	Ν	0.08818400	1.95283200	-0.48213200
0	1.90188100	1.33974800	2.25655000	С	1.40348400	2.60194900	-0.54413900
0	3.14610500	2.96509100	1.27826800	С	2.02689500	2.41365600	-1.92869700
0	2.81063500	2.93969500	3.50282200	С	1.32756000	4.08823300	-0.16922000
Electronic E Hartree	nergy (SMD, s	olvent=DMF))	= -1646.374783	С	-2.22643600	-0.02834800	1.77329000
Thermal Co	rrection to Free	e Energy = 0.4	32056 Hartree	С	-3.67111700	-1.16789100	3.98729100
Imaginary F	rea= -1388.21			С	-1.91420800	0.29162800	3.13043000
				С	-3.29709200	-0.95337300	1.59469700
				c	-3.99352700	-1.49981600	2.66904000
0	1 10338700	1 00087000	1 76506600	С	-2.61867800	-0.26420200	4.19032600
C C	2 00804300	4 57270600	0.21458800	С	-3.15683900	0.90776500	-1.17344200
C	1 00054000	-4.01210000	0.2 1400000	С	-5.39875400	2.41247000	-2.00589600
0	1.90204000	-0.94039000	-1.40073400	С	-3.28543400	2.26254200	-0.82532400
C	1.11825700	-3.68581400	-1.06655600				

С

2.11299200 -3.50742200 -0.05877100

C -4.17112000 0.31761100 -1.94933000

С	-5.27687900	1.06630300	-2.35275400
С	-4.39029800	3.00261300	-1.24075800
н	0.35918800	-5.03759500	-2.54923900
Н	3.75223900	-4.41796700	0.98142700
н	1.92693100	-6.87980200	-2.04009200
Н	3.63932200	-6.57489000	-0.23699500
н	1.99208600	0.54796400	2.13305400
н	3.68107100	0.49949200	1.57206500
н	3.22948300	-0.33827000	3.06894100
н	-0.33456400	-2.87197900	-2.44270000
н	-0.09154700	-1.40167600	0.22724900
н	-0.22095800	1.50585100	-1.33340300
Н	2.05760900	2.11688400	0.18886200
Н	1.42098600	2.90581900	-2.70444400
н	3.03032800	2.85407800	-1.92631600
н	2.10747400	1.34855500	-2.18212200
Н	2.33691000	4.51700400	-0.18900200
Н	0.69181000	4.63364700	-0.88129200
н	0.89751500	4.19213400	0.83171100
н	-4.21493800	-1.59889100	4.82627300
н	-1.10127100	0.98380900	3.30636400
Н	-3.58598600	-1.24298200	0.58934400
Н	-4.80359300	-2.20173900	2.46659200
н	-2.33727200	0.01586700	5.20639900
н	-6.26263700	2.99157500	-2.32662500
н	-2.50425800	2.72325000	-0.23359100

Н	-4.08279600	-0.71933800	-2.24076500		
н	-6.05373100	0.58305600	-2.94337000		
н	-4.45808100	4.05250300	-0.96260500		
С	5.59180000	3.15750200	-0.10771700		
0	4.86127200	3.96918600	-0.73473200		
0	4.93603800	2.54743400	1.03376100		
н	4.06700000	2.97961800	1.03025400		
0	6.76187700	2.79227800	-0.27467800		
Electronic Energy (SMD, solvent=DMF)) = -1646.403936 Hartree					
Thermal Correction to Free Energy = 0.440632 Hartree					
Imaginary Freq= 0					

TS2-A

С	2.87523800	1.45946900	-2.23699800
С	5.35275700	1.01627100	-1.06390700
С	4.02729900	1.91619300	-2.84531200
С	2.87456000	0.76221200	-0.97310400
С	4.20302500	0.54571800	-0.40658900
С	5.29792800	1.71054500	-2.26974400
С	4.36941900	-0.12387800	0.83866900
С	4.53276800	-0.68425500	1.90726800
С	4.69880800	-1.38992400	3.17313100
С	1.68883100	0.33239100	-0.35611100
С	0.37242300	0.95385700	-0.72103500
С	-0.62212400	0.33462100	-1.72768900
0	-0.60572800	0.03383900	-2.90425100

Suppor	tina Info	rmation					
N	-1.66699000	0.34477400	-0.80395000	Н	5.46067300	-2.18250100	3.10950500
С	-0.85995500	0.91263200	0.30845800	н	1.54769000	-1.70006200	-0.80174500
С	-0.73139000	-0.05601600	1.53665800	н	0.51661600	2.00028200	-1.04576600
0	-0.69809100	0.44870700	2.68407900	Н	-1.03753600	-1.76841800	3.24838300
Ν	-0.70148000	-1.34932500	1.22968500	Н	-1.10786500	-4.04930700	1.18363900
С	-0.62485100	-2.27175800	2.36322500	Н	-1.43054200	-4.22122300	2.92876300
С	-1.46474300	-3.52626700	2.07650700	Н	-2.51027200	-3.24927100	1.89621700
С	0.84083300	-2.62692200	2.67256600	н	0.91432000	-3.35543700	3.49509600
С	-1.26318200	2.32583500	0.70577500	н	1.33345400	-3.04426100	1.78707500
С	-1.86383500	5.01163700	1.36333700	н	1.38170200	-1.71942900	2.96193500
С	-0.50023900	3.02618000	1.66017500	н	-2.09462600	6.04476900	1.61910500
С	-2.31920800	3.00567200	0.08436900	н	0.31823000	2.51395700	2.14811300
С	-2.62169200	4.33126400	0.41202300	Н	-2.91416700	2.49655300	-0.66622200
С	-0.79721200	4.34889800	1.97975000	н	-3.45254400	4.82904400	-0.08593900
С	-2.96435700	-0.15536400	-0.84390200	Н	-0.18862000	4.86808100	2.71837300
С	-5.61126000	-1.11087700	-0.95261500	Н	-6.63352900	-1.48164100	-0.99497400
С	-3.79659200	-0.08145900	0.28883700	Н	-3.40859000	0.33679600	1.21124300
С	-3.46653300	-0.72771500	-2.02972000	н	-2.80721300	-0.80718500	-2.88519600
С	-4.77646400	-1.19594900	-2.07116000	н	-5.14664100	-1.64242000	-2.99255500
С	-5.10553100	-0.55508600	0.22475300	н	-5.73299300	-0.49199700	1.11216600
н	1.92547800	1.58205200	-2.75066600	н	1.75771100	-0.08700000	0.64257700
н	6.31524100	0.82858600	-0.58794600	С	0.48311900	-3.28632900	-1.28909800
н	3.94669700	2.43200000	-3.80405200	0	1.66117200	-2.67119100	-1.00004600
н	6.20521000	2.06004900	-2.75877400	0	-0.62183400	-2.65619800	-0.93434400
н	3.76039200	-1.87059400	3.47934600	0	0.49850000	-4.37778000	-1.84102300
н	5.00145000	-0.72073900	3.99472300	н	-0.57965900	-1.99744000	-0.02900500

Supporting Information Electronic Energy (SMD, solvent=DMF)) = -1646.361335 Hartree

Thermal Correction to Free Energy = 0.438410 Hartree

Imaginary Freq= -262.66

INT2-A

С	2.83711100	1.35540200	-2.29212500
С	5.32254200	1.03084200	-1.09673500
С	3.98224800	1.78465300	-2.93428500
С	2.85022400	0.74664800	-0.98576400
С	4.17944300	0.59152500	-0.40680500
С	5.25546200	1.63701500	-2.34846800
С	4.35270100	0.01400800	0.88338500
С	4.51580800	-0.46804800	1.98918500
С	4.67444800	-1.08217300	3.30284700
С	1.66886500	0.33263300	-0.34004500
С	0.34988700	0.94551500	-0.72720000
С	-0.62325600	0.28557100	-1.72500600
0	-0.58811300	-0.05002500	-2.89296600
Ν	-1.67402200	0.29313500	-0.81134600
С	-0.88791500	0.90814700	0.29320400
С	-0.74531700	-0.02414100	1.55075100
0	-0.70150300	0.52338500	2.68150400
Ν	-0.71256600	-1.32051300	1.27468500
С	-0.62045700	-2.19884200	2.44093100
С	-1.40486200	-3.49436600	2.18181700
С	0.85170800	-2.48798500	2.78788400

С	-1.32896100	2.32329500	0.64301200
С	-2.00505700	5.01128800	1.21621000
С	-0.59735500	3.06919100	1.58756000
С	-2.39260400	2.95940600	-0.01108800
С	-2.73238600	4.28580000	0.27460700
С	-0.93158000	4.39257800	1.86556300
С	-2.95933500	-0.23675600	-0.85056000
С	-5.58433700	-1.25155600	-0.95799300
С	-3.79932200	-0.16302700	0.27657500
С	-3.44287600	-0.83783700	-2.02992900
С	-4.74211400	-1.33594000	-2.07070200
С	-5.09716000	-0.66554900	0.21289400
Н	1.88386700	1.43081000	-2.80838400
Н	6.28795600	0.89206500	-0.61027300
Н	3.89324800	2.23298600	-3.92551200
Н	6.15699600	1.96527300	-2.86230200
Н	3.73755300	-1.55235100	3.62927200
Н	4.95797900	-0.35351900	4.07918400
Н	5.44673400	-1.86702700	3.30323500
Н	1.60611100	-1.61488100	-0.70957000
Н	0.48812700	1.98615400	-1.07380900
Н	-1.06641000	-1.68843900	3.30744700
Н	-1.00917500	-4.03084600	1.31311900
Н	-1.36166300	-4.16190600	3.05567900
Н	-2.45645800	-3.26482600	1.97187400
н	0.93938200	-3.18752600	3.63428600

Suppor	ting Info	rmation					
н	1.37635300	-2.91282100	1.92441000	С	2.83933700	0.57266400	-1.05325400
н	1.35025900	-1.55078400	3.05760600	С	4.15469600	0.56394900	-0.46103800
н	-2.26467700	6.04520200	1.43937300	С	5.19374700	1.28909100	-2.55381000
н	0.22335300	2.58905500	2.10325500	С	4.33463100	0.21741500	0.91226400
н	-2.96478500	2.41519500	-0.75473300	С	4.49050400	-0.06958000	2.08257200
н	-3.56818100	4.74842100	-0.24844700	С	4.60755000	-0.46277600	3.48260800
н	-0.34694000	4.94703300	2.59797500	С	1.65228200	0.18440400	-0.32721400
н	-6.59811100	-1.64509800	-0.99948900	С	0.36072400	0.88398600	-0.73770500
н	-3.42492400	0.27787400	1.19380500	С	-0.61153900	0.21430400	-1.71761400
н	-2.77819700	-0.91447400	-2.88164400	0	-0.57504900	-0.12428800	-2.88664200
н	-5.09769700	-1.80399100	-2.98717800	N	-1.65283100	0.21134400	-0.79946600
н	-5.73088400	-0.60205000	1.09581400	С	-0.87944600	0.89728000	0.27673300
н	1.74974400	0.02458600	0.69828700	С	-0.69017100	0.05439900	1.58982300
С	0.67441100	-3.28874900	-1.23902700	0	-0.40316000	0.68220300	2.64468500
0	1.77744300	-2.59134300	-0.89833200	N	-0.84936900	-1.24450200	1.42157200
0	-0.50451800	-2.76801500	-0.89960500	С	-0.67584400	-2.04681200	2.63097200
0	0.77382700	-4.35714100	-1.82103000	С	-1.45112800	-3.36278100	2.47018200
н	-0.50031500	-2.09864500	-0.08737900	С	0.81559200	-2.30157800	2.92268100
Electronic E Hartree	Energy (SMD, s	olvent=DMF))	= -1646.359588	С	-1.35054900	2.32780000	0.52712200
Thermal Co	rrection to Free	e Energy = 0.43	39967 Hartree	С	-2.10385800	5.03181100	0.91353200
Imaginary F	Freq= 0			С	-0.64988800	3.15581900	1.42654500
				С	-2.42194700	2.89352800	-0.17936400
TS3-A				С	-2.79910100	4.22640700	0.01365400
C	2.79121500	0.94592600	-2.42902300	С	-1.02439700	4.48508700	1.61432700
C	5,28823500	0.91436400	-1,21687500	С	-2.93584400	-0.32586800	-0.84365200
-				С	-5.55822300	-1.34695500	-0.97386500

С

3.92284700 1.29523900 -3.15036200

Supporting Information -3 80121200 -0.21370600 0.26016000

C	-3.80121200	-0.21370600	0.26016000
С	-3.39297000	-0.96954700	-2.01078600
С	-4.69092500	-1.47086200	-2.06290800
С	-5.09724500	-0.71849900	0.18577800
н	1.82957500	0.91181600	-2.93417900
н	6.25751000	0.89557900	-0.72061300
Н	3.81867300	1.56731700	-4.20124200
Н	6.08349700	1.55702400	-3.12086100
Н	3.68170400	-0.94242300	3.82527000
Н	4.79503500	0.39627200	4.14465100
Н	5.42676100	-1.17969400	3.64191200
Н	1.59427400	-1.33503400	-0.49551400
н	0.55377000	1.90975200	-1.09620700
Н	-1.08586700	-1.49954300	3.49664700
Н	-1.09015100	-3.91685000	1.59686700
Н	-1.34765200	-4.00010400	3.36168800
Н	-2.51707000	-3.15868000	2.30974900
Н	0.95018300	-2.96774300	3.79013900
Н	1.30719300	-2.74641000	2.05055100
Н	1.30428000	-1.34531000	3.13637900
Н	-2.39295900	6.07108600	1.06439200
Н	0.16841500	2.72431000	1.98665800
Н	-2.97262800	2.28900100	-0.89138400
Н	-3.63954600	4.63066700	-0.54885000
Н	-0.46415100	5.10137400	2.31603400
н	-6.57070800	-1.74309100	-1.02368500

Н	-3.44482900	0.25362300	1.17029200		
н	-2.71053100	-1.07571600	-2.84487200		
Н	-5.02487100	-1.97261300	-2.96967000		
Н	-5.75026500	-0.62458000	1.05185300		
Н	1.78484000	0.21917500	0.75569500		
С	0.80921400	-3.24036300	-1.05372900		
0	1.78248700	-2.46924500	-0.60715200		
0	-0.46186700	-2.86151300	-0.76220200		
0	0.99840400	-4.27136700	-1.69066400		
Н	-0.51332300	-2.17830300	-0.01718100		
Electronic Energy (SMD, solvent=DMF)) = -1646.359438 Hartree					
Thermal Correction to Free Energy = 0.439713 Hartree					
Imaginary Freq= -871.78					

INT3-A

С	-1.80914900	4.01581900	0.05315500
С	-4.46005700	3.29416400	-0.35903200
С	-2.72484400	4.96539700	-0.40070300
С	-2.19235400	2.69422500	0.31854300
С	-3.54483000	2.32039700	0.09424700
С	-4.05943900	4.60398700	-0.60144000
С	-3.99185100	0.97695300	0.29904000
С	-4.32427400	-0.18337000	0.44379200
С	-4.67527800	-1.58998600	0.60440300
С	-1.18064600	1.69409400	0.84337100
С	-0.04922900	1.36430800	-0.13866100

Suppor	ting Info	rmation					
С	1.22501200	2.20299600	-0.14461300	н	-3.79849200	-2.24791400	0.41058400
0	1.49980700	3.39593600	-0.20777100	н	-5.48030200	-1.87335400	-0.08747200
Ν	2.03524100	1.09351700	-0.02532500	н	-5.03116000	-1.78989600	1.62510100
С	0.89216300	0.12208600	0.13450300	Н	-0.75855700	2.06869800	1.78565300
С	0.85846800	-0.99002900	-0.98077800	Н	-0.41713100	1.23091000	-1.16289200
0	1.35550900	-2.11604800	-0.65477900	Н	0.95678100	-2.40867700	-2.96737400
Ν	0.35473500	-0.57205500	-2.11415000	Н	-1.83657400	-1.28026700	-3.53991200
С	0.29142400	-1.55771900	-3.18319800	Н	-1.22516200	-2.86212400	-4.09067400
С	-1.14403600	-2.09961500	-3.30014300	Н	-1.46192500	-2.54038500	-2.34951000
С	0.74558300	-0.90194700	-4.49727000	Н	0.68444500	-1.60223700	-5.34435200
С	0.78947100	-0.44104200	1.54381400	Н	0.11480000	-0.03135000	-4.72337600
С	0.43092700	-1.41805500	4.16407700	Н	1.78121000	-0.54760900	-4.41640000
С	-0.14491200	-1.45830100	1.80398700	Н	0.29493200	-1.80114900	5.17488900
С	1.53358300	0.07640000	2.61268900	Н	-0.74074500	-1.90343400	1.00525400
С	1.36135800	-0.41015300	3.91252300	Н	2.26277100	0.86107500	2.43331600
С	-0.31959300	-1.93357100	3.10362100	Н	1.95870100	0.00326600	4.72449000
С	3.41777400	0.91827600	-0.08852400	Н	-1.04749400	-2.72417100	3.26907200
С	6.20199900	0.55866600	-0.18913700	Н	7.28054500	0.41752200	-0.22833100
С	3.96004900	-0.38098200	-0.08259500	Н	3.28500300	-1.23644800	-0.07153300
С	4.27513200	2.03498700	-0.15057000	Н	3.84051200	3.02769400	-0.16012600
С	5.65467700	1.84415800	-0.20246600	Н	6.30781500	2.71445100	-0.25183900
С	5.34288100	-0.54311100	-0.13093300	Н	5.75176500	-1.55165200	-0.12974200
Н	-0.76241900	4.28316500	0.17920500	Н	-1.69581600	0.76140300	1.08488500
Н	-5.49163300	2.99436500	-0.52455900	C	-1.79489400	-4.39893100	0.00097700
н	-2.39465200	5.98277700	-0.60220100	0	-2.11095100	-3.16446400	0.07682700
н	-4.78315000	5.33680500	-0.95452200	0	-0.45742900	-4.64243300	-0.34500700

Suppor	ting intoi	mation	
Н	-0.01915300	-3.77196300	-0.44863500
0	-2.49886600	-5.40303500	0.18588700
Electronic E Hartree	nergy (SMD, s	olvent=DMF))	= -1646.405886

Thermal Correction to Free Energy = 0.445650 Hartree

Imaginary Freq= 0

TS4-A

С	3.77579100	0.24560400	-0.18281600
С	4.28108800	2.76133400	-1.28963300
С	4.98802000	0.50692400	-0.82663200
С	2.78532800	1.23542800	-0.08806800
С	3.05386100	2.51595100	-0.64387800
С	5.24425500	1.76137300	-1.38535800
С	2.08221400	3.56138100	-0.54207300
С	1.20433200	4.38961800	-0.41862400
С	0.04610500	5.25871100	-0.24041600
С	1.48209900	0.93688700	0.63576800
С	0.23055100	0.91628600	-0.26137700
С	-1.14538000	1.46366800	0.23516600
0	-1.56696100	2.58416300	0.55542500
Ν	-1.77333900	0.51441900	-0.77099200
С	-0.60968700	-0.39368700	-0.51756200
С	-0.87922000	-0.93067300	0.94031600
0	-0.80799100	-2.11644300	1.30541500
Ν	-1.21759800	0.17060200	1.60043900
С	-1.62574100	0.20980200	2.98467600

С	-0.78023600	1.23441200	3.76069300
С	-3.12712800	0.53640100	3.09786900
С	-0.19116600	-1.35555900	-1.58873200
С	0.66202400	-3.10689600	-3.62032000
С	0.80272200	-2.31485200	-1.32475200
С	-0.73767500	-1.27946000	-2.87853100
С	-0.31871100	-2.14971400	-3.88693200
С	1.21950300	-3.17689600	-2.34076800
С	-3.11476500	0.14947100	-0.76098000
С	-5.87662800	-0.46272100	-0.88639500
С	-3.55481900	-1.18592000	-0.87479400
С	-4.09008800	1.17120200	-0.68515300
С	-5.44470200	0.86129000	-0.74282000
С	-4.91726800	-1.47628100	-0.94588700
Н	3.58926100	-0.73177100	0.27338200
Н	4.46245800	3.74894600	-1.70816500
Н	5.73750600	-0.28007600	-0.88515200
Н	6.18970000	1.96287300	-1.88745000
Н	-0.79821300	4.62451800	0.06333700
Н	-0.21822200	5.78531800	-1.16835400
Н	0.21735600	6.02030300	0.53382000
Н	1.59885600	-0.01970200	1.15489000
Н	0.42668900	1.38513600	-1.23202700
Н	-1.45081400	-0.79059100	3.40900400
Н	-0.87480300	2.22140700	3.29426200
н	-1.10447900	1.30505800	4.80921100

0	4 1 6	41					
Suppo н	0.27632000	0.94743200	3.74512000	С	-1.69912000	4.41602000	0.46342100
н	-3.44998800	0.56905700	4.14954200	С	0.48831300	4.62063900	1.44773300
н	-3.33322200	1.50714200	2.63387700	С	-0.63742600	2.44836500	1.45008300
н	-3.72221800	-0.21881300	2.57370600	С	-1.74392100	3.04513200	0.78578200
н	0.99330000	-3.78723000	-4.40434200	С	-0.59626100	5.20043800	0.78869300
н	1.27299400	-2.37537500	-0.34190000	С	-2.89608400	2.27797700	0.44068000
н	-1.49341100	-0.52684100	-3.08412100	С	-3.83114700	1.57809600	0.10847600
н	-0.75891400	-2.07581300	-4.88085400	С	-4.89378800	0.69210700	-0.34886800
н	1.99508900	-3.90733300	-2.12008600	С	-0.67167600	1.00132500	1.89854600
н	-6.93796400	-0.69850800	-0.93997800	С	-0.63724900	-0.09548200	0.81516900
н	-2.82560500	-1.98842500	-0.88728800	С	-1.32031000	-1.35977200	1.30347300
н	-3.74554600	2.19165900	-0.55958600	0	-2.21740000	-1.45575200	2.13250100
н	-6.17617400	1.66649300	-0.67713000	Ν	0.89515800	0.15016500	-1.07770200
н	-5.22938500	-2.51590100	-1.03576600	С	0.71679400	-0.58043700	0.15110600
н	1.31821600	1.70997500	1.39851400	С	0.39491400	-2.09228100	-0.07911300
С	2.76645600	-3.06765200	2.19173200	0	1.02675800	-2.90662300	-0.72930500
0	2.69034100	-2.25893700	1.20976800	Ν	-0.76416200	-2.43517500	0.63049200
0	1.52597700	-3.44935100	2.73326600	С	-1.37015700	-3.77055300	0.52957000
н	0.84914600	-2.96748400	2.21727200	С	-1.18374400	-4.55331900	1.83809100
0	3.76636100	-3.56558100	2.72960600	С	-2.83682700	-3.69609300	0.08277600
Electronic E Hartree	Energy (SMD, s	olvent=DMF))	= -1646.370456	С	1.87009300	-0.46853000	1.18553300
Thermal Co	prrection to Free	e Energy = 0.44	45897 Hartree	С	3.91712200	-0.12402600	3.11116600
Imaginary F	- Freq= -181.41			С	2.06572100	-1.40222600	2.21394000
				С	2.72860800	0.64063300	1.14013600
INT4-A				С	3.73675000	0.81219200	2.08931600
с	0.45436200	3.26272900	1.77065500	С	3.07425600	-1.23419000	3.16759800

S28

Suppor	tina Info	mation					
c	2.00689600	0.03066900	-1.84485500	н	3.19782700	-1.97606800	3.95553400
С	4.30070600	0.11285400	-3.61124000	н	5.16465800	0.14343000	-4.27402800
С	3.15035100	-0.81938800	-1.66748200	н	3.14229000	-1.55843900	-0.87594300
С	2.07954800	0.89472900	-2.99270100	н	1.21666100	1.52850100	-3.18162600
С	3.17933500	0.93245600	-3.83255400	н	3.16768800	1.61472000	-4.68507000
С	4.24934200	-0.76280200	-2.52226300	н	5.08849400	-1.43641900	-2.33306800
н	1.30238400	2.81120300	2.27885700	н	-1.61388600	0.83521100	2.43700700
н	-2.55007200	4.84988800	-0.05482100	С	-2.62353000	-0.28342900	-2.52728900
н	1.36059700	5.21819200	1.70641200	0	-2.45953700	-1.02532800	-1.51121400
Н	-0.58284900	6.25633800	0.52380500	0	-1.49571000	0.39913400	-2.97112200
н	-4.88691900	-0.23451100	0.23580300	н	-0.76700800	0.19655100	-2.33676100
н	-4.70824300	0.41196200	-1.40325300	0	-3.67828000	-0.06509200	-3.16769100
н	-5.88193000	1.16670500	-0.25494300	Electronic Hartree	: Energy (SMD, s	olvent=DMF))	= -1646.403971
Н	0.13484400	0.83934700	2.62259800	Thermal (Correction to Free	e Energy = 0.4	48306 Hartree
н н	0.13484400	0.83934700 0.18865400	2.62259800 -0.04381900	Thermal (Imaginary	Correction to Free v Freq= 0	e Energy = 0.4	48306 Hartree
н н н	0.13484400 -1.25920100 -0.78130500	0.83934700 0.18865400 -4.25260600	2.62259800 -0.04381900 -0.25691200	Thermal (Imaginary	Correction to Free v Freq= 0	e Energy = 0.4	48306 Hartree
н н н	0.13484400 -1.25920100 -0.78130500 -1.69152500	0.83934700 0.18865400 -4.25260600 -4.03852200	2.62259800 -0.04381900 -0.25691200 2.65973900	Thermal (Imaginary ReC	Correction to Free v Freq= 0	e Energy = 0.4	48306 Hartree
н н н н	0.13484400 -1.25920100 -0.78130500 -1.69152500 -1.60920400	0.83934700 0.18865400 -4.25260600 -4.03852200 -5.56153200	2.62259800 -0.04381900 -0.25691200 2.65973900 1.74122800	Thermal (Imaginary ReC C	Correction to Free Freq= 0 5.01732100	e Energy = 0.4	48306 Hartree 0.44482500
н н н н	0.13484400 -1.25920100 -0.78130500 -1.69152500 -1.60920400 -0.12065600	0.83934700 0.18865400 -4.25260600 -4.03852200 -5.56153200 -4.65488500	2.62259800 -0.04381900 -0.25691200 2.65973900 1.74122800 2.08924200	Thermal (Imaginary ReC C C	Correction to Free Freq= 0 5.01732100 7.05846900	e Energy = 0.4 1.50922800 -0.37454300	48306 Hartree 0.44482500 0.34654100
н н н н	0.13484400 -1.25920100 -0.78130500 -1.69152500 -1.60920400 -0.12065600 -3.16524000	0.83934700 0.18865400 -4.25260600 -4.03852200 -5.56153200 -4.65488500 -4.69174700	2.62259800 -0.04381900 -0.25691200 2.65973900 1.74122800 2.08924200 -0.24820700	Thermal (Imaginary ReC C C C	Correction to Free r Freq= 0 5.01732100 7.05846900 6.33695200	e Energy = 0.4 1.50922800 -0.37454300 1.91533400	48306 Hartree 0.44482500 0.34654100 0.54264000
н н н н н	0.13484400 -1.25920100 -0.78130500 -1.69152500 -1.60920400 -0.12065600 -3.16524000 -3.47784300	0.83934700 0.18865400 -4.25260600 -4.03852200 -5.56153200 -4.65488500 -4.69174700 -3.37585300	2.62259800 -0.04381900 -0.25691200 2.65973900 1.74122800 2.08924200 -0.24820700 0.91026500	Thermal (Imaginary ReC C C C C	Correction to Free Freq= 0 5.01732100 7.05846900 6.33695200 4.64609300	e Energy = 0.4 1.50922800 -0.37454300 1.91533400 0.14708300	48306 Hartree 0.44482500 0.34654100 0.54264000 0.29470500
н н н н н	0.13484400 -1.25920100 -0.78130500 -1.69152500 -1.60920400 -0.12065600 -3.16524000 -3.47784300 -2.94343200	0.83934700 0.18865400 -4.25260600 -4.03852200 -5.56153200 -4.65488500 -4.69174700 -3.37585300 -2.96852500	2.62259800 -0.04381900 -0.25691200 2.65973900 1.74122800 2.08924200 -0.24820700 0.91026500 -0.73184800	Thermal C Imaginary ReC C C C C C C	Correction to Free Freq= 0 5.01732100 7.05846900 6.33695200 4.64609300 5.72376600	e Energy = 0.4 1.50922800 -0.37454300 1.91533400 0.14708300 -0.81046700	48306 Hartree 0.44482500 0.34654100 0.54264000 0.29470500 0.24623000
н н н н н н	0.13484400 -1.25920100 -0.78130500 -1.69152500 -1.60920400 -0.12065600 -3.16524000 -3.47784300 -2.94343200 4.70727800	0.83934700 0.18865400 -4.25260600 -4.03852200 -5.56153200 -4.65488500 -4.69174700 -3.37585300 -2.96852500 0.00769800	2.62259800 -0.04381900 -0.25691200 2.65973900 1.74122800 2.08924200 -0.24820700 0.91026500 -0.73184800 3.84897200	Thermal (Imaginary ReC C C C C C C C C	Correction to Free 7 Freq= 0 5.01732100 7.05846900 6.33695200 4.64609300 5.72376600 7.38025500	e Energy = 0.4 1.50922800 -0.37454300 1.91533400 0.14708300 -0.81046700 0.97005300	48306 Hartree 0.44482500 0.34654100 0.54264000 0.29470500 0.24623000 0.49421400
н н н н н н н	0.13484400 -1.25920100 -0.78130500 -1.69152500 -1.60920400 -0.12065600 -3.16524000 -3.47784300 -2.94343200 4.70727800 1.42402200	0.83934700 0.18865400 -4.25260600 -4.03852200 -5.56153200 -4.65488500 -4.69174700 -3.37585300 -2.96852500 0.00769800 -2.27695000	2.62259800 -0.04381900 -0.25691200 2.65973900 1.74122800 2.08924200 -0.24820700 0.91026500 -0.73184800 3.84897200 2.27689900	Thermal (Imaginary ReC C C C C C C C C C C C C	Correction to Free Freq= 0 5.01732100 7.05846900 6.33695200 4.64609300 5.72376600 7.38025500 5.46851800	e Energy = 0.4 1.50922800 -0.37454300 1.91533400 0.14708300 -0.81046700 0.97005300 -2.20556600	48306 Hartree 0.44482500 0.34654100 0.54264000 0.29470500 0.24623000 0.49421400 0.10165600
н н н н н н н	0.13484400 -1.25920100 -0.78130500 -1.69152500 -1.60920400 -0.12065600 -3.16524000 -3.47784300 -2.94343200 4.70727800 1.42402200 2.58421400	0.83934700 0.18865400 -4.25260600 -4.03852200 -5.56153200 -4.65488500 -4.69174700 -3.37585300 -2.96852500 0.00769800 -2.27695000 1.36076100	2.62259800 -0.04381900 -0.25691200 2.65973900 1.74122800 2.08924200 -0.24820700 0.91026500 0.91026500 3.84897200 2.27689900 0.34295600	Thermal (Imaginary ReC C C C C C C C C C C C C C C C C C C	Correction to Free Freq= 0 5.01732100 7.05846900 6.33695200 4.64609300 5.72376600 7.38025500 5.46851800 5.24278400	e Energy = 0.4 1.50922800 -0.37454300 1.91533400 0.14708300 -0.81046700 0.97005300 -2.20556600 -3.39360100	48306 Hartree 0.44482500 0.34654100 0.54264000 0.29470500 0.24623000 0.49421400 0.10165600 -0.01903400

Suppor	ting Info	rmation					
С	3.26943500	-0.27932200	0.18886900	н	6.56577000	2.97381000	0.65563800
С	2.15177100	0.49833000	0.24788800	н	8.41912400	1.28313600	0.56997600
С	0.80946500	-0.11331600	0.13219900	н	5.34596000	-5.41120100	0.65449900
0	0.64401900	-1.33319000	0.08437200	н	3.82776300	-4.95610000	-0.13333800
N	-0.28148000	0.76340700	0.13527700	н	5.28234200	-5.22626900	-1.10534500
С	-0.09071600	2.13981400	-0.19767000	н	3.09768700	-1.34333600	0.04875100
С	0.35355300	4.83661400	-0.83674300	н	2.21884300	1.56997400	0.39877000
С	0.21492800	2.51384700	-1.51442000	н	0.52789300	5.88228400	-1.08428200
С	-0.18597300	3.12754300	0.79105800	н	0.22602700	1.73317700	-2.26789500
С	0.03245900	4.46917400	0.47144900	н	-0.43764900	2.82689000	1.80326100
С	0.44053400	3.85420700	-1.82824500	н	-0.04730100	5.22781600	1.24765100
С	-1.63072100	0.13625100	0.09880300	н	0.67758900	4.13470400	-2.85290000
С	-2.75820300	1.14546000	0.30839900	н	-1.68665900	-0.59433000	0.92361300
С	-4.85203600	2.97336500	0.74823300	н	-5.66047300	3.68357100	0.92084500
С	-3.45809400	1.14159400	1.52526900	н	-3.22656300	0.35740900	2.25060900
С	-3.14898400	2.04360900	-0.69753100	н	-2.64592900	2.00808900	-1.65874100
С	-4.18281600	2.95455400	-0.47807300	н	-4.46923900	3.64656000	-1.26906600
С	-4.49255100	2.05738500	1.73893900	н	-5.03353800	2.03826800	2.68368400
С	-1.85218900	-0.61925600	-1.23620900	н	-2.96173500	-2.06394800	-0.13223900
0	-1.39652200	-0.18965400	-2.31275200	н	-2.66275900	-2.08667300	-3.11810900
N	-2.63720600	-1.69393100	-1.08962500	н	-2.63075000	-4.33907100	-1.04001900
С	-3.01853600	-2.55885000	-2.19557400	н	-2.64473300	-4.63282500	-2.80787200
С	-2.34488200	-3.93027600	-2.01551300	н	-1.25492200	-3.82119700	-2.03475800
С	-4.55064600	-2.69324800	-2.21955300	Н	-4.87736500	-3.40515700	-2.99215000
н	4.23152800	2.25837500	0.47876100	Н	-5.01861200	-1.72222400	-2.42294200
Н	7.84574700	-1.12424200	0.30689800	н	-4.89105000	-3.03864900	-1.23672500

Suppo c	-3.56179400	rmation -2.57386900	2.20188900
0	-2.73301300	-1.60880200	2.46915100
0	-3.69554600	-2.96851900	0.96561900
0	-4.22922900	-3.12254500	3.13432600
Electronic Hartree	Energy (SMD, s	olvent=DMF))	= -1646.395052
hermal C	orrection to Free	e Energy = 0.4	36795 Hartree
maginary	Freq= 0		
Г\$1-В			
0	-5.02530500	1.51363900	-0.29648100
С	-7.05836000	-0.38084500	-0.28101500
С	-6.34860100	1.91946100	-0.35768900
С	-4.65090400	0.14867800	-0.22694100
с	-5.72031400	-0.81415000	-0.21944200
С	-7.38536100	0.96865800	-0.35068500
С	-5.45401300	-2.21410000	-0.15557400
С	-5.21548300	-3.40404200	-0.10412000
С	-4.86830200	-4.81999700	-0.04747200
С	-3.26804300	-0.28129400	-0.15986000
С	-2.15703700	0.49811400	-0.20976100
с	-0.80822200	-0.12394100	-0.13619100
0	-0.66220000	-1.34548600	-0.11677800
N	0.28212000	0.74368400	-0.14486600
С	0.09874200	2.12491800	0.17980500
С	-0.33725800	4.82501200	0.80360500
с	-0.11567200	2.51629100	1.50909200

С	0.11118100	3.09549600	-0.82963000
С	-0.10523700	4.43939400	-0.51830200
С	-0.33698600	3.85940700	1.81497400
С	1.63479900	0.11552000	-0.11303900
С	2.74762700	1.12603800	-0.38101100
С	4.80717500	2.96500100	-0.93170000
С	3.39146400	1.11812700	-1.62851200
С	3.17974800	2.03426300	0.59856500
С	4.19608200	2.95028800	0.32467000
С	4.40848400	2.03862500	-1.89765800
С	1.88744200	-0.60509000	1.23746900
0	1.42678100	-0.13991900	2.30564500
Ν	2.68147500	-1.66574200	1.10010100
С	3.08621200	-2.45457600	2.25429600
С	2.44164300	-3.84936600	2.16192000
С	4.62148600	-2.55928500	2.27619700
Н	-4.24214100	2.26614700	-0.29506400
Н	-7.84221400	-1.13476400	-0.27430900
Н	-6.58284200	2.98130600	-0.40840900
Н	-8.42620400	1.28078500	-0.39746100
Н	-5.29592300	-5.38030300	-0.89061600
н	-3.77985200	-4.95070600	-0.08349300
н	-5.22715300	-5.29393600	0.87699300
н	-3.09229300	-1.34941400	-0.06354200
н	-2.22716100	1.57433100	-0.32118200
н	-0.50888500	5.87250700	1.04560600

Suppor	ting Info	rmation					
Н	-0.05600100	1.74452000	2.27015400	INT1-B			
н	0.29615600	2.77993300	-1.85177900	С	-5.12153800	1.30273200	0.40397800
Н	-0.09177400	5.18549300	-1.31053500	С	-7.05978900	-0.62318600	-0.10249600
Н	-0.50351200	4.15540000	2.84920800	С	-6.46691200	1.65166200	0.41782900
н	1.67281200	-0.63676700	-0.91994300	С	-4.69353400	-0.01151000	0.13074200
н	5.60179700	3.67924400	-1.14705000	С	-5.70086600	-0.99106100	-0.12293300
н	3.13236800	0.32609300	-2.33407000	С	-7.44712000	0.68540900	0.16292300
н	2.72299300	1.99908400	1.58273600	С	-5.34883800	-2.34590700	-0.41196600
н	4.51514000	3.64945800	1.09683000	С	-5.02060300	-3.48703600	-0.65936500
н	4.90570000	2.01568100	-2.86627100	С	-4.55871200	-4.83924100	-0.95511100
н	3.05356800	-2.13640700	0.07436900	С	-3.28102600	-0.39164300	0.11321600
н	2.73280600	-1.94684600	3.16023700	С	-2.22109500	0.43724100	0.09688000
н	2.72034600	-4.30740300	1.20640200	С	-0.83497500	-0.15011400	0.08711900
Н	2.76661800	-4.50208300	2.98720600	0	-0.68962600	-1.36659500	0.17908700
Н	1.34970300	-3.76255500	2.19215500	Ν	0.21945300	0.72619900	-0.05014700
Н	4.96951500	-3.21563800	3.08856200	С	0.00285200	2.14216900	-0.02789100
н	5.07092100	-1.56827100	2.41563000	С	-0.51410000	4.89481700	0.01976100
н	4.96572300	-2.95636900	1.31462700	С	0.08262600	2.84824900	1.18033300
С	3.46993700	-2.61967000	-2.12335900	С	-0.31259200	2.82117300	-1.21074500
0	2.64016500	-1.67578000	-2.43408800	С	-0.57553900	4.19248600	-1.18583100
0	3.65738300	-2.91005800	-0.84729000	С	-0.17779100	4.21925500	1.19688800
0	4.09950700	-3.26595200	-3.01205600	С	1.60378000	0.14465600	0.03812700
Electronic E Hartree	nergy (SMD, s	olvent=DMF))	= -1646.39389	1 C	2.63566200	1.05027000	-0.62252400
Thermal Co	rrection to Free	e Energy = 0.43	33885 Hartree	С	4.54277200	2.69575700	-1.88282100
				С	3.12253500	0.72395700	-1.89857600

Imaginary Freq= -916.88

С

3.15491900 2.17929700 0.03156400

Suppor	ting Info	rmation					
С	4.09394100	2.99949400	-0.59469900	Н	4.48293900	3.87253900	-0.07124400
С	4.06477600	1.54886600	-2.52037100	н	4.44210800	1.27695100	-3.50513200
С	2.01178600	-0.18418200	1.51137100	Н	3.36802500	-2.48701900	-0.07000600
0	1.61437700	0.58707300	2.44273500	Н	3.06987000	-0.90928400	3.61870500
Ν	2.80352700	-1.23057400	1.54322000	Н	3.13116400	-3.71629800	2.38082300
С	3.37549200	-1.60860300	2.82250700	Н	3.34258800	-3.38665400	4.12688500
С	2.88564500	-3.02075800	3.19242600	Н	1.79610000	-3.02228100	3.31493900
С	4.91091000	-1.58964800	2.70475100	Н	5.40197000	-1.94064100	3.62735100
н	-4.37319600	2.05859300	0.62223700	Н	5.26263200	-0.57249700	2.49247500
н	-7.80558000	-1.38814600	-0.30171700	Н	5.22101700	-2.22942900	1.86984200
н	-6.75419500	2.67803700	0.63544100	С	3.45265200	-3.14175400	-1.90689800
н	-8.50173100	0.95085100	0.17598800	0	2.57908100	-2.26805800	-2.19643900
н	-4.93809000	-5.19368100	-1.92247000	0	3.85193600	-3.19154900	-0.55689900
н	-3.46337400	-4.86865600	-0.99532100	0	4.00802900	-3.97265300	-2.65230200
н	-4.88364700	-5.55469500	-0.18829400	Electronic E Hartree	Energy (SMD, s	olvent=DMF))	= -1646.403933
н	-3.05549300	-1.45440100	0.09561000	Thermal Co	prrection to Free	e Energy = 0.4	35321Hartree
н	-2.34237100	1.51453400	0.08209900	Imaginary F	Freq= 0		
н	-0.71727800	5.96440200	0.03962500				
н	0.39751200	2.27666900	2.05288200	TS2-B			
н	-0.34630100	2.26172600	-2.14095900	С	4.28424000	-1.34161100	1.79135800
н	-0.82184000	4.71196700	-2.10995100	С	6.81426500	-0.56654600	0.95038500
н	-0.11538000	4.76586500	2.13644600	С	5.41032700	-1.79170800	2.46931900
н	1.56873600	-0.79359200	-0.52308400	С	4.37024600	-0.47645600	0.67915200
н	5.27732300	3.33458200	-2.37346800	С	5.68145300	-0.09792600	0.25678400
н	2.81919500	-0.22402900	-2.34837700	С	6.68977000	-1.40399800	2.05266900
н	2.83415100	2.38239100	1.04858600	С	5.87305500	0.76767500	-0.86546400

Suppor	ting Info	rmation					
С	6.04125000	1.50207800	-1.81619100	н	3.30164500	-1.67733000	2.10838900
С	6.17616800	2.38847600	-2.96730200	н	7.79686700	-0.25611700	0.60353800
С	3.18809500	0.01026500	-0.02690300	н	5.29240600	-2.46011500	3.31990900
С	1.92428700	0.00463200	0.43863100	н	7.57531200	-1.75858900	2.57532800
С	0.78235000	0.51045100	-0.42698100	Н	6.73426500	1.91264400	-3.78525500
0	1.05963700	0.98439100	-1.54157800	Н	5.18928300	2.66527700	-3.35795900
Ν	-0.32211200	1.08467200	0.37424200	н	6.70227600	3.31732700	-2.70744100
С	-0.93243100	0.03548300	1.23317300	н	3.33115700	0.44347200	-1.01332000
С	-1.01215600	-1.28602900	0.40581200	Н	1.70033600	-0.35667000	1.43901000
0	-1.79536100	-2.21662600	0.69915600	н	-0.18052400	-0.17631500	2.00842000
N	-0.07327600	-1.21259600	-0.52464200	н	1.14398900	-1.84748900	-2.01945700
С	0.23938000	-2.22100400	-1.51353600	Н	-1.81258800	-2.67919100	-2.14766400
С	-0.86801000	-2.33191500	-2.57823000	н	-0.56852700	-3.03209600	-3.37278600
С	0.56787000	-3.58876900	-0.88530600	н	-1.04128100	-1.34979100	-3.02968000
С	-1.20921900	1.89235200	-0.41785800	н	-0.30349700	-3.96534600	-0.34273100
С	-2.86708300	3.61415200	-1.90706200	Н	0.85284900	-4.31691800	-1.65846800
С	-0.86758900	3.24071600	-0.59591100	Н	1.40328700	-3.49536800	-0.17932200
С	-2.38200400	1.41078400	-1.01468200	Н	-3.51383200	4.28295700	-2.47409500
С	-3.21058400	2.27246200	-1.73717400	Н	0.04883900	3.60218900	-0.13766500
С	-1.68199100	4.09363100	-1.33913900	Н	-2.69526900	0.37461600	-0.93946000
С	-2.15381000	0.48223700	2.02438900	Н	-4.12432700	1.85598100	-2.15308100
С	-4.29223300	1.36645000	3.63651300	Н	-1.39625800	5.13783500	-1.46594000
С	-1.92876400	1.27860600	3.15868500	Н	-5.12208100	1.70587700	4.25579600
С	-3.47383300	0.13203000	1.70436700	Н	-0.90626200	1.55842700	3.40848500
С	-4.52642200	0.57616200	2.51040600	Н	-3.71200200	-0.46240900	0.82336200
С	-2.98082700	1.72307200	3.95944000	н	-5.54082100	0.29968800	2.23211400

н	-2.77611400	2.34238900	4.83218200		
С	-4.96666800	-1.97882600	-1.48612500		
0	-4.64941100	-0.83561200	-1.03982000		
0	-4.11874600	-3.04389800	-1.07718300		
н	-3.44283800	-2.64630100	-0.49367900		
0	-5.90903900	-2.31634700	-2.21995400		
Electronic Energy (SMD, solvent=DMF)) = -1646.375891 Hartree					

Thermal Correction to Free Energy = 0.441394 Hartree

Imaginary Freq= -132.62

INT2-B

С	3.48951700	-2.36573000	-0.50558500
С	6.02320500	-1.33153600	-0.04086500
С	4.59953400	-3.19975000	-0.55088700
С	3.59456100	-0.98395000	-0.23712700
С	4.90703700	-0.47343200	0.00498300
С	5.88138500	-2.68588300	-0.31859100
С	5.11642800	0.91169500	0.29291000
С	5.28936600	2.08707100	0.53770300
С	5.42078800	3.51105300	0.82782200
С	2.43279400	-0.09787000	-0.19773100
С	1.17523800	-0.38961700	-0.57215400
С	0.01416900	0.63339100	-0.45229700
0	0.34308800	1.80268700	-0.04635500
Ν	-1.04146000	-0.16577800	0.41025500
С	-2.21981400	-0.53381600	-0.35124900

С	-1.91423100	-0.06693400	-1.78350800
0	-2.66234000	-0.25621500	-2.74300100
N	-0.72381700	0.56861600	-1.79456600
С	-0.41360100	1.47238100	-2.91209800
С	1.09188900	1.58196800	-3.17524700
С	-1.06317100	2.84989800	-2.70158700
С	-1.09181100	-0.04325400	1.78702600
С	-1.13606500	0.02305000	4.64128100
С	-0.00789400	0.49127600	2.53265200
С	-2.20696000	-0.51076100	2.52622900
С	-2.21971600	-0.47716000	3.91910700
С	-0.04099800	0.51456800	3.92158900
С	-2.58659300	-2.01133200	-0.33919600
С	-3.30943800	-4.73787300	-0.40445900
С	-1.75640800	-2.98762500	0.22494700
С	-3.78855300	-2.42249300	-0.93832800
С	-4.14379500	-3.77097400	-0.97309600
С	-2.11386400	-4.33783400	0.19513200
Н	2.50197900	-2.78490900	-0.67230300
Н	7.00710900	-0.90850800	0.14677000
Н	4.46593400	-4.25923000	-0.76122600
Н	6.75404400	-3.33467100	-0.34864600
Н	5.88057100	3.68617000	1.80999700
Н	6.03845600	4.02460600	0.07838600
Н	4.43564600	3.99307500	0.83242000
н	2.59274200	0.92132700	0.14659100

Н	0.90084400	-1.36675700	-0.97057300	Imaginary	/ Freq= 0
Н	-3.07810500	0.09768800	-0.06312700		
н	-0.88889400	0.99777400	-3.77918300	INT3-B	
н	1.59387400	2.02560600	-2.31172800	С	4.1916
Н	1.26180900	2.22369500	-4.05084400	С	6.7563
Н	1.54299100	0.60237700	-3.37439800	С	5.2991
Н	-0.58603700	3.37358400	-1.87060000	С	4.3226
Н	-0.97229100	3.45266700	-3.61867400	С	5.6457
Н	-2.11867800	2.73467300	-2.43860600	С	6.5938
Н	-1.14999700	0.04792000	5.72955000	С	5.8709
Н	0.82091900	0.92925300	1.99567700	С	6.0729
Н	-3.07302200	-0.89913500	2.00428400	С	6.2732
Н	-3.10123100	-0.84751400	4.44202100	С	3.1584
Н	0.80997600	0.93936600	4.45406500	С	1.9322
н	-3.59068200	-5.78987900	-0.42568800	С	0.7921
н	-0.83110000	-2.67121100	0.69625100	0	0.8329
н	-4.42329400	-1.67086400	-1.39587300	Ν	-2.2293
н	-5.07796300	-4.06907900	-1.44707200	С	-1.9880
н	-1.45603300	-5.07869000	0.64750300	С	-1.588
С	-3.35583600	3.36143400	0.19648600	0	-2.3504
0	-3.47042700	2.22057900	-0.34351600	Ν	-0.3226
0	-2.03917100	3.74022300	0.55522100	С	-0.2952
Н	-1.45465800	2.98456100	0.34312300	С	-0.4989
0	-4.22751700	4.21353600	0.44876500	С	0.9133
Electronic E Hartree	nergy (SMD, s	olvent=DMF))	= -1646.390427	С	-1.3043

С	4.19163000	-1.75330500	0.48563400
С	6.75635400	-0.68341900	0.31825200
С	5.29910500	-2.56175200	0.70500700
С	4.32261200	-0.38583400	0.15578300
С	5.64570200	0.15076800	0.08677700
С	6.59387200	-2.03082400	0.61880400
С	5.87093800	1.52617100	-0.23027100
С	6.07292600	2.69242300	-0.49906600
С	6.27324200	4.10015400	-0.82672400
С	3.15845500	0.45631400	-0.08007000
С	1.93226100	0.01852400	-0.44933400
С	0.79217500	0.96134300	-0.56906700
0	0.83294500	2.07507100	-0.02703900
Ν	-2.22931300	-0.24011600	0.70909500
С	-1.98800000	1.17464500	0.48392600
С	-1.58814900	1.17302800	-1.00521300
0	-2.35045000	1.44922800	-1.91541600
Ν	-0.32266100	0.54227400	-1.28573000
С	-0.29523000	-0.34276400	-2.48776800
С	-0.49894700	-1.83005900	-2.16354100
С	0.91337100	-0.07011800	-3.39619600
С	-1.30432700	-0.97629700	1.35778300

0.45917200 -2.76239300 2.77432200

Thermal Correction to Free Energy = 0.441442 Hartree

С
Suppor	tina Info	rmation					
c	-1.52974900	-2.40118200	1.40906800	Н	1.00795700	1.00135600	-3.61007700
С	-0.11138500	-0.51631100	2.01695100	Н	1.12017200	-3.43937200	3.31368500
С	0.72171300	-1.39588200	2.71707100	н	-2.36470700	-2.79765100	0.83439900
С	-0.68071100	-3.24588600	2.09308200	Н	0.14430500	0.53701300	2.01731100
С	-3.22740800	2.02735700	0.71841800	н	1.60325500	-0.99090500	3.21645600
С	-5.47742400	3.65583300	1.18790400	н	-0.89305100	-4.31542300	2.09125900
С	-4.51349600	1.57130200	0.39106300	Н	-6.35107200	4.28036900	1.37246100
С	-3.08863500	3.30472400	1.27452400	н	-4.64593600	0.58235800	-0.03838200
С	-4.20111100	4.11739300	1.51118300	н	-2.09207300	3.66604500	1.52332400
С	-5.62396000	2.38302800	0.62712300	н	-4.06852900	5.10532400	1.95138600
Н	3.19411400	-2.16378600	0.61162900	н	-6.61439300	2.01260100	0.36967300
Н	7.75121700	-0.24964600	0.25438400	С	-4.60788000	-2.87709200	-1.13654800
н	5.15409000	-3.60816800	0.96347900	0	-3.42067200	-3.29497000	-1.25612800
н	7.46298700	-2.65956000	0.79806600	0	-4.75294000	-1.68434000	-0.37197300
н	6.78449000	4.63851000	-0.01685500	н	-3.84795100	-1.39763500	-0.12952500
н	6.87763200	4.22507200	-1.73574600	0	-5.67423000	-3.35187400	-1.56599300
Н	5.31271100	4.60153800	-0.99901700	Electronic E Hartree	Energy (SMD, s	olvent=DMF))	= -1646.373986
Н	3.28565100	1.52821700	0.04719900	Thermal Co	prrection to Free	e Energy = 0.4	39476 Hartree
Н	1.74610700	-1.02839800	-0.65726900	Imaginary F	Freq= 0		
Н	-1.17702000	1.60971300	1.07817200				
Н	-1.17680200	-0.00729300	-3.03876200	TS3-B			
н	0.28870600	-2.23137400	-1.51564500	С	2.98822400	-1.86845500	-0.86415100
н	-0.47896100	-2.40101400	-3.10197700	С	5.65449100	-1.88454900	-0.03363200
н	-1.46861100	-2.02480800	-1.68907400	С	3.72463200	-3.04895400	-0.90041600
н	1.86001500	-0.41491200	-2.96747700	С	3.55554100	-0.67015400	-0.38918600
Н	0.76960100	-0.59753000	-4.34751400	С	4.91852300	-0.68479900	0.03441600

Suppor	tina Info	mation					
С	5.06293100	-3.05928600	-0.49207900	С	-0.53382500	-1.19384700	3.23674200
С	5.57288200	0.48862800	0.52912500	С	-0.81015900	1.19450700	3.35484500
С	6.15229800	1.46956700	0.94889400	н	1.93757200	-1.90556000	-1.19836200
С	6.80886400	2.67114000	1.45353800	н	6.69321800	-1.87632700	0.28907800
С	2.76203000	0.55774500	-0.29262400	н	3.20036200	-3.93999100	-1.23780500
С	1.50117300	0.72707800	-0.75194600	н	5.64603100	-3.97889100	-0.52172400
С	0.84915100	2.04419400	-0.58132800	н	6.12481000	3.52944000	1.43679600
0	1.48358600	3.02942700	-0.19006000	Н	7.68835200	2.94188800	0.85193500
Ν	-0.50030100	2.20761100	-0.99794600	Н	7.15061900	2.54640700	2.49085100
С	-0.85077300	3.59655000	-1.41961200	Н	3.23030700	1.40294700	0.20646200
С	-2.09612600	4.16047000	-0.72285500	Н	0.99029100	-0.07260600	-1.27939900
С	-0.93225000	3.71555100	-2.94981700	Н	0.00037300	4.18428000	-1.07686800
С	-1.55356600	1.22709300	-1.06840200	Н	-1.98806600	4.10776500	0.36657000
0	-2.50651500	1.48073500	-1.79194900	Н	-3.00180600	3.62430600	-1.01132900
С	-1.46885100	-0.06197800	-0.26308800	Н	-2.21056000	5.21866300	-0.99585700
Ν	-2.55275000	-0.99063500	-0.52316900	Н	-0.00853400	3.34615400	-3.41015800
С	-3.82121600	-0.85472900	-0.06895600	Н	-1.77102700	3.13529400	-3.33743400
С	-6.56029500	-0.75788600	0.79422500	Н	-1.05619900	4.76985500	-3.23676200
С	-4.70715400	-1.96769700	-0.22026300	Н	-7.59857200	-0.71900900	1.12020800
С	-4.37905600	0.30506000	0.54507400	н	-4.30083100	-2.87018200	-0.67017600
С	-5.70815100	0.33935900	0.95811300	Н	-3.75716300	1.18215700	0.68444400
С	-6.02798800	-1.91202100	0.19665000	Н	-6.08784900	1.25272500	1.42009100
С	-1.12505800	0.04679000	1.22575500	н	-6.66100700	-2.79048100	0.05898100
С	-0.51660700	-0.01193300	3.98658300	н	-0.27928200	-0.03478400	5.04942200
С	-1.11207200	1.22148700	1.98881300	н	-1.33163300	2.17517900	1.51868500
С	-0.83508200	-1.16806800	1.87794100	н	-0.87673900	-2.08670300	1.29463900

Suppor	ting Infoi -0.30693000	-2.14511600	3.71513800		
н	-0.80982700	2.12483000	3.92166300		
С	-0.22563700	-3.11351400	-1.31650600		
0	-1.43667800	-3.23613100	-0.77984300		
0	0.15836000	-1.89945600	-1.64831100		
0	0.51859400	-4.11633300	-1.47697400		
н	-2.07059900	-2.09352400	-0.73488600		
н	-0.63400400	-0.65757700	-0.74443400		
Electronic Energy (SMD, solvent=DMF)) = -1646.363494 Hartree					

Thermal Correction to Free Energy = 0.438061 Hartree

Imaginary Freq= -980.29

INT4-B

С	2.52048100	2.28623600	-0.29121800
С	5.16219400	2.30865700	-1.20019000
С	3.09268200	3.46094500	-0.76692300
С	3.25915900	1.08423900	-0.24212700
С	4.60626200	1.10859700	-0.71280800
С	4.41555700	3.48047800	-1.22532000
С	5.43047600	-0.06208300	-0.70546900
С	6.15447800	-1.03629100	-0.71260800
С	6.98259000	-2.23769000	-0.70280100
С	2.68954400	-0.15653000	0.28793400
С	1.45058100	-0.30749900	0.79752000
С	1.04680300	-1.61625900	1.39085100
0	1.88049900	-2.48476800	1.69469400

Ν	-0.29691000	-1.78811300	1.64442500
С	-0.67710300	-2.82519500	2.62356700
С	-2.14186300	-3.24535200	2.45801300
С	-0.38655000	-2.35325700	4.05835600
С	-1.28844300	-0.77469700	1.26868100
0	-1.79168300	-0.11316600	2.21268100
С	-1.55116500	-0.60263600	-0.10404800
N	-2.17708800	0.64842600	-0.40429300
С	-3.48673200	0.82740900	-0.74890100
С	-6.17812000	1.30950700	-1.55088900
С	-4.00375700	2.14676600	-0.85298000
С	-4.36637600	-0.24157000	-1.05372700
С	-5.67898600	0.00722100	-1.44592300
С	-5.31673200	2.37246100	-1.24279400
С	-1.18583000	-1.45662300	-1.23107600
С	-0.61275800	-3.05165300	-3.55553300
С	-1.26961100	-0.93789800	-2.55326700
С	-0.80828300	-2.82592200	-1.14031200
С	-0.52508500	-3.59039300	-2.26756600
С	-0.99032300	-1.71036000	-3.67519600
Н	1.48001400	2.32702000	0.04375000
Н	6.19087900	2.29857000	-1.55308400
Н	2.48761200	4.36399000	-0.76567600
Н	4.86024200	4.40120400	-1.59897600
Н	6.44250800	-3.08135900	-0.25440500
н	7.90624700	-2.09469400	-0.12410500

Н	7.27746600	-2.54024600	-1.71759200
н	3.33606200	-1.03060200	0.28471100
н	0.74949400	0.52112500	0.84601600
н	-0.03012100	-3.68134200	2.40364300
н	-2.34929400	-3.58870400	1.43889000
н	-2.80897300	-2.40742800	2.67897300
н	-2.36609600	-4.06723700	3.15102800
н	0.67845200	-2.12521100	4.16658700
н	-0.96540900	-1.44919000	4.26538100
н	-0.64782000	-3.13435400	4.78755700
н	-1.67100300	1.46865400	-0.02283200
н	-7.20605600	1.49274300	-1.85849700
н	-3.34322500	2.97530500	-0.60900800
н	-3.99954400	-1.25891900	-0.96803900
н	-6.32762000	-0.83991100	-1.67212500
н	-5.67862900	3.39903500	-1.30342100
н	-0.39450200	-3.65645600	-4.43409500
н	-1.55136600	0.10226100	-2.67276000
н	-0.72494400	-3.29089300	-0.16653700
н	-0.23447200	-4.63264000	-2.13316300
н	-1.06450100	-1.25210800	-4.66168300
С	-0.62422900	3.36414100	1.64078200
0	-0.45101100	2.64313600	0.59116700
0	-1.34436300	2.75764300	2.66825600
н	-1.51647900	1.82998800	2.39791700
0	-0.23395300	4.51974300	1.84650800

Electronic Energy (SMD, solvent=DMF)) = -1646.412080 Hartree

Thermal Correction to Free Energy = 0.440798 Hartree

Imaginary Freq= 0

TS4-B

С	-1.75284400	2.54673000	-0.95313300
С	-4.49424000	2.76806600	-0.49818800
С	-2.35814200	3.78575700	-0.88829300
С	-2.49002200	1.32350600	-0.80331200
С	-3.91251700	1.48506100	-0.56162700
С	-3.74403500	3.92369400	-0.65936300
С	-4.76455800	0.35828900	-0.37410700
С	-5.51180500	-0.58830500	-0.20686700
С	-6.36883700	-1.74991500	0.00206900
С	-1.90039600	0.03795200	-0.90463200
С	-0.52917600	-0.23441900	-1.14910300
С	-0.16036200	-1.49996700	-1.87286800
0	-0.84484000	-2.13517300	-2.66165000
Ν	1.16640800	-1.88890800	-1.56829800
С	1.92140300	-2.71111500	-2.52690800
С	2.82027800	-3.73655400	-1.82604400
С	2.69298300	-1.81665900	-3.51146000
С	1.74457700	-1.21473500	-0.49111800
0	2.96556600	-1.08480900	-0.35932000
С	0.67848700	-0.58890200	0.34964200
N	1.06005700	0.69721200	0.85798200

Suppor	ting Info	rmation					
С	1.78141300	0.95048900	2.01204900	Н	3.36982900	-1.13690600	-2.98703500
С	3.19070500	1.71032300	4.36419100	Н	3.27195000	-2.43311300	-4.21312800
С	2.32120800	2.25365100	2.16265300	н	1.30403900	1.34530900	0.08765500
С	1.98961400	0.03398000	3.06695400	Н	3.72727500	1.99950600	5.26589000
С	2.67700700	0.42048100	4.21719900	Н	2.19717600	2.95332100	1.34005600
С	3.00835300	2.61789300	3.31229800	Н	1.62148200	-0.98022000	2.97787900
С	-0.13217500	-1.45087700	1.23936200	Н	2.81744000	-0.31266200	5.01153600
С	-1.82427200	-3.02357100	2.88302600	Н	3.41350800	3.62654100	3.38682300
С	-1.17773000	-0.86328300	1.98603100	Н	-2.46927000	-3.62673000	3.51987700
С	0.03002700	-2.84759500	1.33114000	Н	-1.32032200	0.20860200	1.92194900
С	-0.80196400	-3.62165200	2.13794300	Н	0.82927400	-3.33010500	0.77573800
С	-2.00196300	-1.64111100	2.79789600	Н	-0.64302600	-4.69789000	2.19265900
н	-0.68032800	2.50733800	-1.12782300	Н	-2.79901900	-1.15937100	3.36125900
н	-5.56656100	2.82993800	-0.31490600	С	2.78561300	2.37243600	-2.10994100
н	-1.73989500	4.67370100	-1.01612400	0	1.75338300	2.23695700	-1.36927400
н	-4.21061800	4.90546600	-0.60363200	0	3.78214300	1.38346800	-1.93895300
н	-5.77922800	-2.62878800	0.29796800	Н	3.46115500	0.77298000	-1.25102400
н	-6.92937700	-2.03141900	-0.90369900	0	3.04042200	3.23855000	-2.94961200
н	-7.11239000	-1.58036600	0.79630800	Electroni Hartree	ic Energy (SMD, s	olvent=DMF))	= -1646.386685
Н	-2.56213000	-0.81527900	-0.79292700	Thermal	Correction to Free	e Energy = 0.4	42136 Hartree
н	0.07892400	0.59205500	-1.53308500	Imaginar	v Freg= -251.28		
н	1.14239800	-3.24928800	-3.07599100	0	, .		
н	2.23420900	-4.36740800	-1.14674500	INT5-B			
н	3.60434800	-3.23944900	-1.25092100	C	-1 90365600	2 72669300	0 30869500
Н	3.28692300	-4.38802100	-2.57654100	C	-4 66615600	2 66946800	0 66805600
н	1.99381400	-1.20569600	-4.09229500	C C	2 56502000	2.000-0000	0.02074600
				U	-2.00093800	3.01037200	0.0307 1000

Suppor	tina Info	rmation					
С	-2.58234500	1.51416400	-0.09829400	С	-1.26699400	-1.57127900	1.47710000
С	-4.03304500	1.53696200	0.11819400	С	-0.04272800	-3.06709500	0.03305100
С	-3.96854400	3.81224100	1.03321800	С	-0.81302900	-4.14272200	0.48617900
С	-4.84215100	0.41677400	-0.21327400	С	-2.03141300	-2.64681700	1.93275000
С	-5.55036900	-0.53736500	-0.48904900	Н	-0.82480800	2.79111500	0.19220100
С	-6.36942500	-1.69741100	-0.81985700	Н	-5.74738200	2.62325500	0.80281500
С	-1.93724500	0.40620700	-0.64753400	Н	-1.98331500	4.68970000	1.11651600
С	-0.49376400	0.30969800	-0.95272800	Н	-4.47996000	4.67381900	1.45813400
С	-0.14285100	-0.25899800	-2.32320800	Н	-5.75736000	-2.60731800	-0.90266700
0	-0.77016100	-0.19986300	-3.36345500	Н	-6.90340200	-1.58815400	-1.77897400
Ν	1.13784800	-0.86244700	-2.25323800	Н	-7.13672700	-1.90087700	-0.05521900
С	1.90663500	-1.14224800	-3.47645500	Н	-2.55260500	-0.43656100	-0.94610100
С	2.60891500	-2.50402600	-3.41388000	Н	-0.01591700	1.30165200	-0.96792300
С	2.86725300	0.01628100	-3.78483500	Н	1.13879900	-1.17955900	-4.25588400
С	1.63390800	-0.92683000	-0.96276300	Н	1.88925600	-3.30352800	-3.19963900
0	2.79338500	-1.20120100	-0.67606600	н	3.37827800	-2.51190500	-2.63897700
С	0.50296800	-0.55765800	0.01524800	Н	3.07656500	-2.71849700	-4.38354300
N	0.99770700	0.31903000	1.06547800	Н	2.30402500	0.93839300	-3.96031200
С	1.80822100	-0.02578700	2.13940300	Н	3.55399100	0.20810600	-2.95585800
С	3.39834500	-0.46097900	4.46097500	Н	3.44845500	-0.20797200	-4.68970700
С	2.48468800	1.04050200	2.78622900	Н	1.28217300	1.22820900	0.65998400
С	1.97793100	-1.32062400	2.67744500	Н	4.00357200	-0.63022800	5.34950500
С	2.75405500	-1.51965500	3.81890800	Н	2.39741600	2.03410800	2.35482000
С	3.25790600	0.82216500	3.91851300	Н	1.51531100	-2.17183900	2.19696800
С	-0.25047400	-1.77318200	0.52488700	Н	2.85949300	-2.53330200	4.20517700
С	-1.81140800	-3.93453300	1.44015500	н	3.76459400	1.66847000	4.38072500

Suppo	orting Info	rmation		
Н	-2.41132900	-4.76976000	1.79835400	С
Н	-1.43127000	-0.57268800	1.86079700	0
н	0.74126500	-3.24984400	-0.69647700	Ν
н	-0.62601600	-5.14106000	0.09445700	С
н	-2.81110900	-2.47160600	2.67080100	С
С	3.04304800	2.87403400	-0.85239700	С
0	1.95546200	2.59191100	-0.25241800	С
0	3.97928200	1.80385700	-0.93377100	0
н	3.56868800	1.04795600	-0.48176000	С
0	3.41408400	3.92811300	-1.37111200	Ν
Electronic Hartree	Energy (SMD, s	olvent=DMF))	= -1646.394270	С
Thermal C	orrection to Free	e Energy = 0.44	40784 Hartree	С
Imaginary	Freq= 0			С
				С
TS5-B				С
С	-2.20520500	-1.82647800	0.99271400	С
C	-4 80032500	_0.93501800	1 35713400	С
0	2.06218700	2 51042000	1 94971200	С
C	-3.06318700	-2.51042900	1.8487 1300	С
С	-2.58699500	-0.66358000	0.28300400	С
С	-3.94486800	-0.22809500	0.49704200	С
С	-4.37790800	-2.07402300	2.04146000	6
С	-4.41332100	0.94804800	-0.16176100	U
С	-4.66683500	1.97593000	-0.75687000	Н
				Н

С

С

С

-4.78169600 3.23372900 -1.48497900

-1.71244300 0.09596200 -0.61713400

-0.36900700 -0.46265900 -1.09005600

-0.33342800	-1.86442600	-1.66327400
-1.20399500	-2.48535200	-2.24348300
0.97775000	-2.36952800	-1.51394600
1.38889800	-3.62976300	-2.14355200
1.90914800	-4.63668000	-1.10890500
2.39343400	-3.38321900	-3.27826700
1.81748000	-1.52228700	-0.80839300
3.00960000	-1.75726300	-0.65776000
0.99182900	-0.33135300	-0.24516400
1.57000300	0.96531800	-0.62595300
2.66420700	1.59326500	-0.01753500
4.84293400	3.06600600	1.04392600
2.68757900	3.01078800	-0.09151000
3.74415500	0.93899100	0.60833000
4.81248500	1.67433500	1.12818100
3.76550400	3.71807900	0.42796400
0.82270800	-0.47531900	1.28032800
0.47478100	-0.62835300	4.07347500
0.25117000	0.59642100	1.98888700
1.23932400	-1.60500400	1.99785100
1.06500400	-1.68442400	3.38219800
0.07464700	0.50961800	3.36847200
-1.19689400	-2.20627700	0.87067700
-5.81609800	-0.56386900	1.48330800
-2.69998900	-3.39897200	2.36518200
-5.05533500	-2.60583200	2.70775700

Н

Н

Suppor н	-5.42632700	3.14232100	-2.37251300
н	-3.75364600	3.50050600	-1.80389400
н	-5.19669000	4.03642900	-0.85718200
н	-2.27334900	0.42490600	-1.49775800
н	-0.13194700	0.15533700	-1.97087000
н	0.45696200	-4.01260400	-2.57148600
н	1.16205700	-4.80240700	-0.32493000
н	2.82947500	-4.27380700	-0.64404500
Н	2.11473800	-5.59943400	-1.59489800
Н	1.97271600	-2.69598800	-4.02016100
н	3.31664900	-2.94857300	-2.88645700
н	2.63158400	-4.32888200	-3.78284900
Н	0.77037600	1.65222200	-0.68461000
н	5.68116400	3.63139700	1.45006300
Н	1.83929400	3.53383800	-0.55085200
Н	3.75599800	-0.14153800	0.66303900
н	5.63407500	1.13862700	1.60525900
н	3.75676000	4.80569700	0.35892100
Н	0.33432100	-0.68673500	5.15171600
н	-0.05185700	1.49238800	1.44886200
н	1.72163700	-2.43173300	1.48486400
н	1.39856100	-2.57331500	3.91577600
н	-0.38140100	1.34439400	3.89621700
С	-0.83209200	3.36134800	-1.39424400
0	-1.82782900	3.17880600	-2.15857900
0	-0.65278300	2.46818400	-0.34676000

Н	-1.36762600	1.35756900	-0.35310000
0	0.04908900	4.26004400	-1.50028600
Electro Hartree	nic Energy (SMD, so	olvent=DMF))	= -1646.368600

Thermal Correction to Free Energy = 0.445336 Hartree

Imaginary Freq= -1239.70

TS6-B

С	-0.48019300	-2.84041200	-2.01324900
С	-2.86842400	-3.66293100	-0.88345400
С	-0.75341800	-4.20308500	-1.88986300
С	-1.37054600	-1.85219500	-1.57301900
С	-2.59683500	-2.28521200	-1.00190400
С	-1.95759400	-4.61924800	-1.32027300
С	-3.56487500	-1.34776800	-0.53406500
С	-4.34446900	-0.53999900	-0.07649600
С	-5.12933800	0.47342300	0.61846400
С	-1.06440500	-0.38594900	-1.83552500
С	-0.61399900	0.54448000	-0.70212100
С	-0.90702800	1.93617800	-0.97710300
0	-1.77535200	2.45543900	-1.69190800
Ν	0.89410500	-0.47538300	0.98002700
С	0.83116000	0.49607700	-0.09250400
С	0.97308000	1.97802900	0.40398900
0	1.81026400	2.44536000	1.16495800
Ν	-0.03580200	2.73140500	-0.17323100
С	-0.30005400	4.11551600	0.22043400

Suppor	tina Info	rmation						
C	-0.11778700	5.07601000	-0.96481000		н	0.90295200	5.01367100	-1.36171200
С	-1.68490400	4.25043700	0.87232600		н	-1.78784100	5.23919500	1.34195100
С	1.85861600	0.26387200	-1.23798500		н	-2.47087400	4.12854000	0.12181900
С	3.62614900	-0.25246700	-3.39709100		н	-1.82519700	3.47057800	1.62689900
С	2.19312400	1.26484900	-2.16511400		н	4.30763100	-0.45032200	-4.22343300
С	2.43490800	-1.00281900	-1.42131400		н	1.76386400	2.25708100	-2.05974500
С	3.30343400	-1.25890700	-2.48429300		н	2.18748800	-1.78163700	-0.70961700
С	3.06214600	1.01370800	-3.22928000		н	3.73872900	-2.25165300	-2.59180400
С	2.02834600	-0.75880900	1.67082900		н	3.29730800	1.81436900	-3.92981600
С	4.31415200	-1.66316900	3.20319800		н	5.17534900	-2.00312500	3.77719100
С	3.33553500	-0.18639100	1.52008700		н	3.47053100	0.64985200	0.84669000
С	1.94134700	-1.79131900	2.66813300		н	0.96503000	-2.23510600	2.84326900
С	3.03920200	-2.22049400	3.39659400		н	2.90060900	-3.01126500	4.13698700
С	4.42623900	-0.63668900	2.25916300		н	5.39471000	-0.15823200	2.09625300
н	0.45591400	-2.52159900	-2.46268100		н	-1.97429400	0.08221700	-2.23191000
н	-3.81077900	-3.96420500	-0.43328700		С	-2.22261700	-0.14978500	2.37373800
н	-0.02580400	-4.93495200	-2.23682200		0	-2.05513500	0.82447700	1.50296800
н	-2.18460400	-5.67871300	-1.21281000		0	-1.31028600	-1.13409600	2.34998400
н	-4.98119100	1.45757400	0.15805000		н	-0.49814500	-0.87217000	1.76032100
н	-4.76264500	0.52452300	1.65475100		0	-3.16733900	-0.18799300	3.17066800
н	-6.20479600	0.24368600	0.61528100		Electror Hartree	nic Energy (SMD, s	olvent=DMF)) :	= -1646.374323
н	-0.33085300	-0.36477400	-2.65758200		Therma	I Correction to Free	e Energy = 0.44	13638 Hartree
н	-1.42476000	0.54662600	0.50821700		Imagina	ry Freq= -1168.03		
н	0.47036700	4.32404800	0.97065800					
н	-0.81968600	4.81461900	-1.76146100	-	INT7-B			
н	-0.30005600	6.11395800	-0.65154800					

С

0.10449000 -2.90150200 -2.22833300

Suppor	ting Info	rmation					
С	-2.31157600	-3.70839700	-1.14000000	С	1.79507800	-0.54990100	1.82165500
С	-0.11914300	-4.25495600	-1.96782500	С	3.65387300	-1.20147300	3.87798900
С	-0.85264900	-1.91920800	-1.94893400	C	3.08079300	0.03813600	1.86043000
С	-2.09289700	-2.34388000	-1.40508600	C	1.45071300	-1.44306900	2.87157600
С	-1.33453600	-4.66102700	-1.41561700	C	2.36628200	-1.75509500	3.86801800
С	-3.13147800	-1.39916100	-1.15309600	C	3.98522500	-0.29623200	2.86854900
С	-3.98645300	-0.56027600	-0.96929300	н	1.05360200	-2.58593500	-2.65584800
С	-4.89714200	0.53437800	-0.65889900	Н	-3.26285300	-4.00365300	-0.70602900
С	-0.57533800	-0.45693400	-2.28742800	Н	0.65652000	-4.98653400	-2.18970900
С	-0.34517600	0.52601200	-1.16699600	Н	-1.51952200	-5.71071600	-1.19420900
С	-1.07185000	1.71313400	-1.10486400	н	-4.53204200	1.44464900	-1.14882300
0	-2.08007000	2.13763100	-1.71991900	Н	-4.88534200	0.70434200	0.42541000
Ν	0.86497000	-0.36543400	0.81022500	н	-5.92879200	0.33277600	-0.98155300
С	0.89552400	0.61782900	-0.29132700	н	0.27301000	-0.46197000	-2.99564700
С	0.77612600	2.06582600	0.29839200	Н	-2.46283300	0.34593400	1.14777400
0	1.59593000	2.62616100	1.02657600	Н	-0.21197300	4.16728600	1.13403700
N	-0.40645900	2.58764500	-0.12194700	Н	-1.52560400	4.57104700	-1.59615200
С	-0.92112000	3.86607300	0.35460600	Н	-1.28846100	5.88262300	-0.40219300
С	-0.90386100	4.91918700	-0.76687300	Н	0.11819400	5.07572600	-1.13392600
С	-2.31772200	3.71272300	0.97622400	Н	-2.61458500	4.64801700	1.47265900
С	2.15178800	0.48157500	-1.16110000	Н	-3.04695100	3.47370900	0.19806900
С	4.34506300	0.19190500	-2.92875900	н	-2.33498700	2.90006800	1.70979600
С	2.61747500	1.56379800	-1.92519100	н	5.19120100	0.08231300	-3.60541300
С	2.80846000	-0.74942200	-1.30591000	н	2.12330300	2.52702500	-1.83654400
С	3.88931200	-0.89347700	-2.17964200	н	2.46285600	-1.59075800	-0.71524300
С	3.69869800	1.42474600	-2.79421900	н	4.38113000	-1.86132000	-2.26709300

Suppo	rtina Info	rmation					
H	4.03975400	2.28525500	-3.36827000	С	-2.17976600	-0.65986400	1.19125200
н	4.36656000	-1.45162600	4.66268000	С	-0.75915100	-0.21788900	1.39156200
н	3.34979600	0.78979000	1.13140800	С	0.06859700	-0.92988000	2.30741700
н	0.43938400	-1.84515900	2.88423200	0	-0.18408300	-1.88180700	3.05838100
н	2.06369100	-2.44152300	4.65882100	Ν	1.35960400	-0.29023500	2.31377500
н	4.96679300	0.17879100	2.86459600	С	2.46563000	-0.76037300	3.14469900
н	-1.44073600	-0.06315200	-2.83708400	С	2.69569500	0.18491500	4.33695100
С	-2.51205100	-0.77485400	2.69669800	С	3.74190400	-0.99575100	2.32674600
0	-2.97301800	0.37509800	1.97588700	С	1.34116300	0.83117200	1.53205400
0	-1.57169200	-1.39481300	2.11873200	0	2.23504600	1.67506600	1.46553000
н	-0.08434200	-0.67774900	1.05936800	С	0.00670300	0.82361300	0.78190900
0	-3.10012400	-0.99451300	3.76103400	Ν	0.76805900	0.19998600	-0.93059400
Electronic I Hartree	Energy (SMD, s	olvent=DMF))	= -1646.407916	С	1.66175600	1.03356700	-1.60194700
Thermal Co	orrection to Free	e Energy = 0.4₄	47052 Hartree	С	3.57659900	2.63077000	-2.95757500
Imaginary I	Freq= 0			С	3.05077900	0.80373100	-1.43989100
	·			С	1.26745600	2.07685100	-2.47582900
TS7-B				 С	2.21016500	2.85711500	-3.14326100
C	-1.44250500	-2.24764300	-0.65249300	С	3.98114600	1.59297500	-2.10727100
C	-3.99341100	-2.40731900	-1.74215200	С	-0.62387000	2.11341100	0.37009400

С	-1.44250500	-2.24764300	-0.65249300
С	-3.99341100	-2.40731900	-1.74215200
С	-1.66823200	-3.04191000	-1.77610800
С	-2.46533100	-1.50643800	-0.05112500
С	-3.76782500	-1.59688500	-0.60897900
С	-2.95142500	-3.12247700	-2.32480700
С	-4.87649800	-0.88180800	-0.04818900
С	-5.83518000	-0.28935500	0.40367000
С	-6.96319200	0.44142700	0.97217700

1.26745600	2.07685100	-2.47582900
2.21016500	2.85711500	-3.14326100
3.98114600	1.59297500	-2.10727100
-0.62387000	2.11341100	0.37009400
-1.90909000	4.54397700	-0.34499400
-1.82218200	2.12290300	-0.37512900
-0.07428300	3.36229300	0.71878000
-0.71121000	4.55419200	0.37044700
-2.45579300	3.31496200	-0.72215000
-0.43547300	-2.19123400	-0.25696900
-4.99819900	-2.45471400	-2.15687000

С

С

С

С

С

н

Н

Н	-0.81478400	-3.55919400	-2.20616300
н	-3.13989500	-3.73385000	-3.20559600
Н	-6.64159100	1.08008800	1.80537700
н	-7.73748500	-0.23571300	1.36054200
Н	-7.44519300	1.09384500	0.23025900
Н	-2.43063000	-1.27776000	2.06674000
н	2.10034600	-1.71889600	3.52845600
н	1.78198300	0.28360500	4.93586200
н	2.99014600	1.17749000	3.98105500
н	3.49248000	-0.20380900	4.98596100
н	3.56025100	-1.63988400	1.45666500
н	4.14397000	-0.04458000	1.96352200
н	4.50080800	-1.47029600	2.96558200
н	4.31383200	3.23934600	-3.47992000
н	3.36452500	-0.06170200	-0.86025400
н	0.20599400	2.26630200	-2.62341300
н	1.87355900	3.65008200	-3.81191800
н	5.04153600	1.37915100	-1.98108800
Н	-2.40201200	5.47601100	-0.61682000
н	-2.25707300	1.18514600	-0.70377400
н	0.86842800	3.37984100	1.25135000
н	-0.25682800	5.50171000	0.65678000
н	-3.38126000	3.27875700	-1.29424100
С	2.90610300	-3.32196400	-1.21762300
0	3.66595000	-2.50359200	-0.62952500
0	1.60983100	-2.81177200	-1.54827600

Н	1.59120400	-1.88604000	-1.23329200					
0	3.09679500	-4.49758400	-1.56982200					
Н	-2.88501900	0.18246400	1.20742000					
н	-0.13409900	0.24317200	-1.40725100					
Electron Hartree	Electronic Energy (SMD, solvent=DMF)) = -1646.389386 Hartree							
Thermal	Thermal Correction to Free Energy = 0.442011 Hartree							
Imaginary Freq= -250.33								

INT8-B

С	0.66575800	2.80935800	-0.89122500
С	-1.70153000	3.89487300	-1.85209000
С	0.57431000	4.18104100	-1.13433500
С	-0.41246100	1.94691800	-1.11424900
С	-1.62103200	2.51124200	-1.60837000
С	-0.61371400	4.73019500	-1.61638800
С	-2.76125300	1.68949700	-1.87245800
С	-3.71963600	0.97971200	-2.09292100
С	-4.85313000	0.08701000	-2.31339200
С	-0.35806000	0.45035200	-0.86254600
С	0.97060600	-0.16761800	-0.60088500
С	1.50747000	-1.14644600	-1.59947300
0	0.99841200	-1.51588900	-2.64627600
Ν	2.75669800	-1.57699000	-1.13455500
С	3.58759400	-2.55765600	-1.83514600
С	3.76471600	-3.83534700	-1.00269800
С	4.93035600	-1.94711500	-2.26088900

Suppor	ting Info	rmation					
С	3.04857100	-0.95498000	0.08174100	Н	4.30361500	-3.61951600	-0.07588200
0	4.07850900	-1.14063800	0.71934300	н	4.33159600	-4.58139700	-1.57299800
С	1.88463600	-0.06432200	0.41391600	н	4.77107100	-1.06190900	-2.88636500
Ν	-2.29724300	-0.08662200	1.46035100	Н	5.51466700	-1.65401200	-1.38423000
С	-3.05340300	-1.19510900	1.36557800	Н	5.50910800	-2.67642800	-2.84071200
С	-4.57445400	-3.64283700	1.19734000	н	-5.14516500	-4.56638700	1.13548700
С	-2.43711500	-2.49235100	1.41061100	н	-1.35495000	-2.52796300	1.51619700
С	-4.48547900	-1.21048700	1.23090000	н	-5.00807500	-0.25341900	1.20833800
С	-5.20994000	-2.39522100	1.15504900	н	-6.29616000	-2.34583600	1.06380000
С	-3.17505100	-3.66156500	1.32649200	н	-2.65332700	-4.61852100	1.36350000
С	1.85354000	0.72056900	1.65817100	н	1.79744000	2.83862400	4.93911800
С	1.81439200	2.24747400	4.02563800	н	-0.29640800	0.50321800	1.99721400
С	0.64277400	0.94324400	2.34447100	Н	3.98344300	1.07580400	1.68356700
С	3.04302100	1.26169900	2.18913600	Н	3.94797300	2.43427100	3.74649500
С	3.01989500	2.02075900	3.35701200	н	-0.30945500	1.85314500	4.03205400
С	0.63526700	1.70104200	3.51528100	н	-1.07081700	0.21109500	-0.01558700
н	1.59773800	2.39994500	-0.51826200	н	-2.90549100	0.73403400	1.37044700
н	-2.63568700	4.30001500	-2.23166500	Electronic E Hartree	Energy (SMD, s	olvent=DMF))	= -1381.767031
н	1.43552000	4.81754700	-0.94394400	Thermal Co	prrection to Free	e Energy = 0.4	18193 Hartree
н	-0.69372500	5.79782500	-1.80742900	Imaginary F	Freq= 0		
н	-4.93338000	-0.63389300	-1.49028100				
н	-4.74092500	-0.47759600	-3.24841500	TS8-B			
н	-5.79789400	0.64322400	-2.37332500	С	0.22295500	2.88442200	-1.01021400
н	-0.77917600	-0.05524800	-1.73900300	С	-2.33031200	3.71672600	-1.71437800
н	3.00592400	-2.79598400	-2.73167800	С	-0.03045000	4.23344400	-1.25487800
н	2.79110300	-4.26673300	-0.74717700	С	-0.78271500	1.90986000	-1.10201400

Suppo	rting Info	rmation					
С	-2.08852200	2.35264400	-1.46822200	С	3.21805300	1.72857600	1.57339200
С	-1.31266000	4.65929300	-1.60627900	С	3.34429800	2.64416100	2.61648500
С	-3.16845300	1.42475100	-1.60626900	С	1.00515700	2.38013900	3.13073600
С	-4.07801400	0.63058200	-1.72431900	н	1.22845400	2.57593400	-0.75081200
С	-5.13787400	-0.36748100	-1.83193200	н	-3.33550200	4.02080300	-1.99463900
С	-0.55705900	0.44998500	-0.85164400	Н	0.78157000	4.95252900	-1.17082000
С	0.78630000	-0.09454600	-0.66766300	Н	-1.51708900	5.71042700	-1.79595700
С	1.18107800	-1.26751400	-1.52858100	н	-4.96997700	-1.17989600	-1.11441600
0	0.53270100	-1.80753600	-2.41121200	Н	-5.17582000	-0.80793500	-2.83731200
N	2.47934700	-1.62920900	-1.16903100	Н	-6.12492100	0.06706300	-1.62494800
С	3.21254700	-2.73451200	-1.78563100	н	-1.06589700	-0.13711200	-1.62261900
С	3.52783600	-3.83538800	-0.76279000	н	2.51032600	-3.12993900	-2.52699800
С	4.47067400	-2.23434100	-2.51019400	Н	2.60775100	-4.19764800	-0.29203000
С	2.94177200	-0.78808900	-0.14316100	Н	4.19175300	-3.45478600	0.01833300
0	4.06047400	-0.88018200	0.35353100	Н	4.01672600	-4.68326200	-1.25853300
С	1.84402700	0.16404400	0.17971400	Н	4.20887700	-1.48251700	-3.26291000
N	-2.05226200	-0.05688400	1.42927200	Н	5.17000000	-1.78642800	-1.79885000
С	-2.51639300	-1.33099200	1.53453400	н	4.97090200	-3.06804900	-3.01834100
С	-3.39138000	-4.05360800	1.78013100	Н	-3.72044100	-5.08575800	1.87375100
С	-1.59503100	-2.41970100	1.61069300	Н	-0.53289200	-2.18827000	1.58558300
С	-3.90023800	-1.68410800	1.59151000	Н	-4.63898000	-0.88354500	1.55200000
С	-4.31702200	-3.00578600	1.71720600	н	-5.38448200	-3.22282300	1.76684800
С	-2.02687500	-3.73385300	1.72308000	Н	-1.28542900	-4.53092900	1.77350700
С	1.97498300	1.12861400	1.28405000	Н	2.33703400	3.69424100	4.21418000
С	2.23768300	2.97930800	3.39986300	н	-0.09635200	0.98023700	1.92442500
С	0.86678900	1.46366600	2.08913900	н	4.08445300	1.46182300	0.97951500

•	0 1 6			
Supp н	4.31334800	3.09701400	2.81737300	С
Н	0.13719900	2.61862500	3.74153100	0
н	-1.20997600	0.18028600	0.17630800	С
н	-2.84254400	0.58253500	1.31141500	Ν
Electror	nic Energy (SMD, s	solvent=DMF))	= -1381.760305	С
Therma	l Correction to Fre	e Energy = 0.4	16993 Hartree	С
magina	rry Freq = -497.81	o Energy 0.4		С
magine	ay 1 log - 407.01			С
				с
~	2 59504900	0.04065400	0.04661000	С
	2.58504800	2.24965400	-0.94661900	С
C	1.12561700	4.61682300	-0.95250100	С
С	3.23351300	3.46972800	-1.09152300	С
С	1.18045500	2.15751400	-0.78636900	С
С	0.44777900	3.39307400	-0.81180000	С
С	2.51019500	4.66749800	-1.08497600	С
С	-0.97888400	3.42905600	-0.71378700	н
С	-2.18908500	3.52443900	-0.65962900	н
С	-3.64475800	3.64580500	-0.63705000	н
С	0.47856200	0.90140500	-0.69269600	н
С	0.92089000	-0.38797300	-0.45688700	н
С	-0.06814600	-1.47123100	-0.82483100	
0	-1.26341700	-1.34514100	-1.12129200	п
N	0.60490500	-2.66189100	-0.79792700	н
С	-0.01587500	-3.95216200	-1.09216600	н
С	-0.11626100	-4.82843700	0.16595800	Н
				Н

C 0.71187200 -4.66646700 -2.24038000

1.9	94524800	-2.46879800	-0.29778100
2.	70380500	-3.43277500	-0.14449700
2.7	11593100	-1.05808400	-0.04029300
-2.8	84616900	0.19738800	0.85169600
-4.1	19912600	-0.06345200	0.85872500
-6.9	96497200	-0.68138800	0.94318700
-4.7	70639900	-1.21972400	0.22370100
-5.1	11332700	0.77389200	1.53467300
-6.4	47143400	0.46435200	1.57119700
-6.0	06405900	-1.51609500	0.27207000
3.2	24311300	-0.56344200	0.74391500
5.4	40669900	0.35372700	2.35614700
3.7	12479700	0.58117500	1.56768700
4.4	48938400	-1.23809400	0.76678900
5.5	54251300	-0.78612200	1.55657800
4.1	18448200	1.02872300	2.35413300
3.7	16060500	1.33447700	-0.98778000
0.8	53974200	5.53245100	-0.95887500
4.3	31433600	3.48515600	-1.21406600
3.0	01601800	5.62409800	-1.19106200
-4.1	12745800	2.67597000	-0.46801200
-4.0	02735800	4.04220900	-1.58734900
-3.9	98214300	4.32428300	0.15840800
-0.9	57670300	0.96041200	-0.94542600
-1.(02763700	-3.69169900	-1.42016700
-0.6	67830600	-4.30999900	0.95052400

Suppo	orting Information					
н	0.88185000 -5.0598430	0 0.54658600	С	-3.09540100	1.90647500	1.58421000
н	-0.63688900 -5.7665940	00 -0.06535200	С	-4.39309100	1.43297300	1.35651600
н	0.72698000 -4.0367730	00 -3.13705200	н	-5.55590800	-0.19008200	0.54258900
н	1.74271500 -4.8890490	00 -1.95392900	Н	-0.99547100	1.53944700	1.39476300
н	0.19899600 -5.6045210	00 -2.48826100	Н	-2.94313800	2.85902300	2.08765600
н	-8.02508000 -0.9189150	00 0.97437300	н	-5.25962500	2.01087300	1.66903700
н	-4.01212600 -1.8667730	00 -0.30625800	С	-3.69834700	-1.81397500	-0.33202400
н	-4.74197500 1.6627830	0 2.04111500	С	-3.92496300	-2.87483600	-0.87717000
н	-7.15111700 1.1299180	0 2.10045800	С	-4.15986800	-4.15512100	-1.53677100
н	-6.42596900 -2.4125450	00 -0.22804800	н	-4.69266300	-4.03186600	-2.48992800
н	6.23483100 0.7057050	0 2.96777000	н	-3.21209800	-4.66377900	-1.75405000
н	2.17652300 1.1066180	0 1.60305800	н	-4.76003600	-4.83192200	-0.91304900
н	4.60400600 -2.1335660	0 0.16848100	С	-0.98577600	-0.89812100	0.16358900
н	6.48561300 -1.3308430	0 1.54460500	н	-1.21015600	-1.95379600	0.03216500
н	4.04816000 1.9129590	0 2.97445500	С	0.36410200	-0.61212800	0.06662500
н	-2.28338400 -0.2855810	0 0.14975300	С	1.22379400	0.53135800	0.02144200
н	-2.55110400 1.1521390	0 1.00913700	С	1.26500700	-1.83048600	0.08986600
Electronic	Energy (SMD, solvent=DMF	.)) = -1381.806030	0	0.94595000	-3.01628600	0.06369900
Thermol	terrestion to Free Freezew - 0	420140 Llastra a	С	2.58980600	0.06631500	0.14170300
	orrection to Free Energy = 0	.420118 Hartree	0	3.66441200	0.68037600	0.18340300
Imaginary	Freq= 0		С	3.72434700	-2.24256700	0.26144300
			н	3.29464900	-3.25018100	0.27182100
IV-M			Ν	2.56049700	-1.36600900	0.18902100
С	-4.55880700 0.2026630	0 0.72661600	C	0.02566500	1 01167600	0 24455000
С	-3.45454700 -0.5609890	00 0.31067800	C	0.32300300	1.91107000	-0.04400800
С	-2.11606100 -0.0809100	00 0.52344400	С	-0.22871300	2.24914700	-1.09179100
С	-1.98977900 1.1699730	0 1.17862800	С	1.80518300	2.97654900	-0.02137700

0							
Suppor c	-0.49137200	3.56110900	-1.48117300	С	-4.89523100	-1.10153300	0.36991200
н	-0.91084900	1.46012900	-1.38830900	Н	-4.15655400	0.15605300	1.94542300
С	1.53619900	4.28394100	-0.41491300	Н	-2.96098700	-2.96666600	-1.72610900
н	2.71188100	2.74877800	0.52526400	Н	-5.34095200	-2.54046600	-1.20174000
С	0.38407300	4.59569200	-1.14520000	н	-5.94140000	-0.88471300	0.57949700
н	-1.39104500	3.77280000	-2.05693700	С	-1.53484600	-0.38994100	1.81537300
н	2.23619100	5.07339100	-0.14356200	С	-0.30837600	-0.07826400	1.93632900
н	0.17544000	5.62068300	-1.44522600	С	0.76157300	-0.03465300	2.96687500
С	4.50901200	-2.02213900	1.56373600	Н	1.27395200	0.93494000	2.99099200
н	4.89828100	-1.00148000	1.60111000	Н	0.33982100	-0.23508900	3.95888400
н	3.86105900	-2.18019700	2.43322700	Н	1.53478800	-0.78982000	2.76697700
н	5.34793300	-2.72740200	1.62789300	С	-0.83378000	-1.76630400	-0.71632800
С	4.61740500	-2.09838900	-0.98097400	Н	-0.65106200	-2.65097200	-1.32827600
н	5.45617500	-2.80538300	-0.93363400	С	0.28787200	-0.98712400	-0.51370200
н	4.04385500	-2.30796600	-1.89084400	С	0.50542500	0.31181500	0.12838300
н	5.01194300	-1.08099000	-1.04522500	С	1.60563500	-1.57384100	-0.84256900
Electronic E Hartree	nergy (SMD, s	olvent=DMF))	= -1094.105177	0	1.87660600	-2.62828200	-1.40958200
Thermal Co	rrection to Free	e Energy = 0.3	12919 Hartree	С	1.99077500	0.45326100	0.21435700
Imaginary F	req= 0			0	2.66080100	1.37068300	0.69091500
				С	4.01285100	-0.97422400	-0.42113200
TS-A1				H	4.05875900	-1.95526900	-0.90582600
С	-3.90321400	-0.50697200	1.12091400	Ν	2.58102200	-0.69710400	-0.33877700
С	-2.52240100	-0.77723400	0.89218700	С	-0.23258500	1.55256800	-0.26183100
С	-2.17732200	-1.60206000	-0.24514200	С	-1.28510900	1.51840800	-1.19392500
С	-3.22879600	-2.27721900	-0.92532700	С	0.10964200	2.81178300	0.27764600
-				С	-1.96656700	2.67889900	-1.56522300

C -4.55739800 -2.03231800 -0.64305900

Suppo	orting Info	rmation						
Н	-1.56754400	0.57209000	-1.63903300	ŀ	4	-4.90575000	-2.23558500	0.49233400
С	-0.56704300	3.96836200	-0.10070600	ŀ	ł	-1.46503900	-0.26408900	-2.52300400
н	0.92974100	2.87299900	0.98217300	ŀ	4	-3.86596100	-0.18704900	-3.15628900
С	-1.61609400	3.91483600	-1.02331600	H	4	-5.58400700	-1.18042800	-1.66286300
н	-2.77872900	2.60900700	-2.28671200	C	C	-2.24547400	-2.38785100	1.43258700
н	-0.27299700	4.92252100	0.33416400	C	C	-0.97242900	-2.27245200	1.58192600
н	-2.14977800	4.81885800	-1.31015700	C	C	0.18787700	-2.54677300	2.45694900
С	4.64683800	-1.07731600	0.97397800	ŀ	4	0.61534200	-1.61950000	2.86296800
н	4.56787800	-0.12269400	1.50087200	ŀ	4	-0.11726500	-3.17796000	3.30124500
н	4.14342000	-1.84738700	1.56917200	ŀ	4	0.99096700	-3.05359800	1.90850600
н	5.70705700	-1.34837100	0.89007900	C	C	-0.42544500	-1.50458900	-0.20648600
С	4.73414000	0.05046000	-1.31026500	C	C	0.58919800	-0.52671800	-0.15144300
н	5.79456300	-0.21415200	-1.41218600	C	C	0.65882400	0.87581100	-0.01836800
н	4.28848200	0.06988200	-2.31091700	C	C	2.00703600	-1.03671100	-0.26074600
н	4.65921100	1.05142800	-0.87708700	C	C	2.37943400	-2.20647400	-0.35652400
Electronic Hartree	Energy (SMD, s	olvent=DMF))	= -1094.066202	C	C	2.05766200	1.26443000	-0.11574900
Thermal C	correction to Free	e Energy = 0.3	16717 Hartree	C	C	2.60359000	2.36912700	-0.09314100
Imaginary	Freq= -395.13			C	5	4.28771800	0.06673400	-0.35370600
	·			ŀ	4	4.54835400	1.12966200	-0.31571000
TS-B1				١	N	2.83239000	0.06467800	-0.25580500
0	-4 15727600	-1 81172000	-0 17283800	C	C	-0.40110100	1.84664000	0.25722900
C C	-2 80982000	-1 853/5900	0.20250500	C	C	-1.57532700	1.47407300	0.94772300
0	-2.00902000	4 20066500	0.20230300	C	C	-0.27419000	3.20413700	-0.11778100
C	-1.82305700	-1.29900500	-0.07050800	C	C	-2.57615100	2.40232400	1.22543300
C	-2.21318300	-0.70296200	-1.86/1/100	ŀ	4	-1.69102300	0.45181600	1.28965600
С	-3.56796400	-0.65905800	-2.22217500	(5	-1.27691300	4.12770400	0.16740400
С	-4.53298100	-1.21681600	-1.38109400					

S	upporting Info	rmation						
н	0.63033000	3.52305600	-0.62161100	ł	4	-3.24616700	-2.40603400	-2.22578900
С	-2.44063400	3.73676600	0.83534600	H	4	-5.38702100	-2.29622400	-0.97269200
н	-3.46819300	2.07572900	1.75616100	H	4	-5.41259600	-1.30522300	1.32596400
н	-1.14828700	5.16460100	-0.13981000	(C	-0.84827300	-0.52966600	1.35858300
Н	-3.22505700	4.45943400	1.05116800	(0	-0.62288800	-0.60904200	2.62625700
С	4.75850700	-0.51653200	-1.69460600	(0	0.51561600	-0.42954500	3.55846800
Н	4.45714600	-1.56429700	-1.78266100	ł	4	0.20032400	0.04684900	4.49980500
Н	4.32244500	0.04205800	-2.53017400	ł	4	0.91752700	-1.41425000	3.84551600
Н	5.85143700	-0.45593800	-1.77452400	ł	4	1.34982800	0.15600200	3.14619900
С	4.92994200	-0.64885600	0.84429500	(C	-0.81899300	-1.60190100	-1.38641400
Н	6.02417800	-0.59071900	0.78243700	ł	4	-0.71934600	-2.36215000	-2.15921700
Н	4.61456300	-0.18209400	1.78388600	(C	0.27699100	-0.89089600	-1.00875900
Н	4.63479600	-1.70196900	0.86338700	(0	0.29445300	0.18902700	-0.00613700
Н	-0.01881800	-2.47382900	-0.50914500	(0	1.65433300	-1.31538500	-1.31891900
Ele Ha	ectronic Energy (SMD, and the sector of the	solvent=DMF))	= -1094.058261	(C	2.06103400	-2.14908900	-2.12184500
Th	ermal Correction to Fre	e Energy = 0.3	14831 Hartree	(C	1.74672100	0.33053900	0.33329700
Im	aginary Freq= -397.46			(C	2.30431100	1.11435200	1.09946600
				(C	3.93146800	-0.77106400	-0.41371700
тя	-C1				4	4.10781500	-1.58097300	-1.12961900
С	-3.29909300	-0.91189100	1.33978300	1	N	2.47974200	-0.59286000	-0.44553400
C	-2.07432700	-0.93907400	0.64624800	(C	-0.37444400	1.50362900	-0.29644800
C	-2 07351900	-1 46828700	-0 68090800	(0	-1.14884700	1.71430900	-1.45146800
C	-3 27542300	-1.96990300	-1 22805200	(0	-0.24956700	2.58216300	0.60426400
C.	-4 46980400	-1.91833800	-0.52490300	(C	-1.76136600	2.94276600	-1.70158800
C C	-4 48059100	-1.37081500	0.76741300	ł	4	-1.26530800	0.90566700	-2.16492400
0	4.40000100		5.1 51 - 1000	(C	-0.85293900	3.81070300	0.34645300

Н

-3.27778800 -0.52496200 2.35409700

Suppor	rting Info	rmation					
н	0.34054600	2.44549200	1.50200800	Н	3.12374500	2.58255200	-2.20900600
С	-1.61797000	4.00444000	-0.80727300	н	4.28639800	0.55438200	-2.86477100
н	-2.35370600	3.06754400	-2.60665400	С	3.50347600	-1.96216300	0.49066000
н	-0.73067800	4.62353100	1.06062200	С	3.59594600	-2.94267000	1.19875700
н	-2.09770900	4.96179300	-1.00083000	С	3.66849500	-4.12286900	2.05371500
С	4.41139900	-1.21989300	0.97369200	н	4.12214600	-3.89148100	3.02711500
н	4.21112600	-0.44559700	1.71852000	н	2.66770300	-4.52980700	2.24538600
н	3.89859800	-2.13811900	1.28007600	н	4.26738400	-4.92124300	1.59505900
н	5.49025800	-1.41967300	0.95197100	С	0.88259400	-0.96840400	-0.26003300
С	4.66289700	0.48801000	-0.90372500	Н	1.05038200	-2.04168900	-0.20954200
н	5.74541300	0.30918200	-0.93480300	С	-0.44506000	-0.61815000	-0.12172100
н	4.33142700	0.75588800	-1.91306200	С	-1.23505600	0.57616000	-0.00910800
н	4.46150900	1.32985700	-0.23629700	С	-1.41636100	-1.77420700	-0.19434500
Electronic E Hartree	Energy (SMD, s	olvent=DMF))	= -1094.048578	0	-1.17294800	-2.97875100	-0.23371700
Thermal Co	prrection to Free	e Energy = 0.3	14041 Hartree	С	-2.62559600	0.20240400	-0.13584400
Imaginary F	- req= -352.20			0	-3.66381300	0.87980900	-0.13692600
				С	-3.89778100	-2.02630800	-0.35359900
IV-M+H ₂				- Н	-3.53081100	-3.05667500	-0.41579600
С	4.51334400	-0.29026400	-0.91386200	Ν	-2.68273800	-1.22673400	-0.25155200
С	3.39625900	-0.80396200	-0.34594700	С	-0.84147700	1.91171500	0.40960400
С	2.05184700	-0.17942400	-0.58156800	С	0.35354600	2.14033300	1.13749900
С	2.03629700	1.06952200	-1.13092700	С	-1.65376900	3.04809100	0.15368800
С	3.30025500	1.83881600	-1.42151400	С	0.71766700	3.41749900	1.56467100
С	4.44712400	0.90355700	-1.82875200	н	0.97550700	1.29309300	1.39972400
н	5.47263000	-0.77443500	-0.74475400	С	-1.28203500	4.31726700	0.58310600

Н

1.08855900 1.54517600 -1.34730900

H -2.58901200 2.90316200 -0.37315100

0	authors hafe.						
c c	-0.08893200	4.52208900	1.28807200	н	-2.91232500	-3.01257300	-1.60112900
н	1.64156500	3.54446400	2.12776100	н	-5.25479500	-2.32928100	-1.26327900
н	-1.93180800	5.16325500	0.36114000	н	-4.71906400	0.03167200	-0.84245600
н	0.19930900	5.51874500	1.61676100	С	-1.46775000	-0.44883500	1.96094600
С	-4.67730700	-1.69673700	-1.63602900	С	-0.22903600	-0.09764200	1.94064800
н	-5.00072000	-0.65276200	-1.62155700	С	0.81979100	0.07748800	2.99254100
н	-4.04702400	-1.85422800	-2.51858100	н	1.27100000	1.07764000	2.97740400
н	-5.55988100	-2.34396100	-1.72426900	н	0.37167000	-0.09167300	3.97776600
С	-4.77204700	-1.88725800	0.90288600	н	1.64929000	-0.63486500	2.86702800
н	-5.65396300	-2.53756400	0.83041900	С	-0.77732100	-1.80820700	-0.65993500
н	-4.20636200	-2.17554200	1.79606500	н	-0.59843200	-2.71558100	-1.23798900
н	-5.10096100	-0.85131500	1.01911800	С	0.31907000	-1.02963000	-0.47248900
н	5.40521900	1.44083900	-1.83212800	С	0.52538400	0.26307000	0.22904000
н	3.60467100	2.41348800	-0.52812900	С	1.64586300	-1.58765900	-0.85018700
Electron Hartree	ic Energy (SMD, s	olvent=DMF))	= -1095.276739	0	1.90896200	-2.62471600	-1.45201400
Thermal	Correction to Free	e Enerav = 0.33	34378 Hartree	С	2.00727900	0.42682200	0.25577000
Imagina	rv Frea= 0	5,		0	2.68601600	1.35193000	0.70373000
5	5			С	4.03936200	-0.95940600	-0.45932200
TS-A2				н	4.09607100	-1.93756300	-0.94850700
c	-3 75820600	-0 28857900	1 07754300	Ν	2.60252200	-0.71534700	-0.33555600
C	-2 46953800	-0 72872200	0 97344200	С	-0.19077900	1.50421400	-0.22976100
C	-2 14688200	-1 61296100	-0 19871000	С	-1.14258100	1.47755000	-1.26408200
C C	-3 14884800	-2 29493300	-0 81541500	С	0.08902400	2.75665800	0.35593900
C	-4 58772300	-2 08421300	-0 42546100	С	-1.78699300	2.63958700	-1.69144800
C	-4.79338900	-0.63620000	0.03857000	н	-1.37941100	0.53483200	-1.74431400
н	-4.02605000	0.36538000	1.90396400	С	-0.55001900	3.91611000	-0.07661500

Suppo	rtina Info	rmation					
н	0.83193500	2.81326400	1.14172900	Н	-4.86775200	-2.40071800	0.52944500
С	-1.49773200	3.87062800	-1.10282600	н	-1.46073700	0.00768300	-2.30492100
н	-2.51937800	2.57662100	-2.49459200	н	-3.97116300	0.64654000	-1.44035300
н	-0.30717900	4.86567300	0.39783600	н	-4.44778900	-2.28043700	-2.21253700
н	-2.00150900	4.77663500	-1.43379800	С	-2.23392100	-2.30251700	1.52286300
С	4.71109600	-1.04972300	0.91836400	С	-0.95806000	-2.18172900	1.63711400
н	4.62557800	-0.09732900	1.44770400	С	0.21099800	-2.41466000	2.51201200
н	4.23988300	-1.83018500	1.52606600	н	0.68526100	-1.46819200	2.80603000
н	5.77388600	-1.29862300	0.80462900	н	-0.09554100	-2.94217400	3.42396900
С	4.70920900	0.08551500	-1.36478300	н	0.97982700	-3.00787200	2.00082900
н	5.77287000	-0.15196900	-1.49512100	С	-0.41136600	-1.49805600	-0.17695000
н	4.23716600	0.09494000	-2.35346500	С	0.62544800	-0.54063600	-0.14161900
н	4.61889100	1.08265800	-0.92632500	С	0.72733700	0.86131400	-0.01231900
н	-5.80776000	-0.50640100	0.43935400	С	2.03013000	-1.08000900	-0.27190400
н	-4.85548900	-2.76914200	0.40203000	0	2.37808900	-2.25689800	-0.37063200
Electronic I Hartree	Energy (SMD, s	olvent=DMF))	= -1095.230418	С	2.13361500	1.21926400	-0.13062800
Thermal C	orrection to Free	e Energy = 0.3	37909 Hartree	0	2.70346000	2.31230700	-0.11662000
Imaginary	Freg= -342.95			С	4.33302400	-0.02569600	-0.39689500
0 ,	·			н	4.61746900	1.03128100	-0.36398500
TS-B2				N	2.87954400	0.00410600	-0.27944900
c	-4 12578000	-1 93267700	-0 11368400	С	-0.30485100	1.86140700	0.26681800
C	-2 83742900	-1 85475300	0.28082900	С	-1.48502200	1.52805300	0.96844200
C C	1 807/1100	1 23302000	0.62421000	С	-0.14608600	3.21168500	-0.12244000
с С	-2 10214400	-1.20092000	-1 68674700	С	-2.46061200	2.48488400	1.24066700
C	-2.18214400	-0.0000000	1 06240000	н	-1.62554700	0.51354200	1.32383500
0	-3.00138300	-0.27044200	- 1.903 10000	С	-1.12395600	4.16393200	0.15595000
C	-4.53493500	-1.45005000	-1.48684400				

0	0.1.0	0					
н	0.76344400	3.50234900	-0.63409300	С	-4.55051800	-0.77147900	0.53823100
С	-2.29432700	3.81107700	0.83302400	н	-3.22791700	0.00688800	2.19116300
н	-3.35550400	2.18778200	1.78410700	н	-3.17907900	-2.68636400	-2.02465600
н	-0.97006200	5.19346300	-0.16415600	н	-5.35797700	-2.13435400	-0.96099800
н	-3.05890500	4.55601700	1.04439300	н	-4.81264200	0.07832300	-0.11797700
С	4.77293500	-0.62083200	-1.74307800	С	-0.76796200	-0.51798800	1.36332200
н	4.44702700	-1.66166700	-1.82541700	С	-0.54948900	-0.64095300	2.64091200
н	4.33825800	-0.05367800	-2.57359900	С	0.61100900	-0.39365000	3.53915500
н	5.86580900	-0.58469300	-1.83763000	н	0.69205200	-1.17808600	4.30994500
С	4.97560400	-0.75380800	0.79339800	н	1.59404000	-0.31521300	3.04833300
н	6.06995200	-0.71990300	0.71673100	н	0.46468400	0.54711400	4.09440900
н	4.68331300	-0.27902200	1.73644600	С	-0.80050800	-1.66251900	-1.34430200
н	4.65742300	-1.80005600	0.81802100	н	-0.69978800	-2.43141900	-2.10822300
н	-0.03009400	-2.47391200	-0.48746900	С	0.29420800	-0.95576300	-0.95939600
н	-5.59303100	-1.15406800	-1.49706700	С	0.29486100	0.11331400	0.06201800
н	-3.83168900	-0.09198800	-3.03260800	С	1.67372500	-1.35914500	-1.27923800
Electronic E Hartree	energy (SMD, s	olvent=DMF))	= -1095.232371	0	2.08510600	-2.17759400	-2.09446900
Thermal Co	rrection to Free	e Energy = 0.33	36750 Hartree	С	1.76555800	0.27838800	0.38066600
Imaginary F	reg= -389.51			0	2.30965200	1.08687000	1.12342500
0 1				С	3.95612200	-0.77251300	-0.41129700
TS-C2				н	4.13492800	-1.58230100	-1.12657900
c	-3 23604900	-0 49092000	1 22529500	Ν	2.49943700	-0.62888000	-0.41063100
C	-2.05241900	-0.80604700	0.65912600	С	-0.31740900	1.45309000	-0.29612100
С	-2.06388300	-1.49907300	-0.66210000	С	-0.93040900	1.69915100	-1.53564300
С	-3.20629000	-2.09020300	-1.11299400	С	-0.27592300	2.51055000	0.63371700
С	-4.47654000	-2.05166300	-0.30922100	С	-1.47711300	2.94701800	-1.83778900

-4.47654000 -2.05166300 -0.30922100

Н	-0.97872700	0.90210500	-2.27048400					
С	-0.81357800	3.75863500	0.32639200					
н	0.18956700	2.33987400	1.59667400					
С	-1.42130400	3.98946000	-0.91073300					
Н	-1.94609300	3.10329700	-2.80789800					
Н	-0.76332700	4.55716500	1.06476200					
Н	-1.84718200	4.96289700	-1.14566300					
С	4.47820600	-1.20098200	0.96696300					
Н	4.28343100	-0.42507600	1.71167800					
Н	3.99057100	-2.12577900	1.29363600					
Н	5.55963800	-1.38077200	0.91876500					
С	4.64480500	0.50083900	-0.92570000					
Н	5.73016900	0.34748900	-0.98124000					
н	4.28351200	0.75451000	-1.92842700					
н	4.43973300	1.34201800	-0.25854400					
Н	-5.36459000	-0.85086600	1.27136100					
Н	-4.51372800	-2.92877300	0.36516700					
Electronic Energy (SMD, solvent=DMF)) = -1095.224061 Hartree								

Thermal Correction to Free Energy = 0.335455 Hartree

Imaginary Freq= -206.45

HCO3⁻

С	-1.11223735	0.46764527	0.00000000
0	0.11803165	0.46764527	0.00000000
0	-1.74159535	1.66985927	0.00000000
н	-1.09478735	2.39429027	-0.00003600

O -2.03282363 -0.62662202 0.00006222

Electronic Energy (SMD, solvent=DMF)) = -264.642933 Hartree

Thermal Correction to Free Energy = 0.000448 Hartree

Imaginary Freq= 0

8. ¹H-NMR and ¹³C-NMR of unknown compounds

S62

Supporting Information CDC13 34 3 2222223333 0.92 0.91 0.90 0.88 0.88 8 12 13 2 2 S2b 3.26 4 33 ц. 2.0 1.5 1.0 f1 (ppm) 11.94 4 13.0 12.5 12.0 11.5 11.0 f1 (ppm) F96.0 1.084 1.094 2.344 1.00-[2.10 2.16 2.13 2.51 3.38-0.41-13.5 13.0 12.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0. f1 (ppm)

S64

Figure S8. ¹H NMR (E)-3-(2-((4-methoxyphenyl)ethynyl)phenyl)acrylic acid (S2c).

Figure S9. ¹³C NMR (*E*)-3-(2-((4-methoxyphenyl)ethynyl)phenyl)acrylic acid (S2c).

Figure S10. ¹H NMR (*E*)-3-(5-methoxy-2-(phenylethynyl)phenyl)acrylic acid (S2d).

Figure S14. ¹H NMR (E)-3-(2-((trimethylsilyl)ethynyl)phenyl)acrylic acid (S2f).

Figure S16. ¹H NMR (*E*)-N-(2-(cyclohexylamino)-2-oxo-1-phenylethyl)-N-phenyl-3-(2-(phenylethynyl)phenyl)acrylamide (1aa)

1g

Figure S34. ¹H NMR (E)-N-(1-(4-chlorophenyl)-2-(cyclohexylamino)-2-oxoethyl)-N-phenyl-3-(2-(phenylethynyl)phenyl)acrylamide (1h).

Figure S35. ¹³C NMR (E)-N-(1-(4-chlorophenyl)-2-(cyclohexylamino)-2-oxoethyl)-N-phenyl-3-(2-(phenylethynyl)phenyl)acrylamide (1h).

S93

Figure S37. ¹³C NMR (E)-N-(2-(cyclohexylamino)-2-oxo-1-(pyridin-4-yl)ethyl)-N-phenyl-3-(2-(phenylethynyl)phenyl)acrylamide (1i).

Figure S38. ¹H NMR (E)-N-(2-(cyclohexylamino)-2-oxo-1-phenylethyl)-3-(2-(hept-1-yn-1-yl)phenyl)-N-phenylacrylamide (1j).

Figure S39. ¹³C NMR (E)-N-(2-(cyclohexylamino)-2-oxo-1-phenylethyl)-3-(2-(hept-1-yn-1-yl)phenyl)-N-phenylacrylamide (1j).

Figure S42. ¹H NMR (E)-N-(2-(cyclohexylamino)-2-oxo-1-phenylethyl)-3-(2-((4-methoxyphenyl)ethynyl)phenyl)-N-phenylacrylamide (11).

Figure S43. ¹³C NMR (E)-N-(2-(cyclohexylamino)-2-oxo-1-phenylethyl)-3-(2-((4-methoxyphenyl)pthynyl)pthynyl)phenyl)-N-phenylacrylamide (11).

Supporting Information CDCI3 80.08 1m 曲曲

Г

Figure S44. ¹H NMR (E)-N-(2-(cyclohexylamino)-1-(4-methoxyphenyl)-2-oxoethyl)-3-(5-methoxy-2-(phenylethynyl)phenyl)-N-phenylacrylamide (1m).

Figure S45. ¹³C NMR (E)-N-(2-(cyclohexylamino)-1-(4-methoxyphenyl)-2-oxoethyl)-3-(5-methoxy-2-(phenylethynyl)phenyl)-N-phenylacrylamide (1m).

Figure S46. ¹H NMR (E)-N-(2-(cyclohexylamino)-2-oxo-1-phenylethyl)-3-(5-methoxy-2-(phenylethynyl)phenyl)-N-phenylacrylamide (1n).

Figure S47. ¹³C NMR (E)-N-(2-(cyclohexylamino)-2-oxo-1-phenylethyl)-3-(5-methoxy-2-(phenylethynyl)phenyl)-N-phenylacrylamide (1n).

Supporting Information (172)

7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 f1 (ppm)

Figure S48. ¹H NMR (E)-3-(4-Chloro-2-(phenylethynyl)phenyl)-N-(2-(cyclohexylamino)-2-oxo-1-phenylethyl)-N-phenylacrylamide (10).

Figure S49. ¹³C NMR (E)-3-(4-Chloro-2-(phenylethynyl)phenyl)-N-(2-(cyclohexylamino)-2-oxo-1-phenylethyl)-N-phenylacrylamide (10).

1р

Figure S50. ¹H NMR (E)-N-(2-(cyclohexylamino)-2-oxo-1-phenylethyl)-3-(5-nitro-2-(phenylethynyl)phenyl)-N-phenylacrylamide (1p).

Figure S51. ¹³C NMR (E)-N-(2-(cyclohexylamino)-2-oxo-1-phenylethyl)-3-(5-nitro-2-(phenylethynyl)phenyl)-N-phenylacrylamide (1p).
Supporting Information CDCl3 ОДН 226 182 615 583 757 918 902 Ξ 94 36 18 18 736 \cap Ph Ρh ö

Figure S52. ¹H NMR (E)-N-(2-(Cyclohexylamino)-2-oxo-1-phenylethyl)-3-(2-((4-nitrophenyl)ethynyl)phenyl)-N-phenylacrylamide (1q).

Figure S53. ¹³C NMR (E)-N-(2-(Cyclohexylamino)-2-oxo-1-phenylethyl)-3-(2-((4-nitrophenyl)ethynyl)phenyl)-N-phenylacrylamide (1q).

Figure S54. ¹H NMR (E)-N-(2-(tert-butylamino)-2-oxo-1-phenylethyl)-N-phenyl-3-(2-(phenylethynyl)phenyl)acrylamide (1r).

Figure S55. ¹³C NMR (E)-N-(2-(tert-butylamino)-2-oxo-1-phenylethyl)-N-phenyl-3-(2-(phenylethynyl)phenyl)acrylamide (1r).

Figure S56. ¹H NMR (E)-N-(2-(tert-butylamino)-1-(4-methoxyphenyl)-2-oxoethyl)-N-phenyl-3-(2-(phenylethynyl)phenyl)acrylamide (1s).

Figure S57. ¹³C NMR (E)-N-(2-(tert-butylamino)-1-(4-methoxyphenyl)-2-oxoethyl)-N-phenyl-3-(2-(phenylethynyl)phenyl)acrylamide (1s).

Figure S58. ¹H NMR (E)-N-(2-(tert-butylamino)-2-oxo-1-(4-(trifluoromethyl)phenyl)ethyl)-N-phenyl-3-(2-(phenylethynyl)phenyl)acrylamide (1t).

Figure S59. ¹³C NMR (E)-N-(2-(tert-Butylamino)-2-oxo-1-(4-(trifluoromethyl)phenyl)ethyl)-N-phenyl-3-(2-(phenylethynyl)phenyl)acrylamide (1t).

Figure S60. ¹H NMR Ethyl (E)-(2-(N-phenyl-3-(2-(phenylethynyl)phenyl)acrylamido)-2-(p-tolyl)acetyl)glycinate (1u).

Figure S61. ¹³C NMR Ethyl (E)-(2-(N-phenyl-3-(2-(phenylethynyl)phenyl)acrylamido)-2-(p-tolyl)acetyl)glycinate (1u).

1v

Figure S62. ¹H NMR (E)-N-cyclohexyl-3,3-dimethyl-2-(N-phenyl-3-(2-(phenylethynyl)phenyl)acrylamido)butanamide (1v).

Figure S63. ¹³C NMR (E)-N-cyclohexyl-3,3-dimethyl-2-(N-phenyl-3-(2-(phenylethynyl)phenyl)acrylamido)butanamide (1v).

4.5 f1 (ppm)

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

8.5

8.0

7.5

6.5

7.0

5.5

5.0

6.0

Т

0.0

Figure S65. ¹³C NMR N-(2-(cyclohexylamino)-2-oxo-1-phenylethyl)-N-phenylcinnamamide (1w).

Figure S66. ¹H NMR 2-cyclohexyl-10,10a-diphenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2a).

Figure S67. ¹³C NMR 2-cyclohexyl-10,10a-diphenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2a).

Figure S68. DQF-COSY 2-cyclohexyl-10,10a-diphenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2a).

Figure S69. edHSQC 2-cyclohexyl-10,10a-diphenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2a).

Figure S70. HMBC 2-cyclohexyl-10,10a-diphenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2a).

Figure S71. NOESY 2-cyclohexyl-10,10a-diphenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2a).

Figure S72. 1H NMR 2-cyclohexyl-10a-isopropyl-10-phenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2b).

Figure S73. ¹³C NMR 2-cyclohexyl-10a-isopropyl-10-phenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2b).

Figure S74. ¹H NMR 2-cyclohexyl-10-phenyl-10a-(p-tolyl)benzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2c).

Figure S75. ¹³C NMR 2-cyclohexyl-10-phenyl-10a-(p-tolyl)benzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2c).

Figure S76. ¹H NMR 2-cyclohexyl-10a-(4-isopropylphenyl)-10-phenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2d).

Figure S77. ¹³C NMR 2-cyclohexyl-10a-(4-isopropylphenyl)-10-phenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2d).

Figure S78. ¹H NMR 2-cyclohexyl-10a-(3-methoxyphenyl)-10-phenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2e).

Figure S79. ¹³C NMR 2-cyclohexyl-10a-(3-methoxyphenyl)-10-phenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2e).

Figure S80. ¹H NMR 2-cyclohexyl-10a-(3-nitrophenyl)-10-phenylbenzo[4,5]cyclohepta[1,2-c]pytrole-1,3(2H,10aH)-dione (2f).

Figure S81. ¹³C NMR 2-cyclohexyl-10a-(3-nitrophenyl)-10-phenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2f).

Figure S82. ¹H NMR 10a-(2-bromophenyl)-2-cyclohexyl-10-phenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2g).

Figure S83. ¹³C NMR 10a-(2-bromophenyl)-2-cyclohexyl-10-phenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2g).

Figure S84. ¹H NMR 10a-(4-chlorophenyl)-2-cyclohexyl-10-phenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2h).

Figure S85. ¹³C NMR 10a-(4-chlorophenyl)-2-cyclohexyl-10-phenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2h).

Figure S86. ¹H NMR 2-cyclohexyl-10-phenyl-10a-(pyridin-4-yl)benzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2i).

Figure S87. ¹³C NMR 2-cyclohexyl-10-phenyl-10a-(pyridin-4-yl)benzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2i).

2j

Figure S88. ¹H NMR 2-cyclohexyl-10-pentyl-10a-phenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2j).

Figure S89. ¹³C NMR 2-cyclohexyl-10-pentyl-10a-phenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2j).

Figure S90. ¹H NMR 2-cyclohexyl-10a-phenyl-10-(trimethylsilyl)benzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2k).

 $\int_{25.07}^{29.12} 28.67$

Figure S91. ¹³C NMR 2-cyclohexyl-10a-phenyl-10-(trimethylsilyl)benzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2k).

Figure S92. ¹H NMR 2-cyclohexyl-10-(4-methoxyphenyl)-10a-phenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2l).

Figure S93. ¹³C NMR 2-cyclohexyl-10-(4-methoxyphenyl)-10a-phenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2l).

Figure S94. ¹H NMR 2-cyclohexyl-6-methoxy-10a-(4-methoxyphenyl)-10-phenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2m).

Figure S95. ¹³C NMR 2-cyclohexyl-6-methoxy-10a-(4-methoxyphenyl)-10-phenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2m).

Figure S96. ¹H NMR 2-cyclohexyl-6-methoxy-10,10a-diphenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2n).

Figure S97. ¹³C NMR 2-cyclohexyl-6-methoxy-10,10a-diphenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2n).

Figure S98. ¹H NMR 7-Chloro-2-cyclohexyl-10,10a-diphenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2o).

Figure S100. ¹H NMR 2-(*tert*-butyl)-10,10a-diphenylbenzo[4,5]cyclohepta[1,2-*c*]pyrrole-1,3(2*H*,10a*H*)-dione (2r).

Figure S101. ¹³C NMR 2-(tert-butyl)-10,10a-diphenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2r).

Figure S02. ¹H NMR 2-(tert-butyl)-10a-(4-methoxyphenyl)-10-phenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2s).

Figure S103. ¹³C NMR 2-(tert-butyl)-10a-(4-methoxyphenyl)-10-phenylbenzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2s).

---- 0.08

Figure S104. ¹H NMR 2-(tert-butyl)-10-phenyl-10a-(4-(trifluoromethyl)phenyl)benzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2t).

Figure S105. ¹³C NMR 2-(tert-butyl)-10-phenyl-10a-(4-(trifluoromethyl)phenyl)benzo[4,5]cyclohepta[1,2-c]pyrrole-1,3(2H,10aH)-dione (2t).

Figure S106. ¹H NMR ethyl 2-(1,3-dioxo-10,10a-diphenyl-3,10a-dihydrobenzo[4,5]cyclohepta[1,2-c]pyrrol-2(1H)-yl)acetate (2u).

Figure S107. ¹³C NMR ethyl 2-(1,3-dioxo-10,10a-diphenyl-3,10a-dihydrobenzo[4,5]cyclohepta[1,2-c]pyrrol-2(1H)-yl)acetate (2u).

Figure S108. ¹H NMR (E)-N-cyclohexyl-3,3-dimethyl-2-(phenylamino)-N-(3-(2-(phenylethynyl)phenyl)acryloyl)butanamide (2v).

Figure S109. 13C NMR (E)-N-cyclohexyl-3,3-dimethyl-2-(phenylamino)-N-(3-(2-(phenylethynyl)phenyl)acryloyl)butanamide (2v).

Figure S110. DQF-COSY (E)-N-cyclohexyl-3,3-dimethyl-2-(phenylamino)-N-(3-(2-(phenylethynyl)phenyl)acryloyl)butanamide (2v).

Figure S111. edHSQC (E)-N-cyclohexyl-3,3-dimethyl-2-(phenylamino)-N-(3-(2-(phenylethynyl)phenyl)acryloyl)butanamide (2v).

Figure S113. ¹³C NMR (E)-2-benzyl-N-cyclohexyl-3-phenylacrylamide (2w).

Figure S114. DQF-COSY (E)-2-benzyl-N-cyclohexyl-3-phenylacrylamide (2w).

Figure S116. edHSQC (E)-2-benzyl-N-cyclohexyl-3-phenylacrylamide (2w).