-Electronic Supplementary Information-

Diastereoselective Access to [4,4]-Carbospirocycles: Governance of Thermodynamic Enolates with Organocatalyst in Vinylogous Cascade Annulation

Vinod Bhajammanavar, ${ }^{\text {a }}$ Sumitava Mallik, ${ }^{\text {a }}$ Venkata Surya Kumar Choutipalli, ${ }^{\text {b }}$
Venkatesan Subramanian, ${ }^{\text {b }}$ and Mahiuddin Baidya*a

${ }^{a}$ Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, Tamil Nadu, India.
${ }^{b}$ Inorganic and Physical Chemistry Laboratory, CSIR-Central Leather Research Institute,
Chennai 600 020, Tamil Nadu, India.
E-mail: mbaidya@iitm.ac.in

Table of Contents

Page
General Experimental Information S3
Optimization of [4,4]-Carbospiroannulation Reaction Conditions S4
General Procedure for the Synthesis of [4,4]-Carbospirocycles 3 S5
Procedure for the Gram Scale Synthesis of Compound 3a S5
Post-Functionalizations
i. Chemoselective Reduction for the Synthesis of Compound 8 S6
ii. Synthesis of Triketone Spirocyclic Compound 9 S6
iii. \quad Synthesis of N-Protected Carbospirocycle 10 S7
Skeletal Rearrangement Reactions
Synthesis of Pyrimidine Fused Spirocycles 11 S7Mechanistic Investigations:
i. Isolation of Intermediate 5a S8
ii. Spiroannulation Reaction with Intermediate 5a S8
Skeletal Rearrangement Mechanism
Possible Mechanism for Pyrimidine Fused Carbospirocycles 11 S9
List of Detailed References 4, 7, and 8 from the Manuscript S9
Crystallographic Experimental Section S10
Computational Details S15
Spectroscopic Data of Synthesized Compounds S21
NMR Spectra of Synthesized Compounds S36

General Experimental Information

All non-aqueous reactions were carried out in flame-dried glassware and were stirred using a magnetic stir plate. All reactions were carried out using anhydrous solvent unless otherwise noted. DMSO and DMF were purchased from Acros Organic company. Dry toluene, xylene, mesitylene, tetrahydrofuran and chlorobenzene were prepared by distilling over sodium ketyl. Dry DCE and $\mathrm{CH}_{3} \mathrm{CN}$ were prepared by distilling over calcium hydride. Quinidine, quinine, cinchonine, and cinchonidine were purchased from Aldrich company.

All reactions were monitored by thin layer chromatography (TLC) on WhatmanPartisil® K6F TLC plates (silica gel $60 \AA, 0.25 \mathrm{~mm}$ thickness) and visualized using a UV lamp (366 or 254 nm) or by use of one of the following visualization reagents: PMA: 10 g phosphomolybdic acid/ 100 mL ethanol, $\mathrm{KMnO}_{4}: 0.75 \mathrm{~g}$ potassium permanganate, $5 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3} / 100 \mathrm{~mL}$ water. Products were isolated by column chromatography (Merck silica gel $100-200 \mu \mathrm{~m}$). Yields refer to chromatographically and spectroscopically homogenous materials unless noted otherwise. ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Bruker 400 or Bruker 500 MHz spectrometers. Chemical shift values (δ) are reported in ppm and calibrated to the residual solvent peak $\mathrm{CDCl}_{3} \delta=7.260 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}, \delta=77.160 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}, \mathrm{DMSO}-\mathrm{d}_{6} \delta=2.500 \mathrm{ppm}$ for ${ }^{1} \mathrm{H}, \delta=39.500 \mathrm{ppm}$ for ${ }^{13} \mathrm{C}$ or calibrated to tetramethylsilane $(\delta=0.00)$. All NMR spectra were recorded at ambient temperature (290 K) unless otherwise noted. ${ }^{1} \mathrm{H}$ NMR spectra are reported as follows: chemical shift (multiplicity, coupling constant, integration). The following abbreviations are used to indicate multiplicities: s , singlet; d, doublet; t , triplet; q , quartet; m , multiplet; dd, doublet of doublet; dt, doublet of triplet; dq, doublet of quartet; td, triplet of doublet; ddd, doublet of doublet of doublet; br, broad; app, apparent.

Mass spectra were recorded by electron spray ionization (ESI) method on a Q-TOF Micro with lock spray source. The crystal data were collected and integrated using a BrukerAxs kappa apex2 CCD diffractometer, with graphite monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation.

The vinyl malononitriles ${ }^{1} \mathbf{1}$ and cyclopentene-1,3-diones ${ }^{2} \mathbf{2}$ were synthesized following literature procedures published previously.

References:

(1) a) J. Lu, F. Liu and T.-P. Loh, Adv. Synth. Catal. 2008, 350, 1781-1784; b) X. Li, X. Xu, W. Wei, A. Lin and H. Yao, Org. Lett. 2016, 18, 428-431.
(2) a) M. S. Manna and S. Mukherjee, Chem. Sci. 2014, 5, 1627-1633; b) Q. Gong, J. Wen and X. Zhang, Chem. Sci. 2019, 10, 6350-6353.

Table S1: Optimization of [4,4]-Carbospiroannulation Reaction Conditions ${ }^{\text {a }}$

entry	solvent	catalyst	yield (\%) ${ }^{\text {b }}$	
1	DCE	quinidine	73	
2	THF	quinidine	69	
3	$\mathrm{CH}_{3} \mathrm{CN}$	quinidine	trace	
4	Toluene	quinidine	84	
5	Mesitylene	quinidine	66	
6	PhCl	quinidine	51	
7	Toluene	quinine	73	
8	Toluene	cinchonine	47	
9	Toluene	cinchonidine	40	
10	Toluene	thiourea-I	20	
11	Toluene	squaramide-I	27	
12	Toluene	(DHQD) $2_{2} \mathrm{PYR}$	25	
13	Toluene	(DHQD) $2_{2} \mathrm{PHAL}$	16	
14	Toluene	DBU	33 (70) ${ }^{\text {d }}$	
15	Toluene	DBN	27 (64) ${ }^{\text {d }}$	
16	Toluene	DMAP	trace	
17	Toluene	${ }^{i} \mathrm{Pr}_{2} \mathrm{NEt}$	NR	
18	Toluene	DABCO	trace	
19	Toluene	3-quinuclidinol	$59^{\text {c }}$	
20	Toluene	$\mathrm{LiO}^{t} \mathrm{Bu} / \mathrm{KO}^{t} \mathrm{Bu}$	$27 / 36^{\text {e }}$	
21	Toluene	$\mathrm{K}_{2} \mathrm{CO}_{3}$ or $\mathrm{Cs}_{2} \mathrm{CO}_{3}$	trace	
22	Toluene $+5 \mu 1 \mathrm{H}_{2} \mathrm{O}$	quinidine	35	
23	Toluene $+50 \mu \mathrm{H} \mathrm{H}_{2} \mathrm{O}$	quinidine	NR	
24	Toluene	-	NR	
Undesired products: 4a 5a		Chiral organocatalysts:		

${ }^{\text {a Reaction conditions: }} \mathbf{1 a}(0.22 \mathrm{mmol})$, $\mathbf{2 a}(0.26 \mathrm{mmol}), \mathrm{N}_{2}$, solvent $(4 \mathrm{~mL}), \mathrm{rt}, 36 \mathrm{~h} .{ }^{\mathrm{b}}$ Isolated yields were provided. The dr was determined by ${ }^{1} \mathrm{H}$ NMR analysis of crude reaction mixture. ${ }^{\text {c }}$ Combined yield of $\mathbf{3 a}$ and $\mathbf{5 a}$. ${ }^{\mathrm{d}}$ Reaction was stopped after 24 h . ${ }^{\text {e }}$ Yield corresponds to $(4+2)$ annulation product $\mathbf{4 a}$. NR: No reaction.

General Procedure for the Synthesis of [4,4]-Carbospirocycles 3:

The alkylidene malononitriles $\mathbf{1}$ (0.22 mmol , 1 equiv), cyclopentene-1,3-diones $\mathbf{2}$ ($0.26 \mathrm{mmol}, 1.2$ equiv), and quinidine ($20 \mathrm{~mol} \%$) were taken in a $16 \times 100 \mathrm{~mm}$ oven dried reaction tube equipped with a magnetic stir. The reaction tube was capped with a rubber septum, evacuated, and backfilled with nitrogen gas. Then, dry toluene (4 mL) was added via a syringe under nitrogen. The reaction mixture was allowed to stir at room temperature for 36 h . After completion, the crude reaction mixture was loaded directly onto silica gel column and purified with a gradient eluent of hexane and ethyl acetate ($5 \rightarrow 15 \%$ EtOAc: hexane) to provide pure spirocyclic imine 3 .

Note: DBU (20 mol\%) base was used instead of quinidine and reaction was stopped after 24 h during the synthesis of compounds 3ao to 3at.

Procedure for the Gram Scale Synthesis of Compound 3a:

The α-tetralone derived malononitrile $\mathbf{1 a}(0.97 \mathrm{~g}, 5.0 \mathrm{mmol}, 1$ equiv), cyclopentene-1, 3-dione $\mathbf{2 a}$ (1.2 g , $6.0 \mathrm{mmol}, 1.2$ equiv), and quinidine ($324 \mathrm{mg}, 20 \mathrm{~mol} \%$) were taken in a 100 mL oven dried round bottom flask equipped with a magnetic stir. The round bottom flask was capped with a rubber septum, evacuated, and backfilled with nitrogen gas. Then, dry toluene (15 mL) was added via syringe under nitrogen. The mixture was allowed to stir at room temperature for 36 h . After completion, volatiles were carefully evaporated, and the crude product obtained was loaded directly onto silica gel column and purified with a gradient eluent of hexane and ethyl acetate ($5 \rightarrow 15 \%$ EtOAc: hexane) to provide pure spirocyclic imine $\mathbf{3 a}$ ($1.54 \mathrm{~g}, 78 \%$ yield).

Post-Functionalizations

i. Chemoselective Reduction for the Synthesis of Compound 8:

The product 3a ($0.22 \mathrm{mmol}, 1$ equiv) was taken in a $16 \times 100 \mathrm{~mm}$ oven dried reaction tube equipped with a magnetic stir. The reaction tube was capped with a rubber septum, evacuated and backfilled with nitrogen gas. Then, dry $\mathrm{MeOH}(3 \mathrm{~mL})$ and acetic acid (10 equiv) were added via syringe. The reaction mixture was cooled to $0^{\circ} \mathrm{C}$. Sodium cyanoborohydride (2 equiv) was added portion wise and reaction mixture was allowed to stir for 48 h at $0{ }^{\circ} \mathrm{C}$. Then, the reaction mixture was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and extracted with DCM. The crude product obtained after evaporation of DCM was loaded directly onto silica gel column and purified with a gradient eluent of hexane and ethyl acetate ($15 \rightarrow 35 \%$ EtOAc: hexane) to provide pure spirocyclic amine $\mathbf{8}(75 \mathrm{mg}, 86 \%$ yield) as a single diastereomer.

ii. Synthesis of Triketone Spirocyclic Compound 9:

The product $\mathbf{3 a}$ ($0.22 \mathrm{mmol}, 1$ equiv) was taken in a $16 \times 100 \mathrm{~mm}$ oven dried reaction tube equipped with a magnetic stir. The reaction tube was capped with a rubber septum. Then, 3 mL of 2 N HCl (aq): THF (4:1) mixture were added via syringe. The reaction mixture was allowed to stir for 24 h . The reaction mixture was quenched with aq. NaCl solution and extracted with DCM . The crude product obtained after evaporation of DCM was loaded directly onto silica gel column and purified with a gradient eluent of hexane and ethyl acetate ($5 \rightarrow 15 \%$ EtOAc: hexane) to provide pure triketone spirocyclic compound 9 (58 $\mathrm{mg}, 67 \%$ yield) as a single diastereomer.

iii. Synthesis of N-Protected Carbospirocycle 10:

The product $\mathbf{3 a}$ (0.22 mmol , 1 equiv) was taken in a $16 \times 100 \mathrm{~mm}$ oven dried reaction tube equipped with a magnetic stir. The reaction tube was capped with a rubber septum, evacuated, and backfilled with nitrogen gas. Then, dry DCM (3 mL) and $\mathrm{Et}_{3} \mathrm{~N}$ (1.2 equiv) were added via syringe. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$. Ethyl chlorooxoacetate (1.1 equiv) was added and reaction mixture was allowed to attain room temperature with stirring. After 9 h (TLC monitored), reaction mixture was quenched with aq. $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and extracted with DCM. After evaporation, the crude product was purified by crystallization technique using DCM and hexane solvents combination to get pure N-protected spirocycle $\mathbf{1 0}(85 \mathrm{mg}, 78 \%$ yield) as a single diastereomer.

Skeletal Rearrangement Reactions

Synthesis of Pyrimidine Fused Spirocycles 11:

The corresponding spirocyclic product 3a or 3ao (0.2 mmol , 1 equiv) was taken in a $16 \times 100 \mathrm{~mm}$ oven dried reaction tube equipped with a magnetic stir. The reaction tube was capped with a rubber septum, evacuated and backfilled with nitrogen gas. Then, dry DCM (2 mL) followed by dry DMF ($50 \mu \mathrm{l}$) were added via syringe. The reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and oxalyl chloride (10 equiv) was added drop wise to the reaction mixture at $0{ }^{\circ} \mathrm{C}$ under the positive pressure of nitrogen gas (balloon). The reaction mixture was allowed to attain room temperature with stirring and stirred further for 40 h . After completion (TLC monitored), reaction mixture was workup with ice-cold brine solution, and extracted with DCM. Resulting organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The crude product obtained after evaporation of DCM was loaded directly onto silica gel column and purified with a gradient eluent of hexane and ethyl acetate ($10 \rightarrow 25 \%$ EtOAc: hexane) to provide pure indane-1,3-dione derivative 11a (59 $\mathrm{mg}, 55 \%$) or $\mathbf{1 1 b}$ ($58 \mathrm{mg}, 52 \%$) respectively.

Mechanistic Investigations

Isolation of Reaction Intermediate 5a:

The α-tetralone derived malononitriles $\mathbf{1 a}(0.22 \mathrm{mmol}, 1$ equiv), cyclopentene-1,3-diones $\mathbf{2 a}$ (0.26 mmol , 1.2 equiv), and $\mathrm{Et}_{3} \mathrm{~N}(20 \mathrm{~mol} \%)$ were taken in a $16 \times 100 \mathrm{~mm}$ oven dried reaction tube equipped with a magnetic stir. The reaction tube was capped with a rubber septum, evacuated, and backfilled with nitrogen gas. Then, toluene (4 mL) was added via syringe. The mixture was allowed to stir at room temperature for 14 h . The crude reaction mixture was loaded directly onto silica gel column and purified with a gradient eluent of hexane and ethyl acetate ($5 \rightarrow 15 \%$ EtOAc: hexane) to provide Michael addition product 5a ($20 \mathrm{mg}, 23 \%$ yield).

Spiroannulation Reaction with Intermediate 5a:

Isolated reaction intermediate $\mathbf{5 a}(0.02 \mathrm{mmol}, 1$ equiv) and DBU ($20 \mathrm{~mol} \%$) were taken in a $16 \times 100 \mathrm{~mm}$ oven dried reaction tube equipped with a magnetic stir. The reaction tube was capped with a rubber septum, evacuated and backfilled with nitrogen gas. Then, dry toluene (2 mL) was added via syringe. The reaction mixture was allowed to stir at room temperature for 2 h . After completion (TLC monitored), the crude reaction mixture was loaded directly onto silica gel column and purified with a gradient eluent of hexane and ethyl acetate ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure spirocyclic imine $\mathbf{3 a}$ in 98% yield.
Execution of the same reaction with quinidine catalyst resulted in 56% yield (44 mg) of spirocyclic imine 3a after 24 h .

Skeletal Rearrangement Mechanism

Possible Mechanism for Pyrimidine Fused Carbospirocycles 11

List of detailed references 4, 7 , and 8 from the manuscript

4. (a) T. H. Babu, A. A. Joseph, D. Muralidharan and P. T. Perumal, Tetrahedron Lett. 2010, 51, 994-996; (b) X.-M. Shi, W.P. Dong, L.-P. Zhu, X.-X. Jiang and R. Wang, Adv. Synth. Catal. 2013, 355, 3119-3123; (c) S. E. Kiruthika, P. T. Perumal, C. Balachan dran and S. Ignacimuthu, J. Chem. Sci. 2014, 126, 177-185; (d) T.-Z. Li, J. Xie, Y. Jiang, F. Sha and X.-Y. Wu, Adv. Synth. Catal. 2015, 357, 3507-3511; (e) H. Mei, L. Lin, B. Shen, X. Liu and X. Feng, Org. Chem. Front. 2018, 5, 2505-2509; (f) H.-L. Cui , X. Tang, M.-F. Li, X.-J. Xu and Y. Shi, Synlett 2019, 30, 845-850; (g) Z. Zhou, Q. He, Y. Jiang, Q. Ouyang, W. Du and Y.-C. Chen, Org. Lett. 2019, 21, 7184-7188; (h) P.-W. Xu, J.-S. Yu, C. Chen, Z.-Y. Cao, F. Zhou and J. Zhou, ACS Catal. 2019, 9, 1820-1882.

7 For metal-catalyzed synthesis of spiro[4,4]nonane frameworks, see: (a) R. Rios, Chem. Soc. Rev. 2012, 41, 1060-1074; (b) T. Takahashi, H. Tsutsui, M. Tamura, S. Kitagaki, M. Nakajima and S. Hashimoto, Chem. Commun. 2001, 1604-1605; (c) A. Wada, K. Noguchi, M. Hirano and K. Tanaka, Org. Lett. 2007, 9, 1295-1298; (d) Z. Han, Z. Wang and K. Ding, Adv. Synth. Catal. 2011, 353, 1584-1590; (e) Z. Chai and T. J. Rainey, J. Am. Chem. Soc. 2012, 134, 3615-3618; (f) Z. Zheng, Y. Cao, Q. Chong, Z. Han, J. Ding, C. Luo, Z. Wang, D. Zhu, Q.-L. Zhou and K. Ding, J. Am. Chem. Soc. 2018, 140, 1037410381; (g) L. Yin, J. Xing, Y. Wang, Y. Shen, T. Lu, T. Hayashi and X. Dou, Angew. Chem. Int. Ed. 2019, 58, 2474-2478.
8 (a) S. Zhuo, T. Zhu, L. Zhou, C. Mou, H. Chai, Y. Lu, L. Pan, Z. Jin and Y. R. Chi, Angew. Chem. Int. Ed. 2019, 58, 17841788; (b) E. Sánchez-Larios, J. M. Holmes, C. L. Daschner and M. Gravel, Org. Lett. 2010, 12, 5772-5775; (c) S. Barik, S. Shee, S. Das, R. G. Gonnade, G. Jindal, S. Mukherjee and A. T. Biju, Angew. Chem. Int. Ed. 2021, 60, 12264-12268; (d) B.-M. Yang, P.-J. Cai, Y.-Q. Tu, Z.-X. Yu, Z.-M. Chen, S.-H. Wang, S.-H. Wang and F.-M. Zhang, J. Am. Chem. Soc. 2015, 137, 8344-8347; (e) S. Li, J.-W. Zhang, X.-L. Li, D.-J. Cheng and B. Tan, J. Am. Chem. Soc. 2016, 138, 16561-16566; (f) J. Liu, Q. Li, Y. Wei and M. Shi, Org. Lett. 2020, 22, 2494-2499.

Crystallographic Experimental Section:

Crystals of compounds 3b, 3aa, 3aq, and 11a were obtained through slow evaporation technique at room temperature from their respective solution in hexane: DCM solvent combinations.

Crystal data and structure refinement for compound 3b (CCDC 2096229, Ellipsoid Probability 50\%):

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=67.679^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [I>2sigma(I)]
R indices (all data)
Absolute structure parameter
Extinction coefficient

Compound 3b
$\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}$
424.48

296(2) K
1.54178 Á

Monoclinic
P21
$a=9.7603(4) \AA \quad a=90^{\circ}$.
$\mathrm{b}=7.2351(3) \AA \quad \mathrm{A}=92.4650(10)^{\circ}$.
$\mathrm{c}=15.8107(6) \AA \quad \mathrm{g}=90^{\circ}$.
1115.47(8) \AA^{3}

2
$1.264 \mathrm{Mg} / \mathrm{m}^{3}$
$0.664 \mathrm{~mm}^{-1}$
448
$0.300 \times 0.250 \times 0.200 \mathrm{~mm}^{3}$
4.534 to 72.312°.
$-12<=\mathrm{h}<=11,-8<=\mathrm{k}<=8,-19<=1<=19$
14745
$4304[\mathrm{R}(\mathrm{int})=0.0438]$
99.0 \%

Semi-empirical from equivalents
0.7536 and 0.6183

Full-matrix least-squares on F^{2}
4304 / 1 / 296
1.080
$R 1=0.0484, w R 2=0.1314$
$R 1=0.0536, w R 2=0.1386$
0.20(13)
0.136(11)

Crystal data and structure refinement for compound 3aa: (CCDC 2096228, Ellipsoid Probability 50\%)

Identification code
Chemical formula
Formula weight
Temperature
Wavelength
Crystal size
Crystal habit
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Coverage of independent reflections
Absorption correction
Max. and min. transmission
Structure solution technique
Structure solution program

Compound 3aa
$\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}$
$396.43 \mathrm{~g} / \mathrm{mol}$
296(2) K
$0.71073 \AA$
$0.190 \times 0.220 \times 0.250 \mathrm{~mm}$
clear light colourless Rectangular monoclinic
P 1211
$\mathrm{a}=9.5635(6) \AA \quad \alpha=90^{\circ}$
$\mathrm{b}=6.7073(3) \AA \quad \beta=90.829(3)^{\circ}$
$\mathrm{c}=15.8118(8) \AA \gamma=90^{\circ}$
$1014.15(9) \AA^{3}$
2
$1.298 \mathrm{~g} / \mathrm{cm}^{3}$
$0.086 \mathrm{~mm}^{-1}$
416
2.13 to 25.00°
$-11<=\mathrm{h}<=11,-7<=\mathrm{k}<=7,-18<=1<=18$
7813
$3558[\mathrm{R}(\mathrm{int})=0.0238]$
99.9\%
multi-scan
0.9840 and 0.9790
direct methods
SHELXS-97 (Sheldrick 2008)

Refinement method	Full-matrix least-squares on F2
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)
Function minimized	$\Sigma \mathrm{w}(\mathrm{Fo} 2-\mathrm{Fc} 2) 2$
Data / restraints / parameters	$3558 / 1 / 277$
Goodness-of-fit on F2	1.039
	2715
Final R indices	data; $\quad \mathrm{R} 1=0.0397$, wR2 $=0.0798$
	$\mathrm{I}>2 \sigma(\mathrm{I}) \quad$
	all data $\quad \mathrm{R} 1=0.0598, \mathrm{wR} 2=0.0909$
Weighting scheme	$\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{\mathrm{o}}{ }^{2}\right)+(0.0388 \mathrm{P})^{2}+0.0483 \mathrm{P}\right]$
	where $\mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$
Absolute structure parameter	$-0.3(7)$
Extinction coefficient	$0.0370(40)$
Largest diff. peak and hole	0.105 and $-0.120 \mathrm{e}^{\AA} \AA^{-3}$
R.M.S. deviation from mean	$0.028 \mathrm{e}^{\circ} \AA^{-3}$

Crystal data and structure refinement for compound 3aq: (CCDC 2096230, Ellipsoid Probability 50\%)

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient

Compound 3aq
$\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
426.51

296(2) K
0.71073 Å

Monoclinic
P 21/c
$a=11.4340(12) \AA \quad \alpha=90^{\circ}$.
$b=10.0679(10) \AA \quad \beta=102.571(6)^{\circ}$.
$\mathrm{c}=19.338(2) \AA \quad \gamma=90^{\circ}$.
2172.8(4) \AA^{3}

4
$1.304 \mathrm{Mg} / \mathrm{m}^{3}$
$0.175 \mathrm{~mm}^{-1}$

F(000)
Crystal size
Theta range for data collection Index ranges
Reflections collected
Independent reflections
Completeness to theta $=25.242^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices [$\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$]
R indices (all data)
Extinction coefficient
Largest diff. peak and hole

896
$0.300 \times 0.250 \times 0.200 \mathrm{~mm}^{3}$
1.825 to 25.899°.
$-14<=\mathrm{h}<=14,-12<=\mathrm{k}<=12,-23<=\mathrm{l}<=23$
20693
$4204[\mathrm{R}($ int $)=0.0751]$
100.0 \%

Semi-empirical from equivalents
0.7453 and 0.6243

Full-matrix least-squares on F^{2}
4204 / 0 / 287
1.020
$\mathrm{R} 1=0.0525, \mathrm{wR} 2=0.1071$
$R 1=0.1206, w R 2=0.1400$
$0.0107(10)$
0.203 and -0.229 e. \AA^{-3}

Crystal data and structure refinement for compound 11a: (CCDC 2096231, Ellipsoid Probability 50\%)

Identification code
Chemical formula
Formula weight
Temperature
Wavelength
Crystal size
Crystal habit
Crystal system
Space group
Unit cell dimensions

Compound 11a
$\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$
$487.36 \mathrm{~g} / \mathrm{mol}$
296(2) K
0.71073 Å
$0.100 \times 0.220 \times 0.250 \mathrm{~mm}$
clear light colourless BLock
orthorhombic
P c a 21

$$
\begin{array}{ll}
\mathrm{a}=12.4644(7) \AA & \alpha=90^{\circ} \\
\mathrm{b}=11.8934(6) \AA & \beta=90^{\circ}
\end{array}
$$

	$\mathrm{c}=15.4819(7) \AA \quad \gamma=90^{\circ}$
Volume	2295.1(2) \AA^{3}
Z	4
Density (calculated)	$1.410 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient	$0.313 \mathrm{~mm}^{-1}$
F(000)	1008
Theta range for data collection	1.71 to 25.00°
Index ranges	$-14<=\mathrm{h}<=14,-14<=\mathrm{k}<=13,-18<=1<=18$
Reflections collected	15384
Independent reflections	$4038[\mathrm{R}(\mathrm{int})=0.0509]$
Coverage of independent reflections	100.0\%
Absorption correction	multi-scan
Max. and min. transmission	0.9690 and 0.9260
Refinement method	Full-matrix least-squares on F2
Refinement program	SHELXL-2014/7 (Sheldrick, 2014)
Function minimized	$\Sigma \mathrm{w}(\mathrm{Fo} 2-\mathrm{Fc} 2) 2$
Data / restraints / parameters	4038 / 1 / 308
Goodness-of-fit on F2	1.004
Final R indices	$\begin{aligned} & 3284 \text { data; } \quad \mathrm{R} 1=0.0378, \mathrm{wR} 2=0.0835 \\ & \mathrm{I}>2 \sigma(\mathrm{I}) \end{aligned}$
	all data $\mathrm{R} 1=0.0524, \mathrm{wR} 2=0.0920$
Weighting scheme	$\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{~F}_{0}^{2}\right)+(0.0470 \mathrm{P})^{2}\right]$ where $\mathrm{P}=\left(\mathrm{F}_{\mathrm{o}}{ }^{2}+2 \mathrm{~F}_{\mathrm{c}}{ }^{2}\right) / 3$
Absolute structure parameter	0.1(0)
Largest diff. peak and hole	0.152 and $-0.181 \mathrm{e}^{-{ }^{-3}}$
R.M.S. deviation from mean	$0.041 \mathrm{e}^{-3}{ }^{-3}$

Computational Details

All the quantum chemical computations were carried out using the B3LYP ${ }^{3}$ hybrid functional with the Grimme's dispersion parameter (D3) for dispersion corrections in conjunction with the $6-31 \mathrm{G}(\mathrm{d})$ basis set. ${ }^{4}$ Standard convergence criteria and an ultrafine integration grid were used. All the thermodynamic data was computed at 298.15 K and 1 atm . All the optimized geometries were verified as minima or first order saddle points by the harmonic vibrational frequency analysis and thermal and zero point energy (ZPE) corrections were also included. As in the standard practice, the presence of one imaginary frequency criteria was used for the characterization of transition states (TS). Further, intrinsic reaction coordinate (IRC) calculations confirmed the nature of the transition states and provided the information that, they were connected to the respective minima (reactant and product). All the calculations were performed using G09RevC. 01 suite of program. ${ }^{5}$

Reaction Coordinate
Scheme S1. Gibbs free energy reaction profile of direct hydrogen shift and protonation-deprotonation pathways calculated at B3LYP-D3/6-31G(d,p) level of theory.

Figure S1. Energy profile ($\Delta \mathrm{E}$ vs step size) for geometry relaxation of enolate with acid calculated at B3LYP-D3/6-31G(d,p) level of theory.

Figure S2. Optimized geometries of intermediates involved calculated at B3LYP-D3/6-31G(d,p) level of theory

Table S2. Cartesian coordinates of intermediate geometries calculated at B3LYP-D3/6-31G(d,p) level of theory.

18'				5 a			
C	3.22076700	3.81635300	-1.93499100	C	4.15403100	1.83776000	-1.95026400
C	1.91390200	3.82578200	-2.42862600	C	2.88691300	1.66212600	-2.50160000
C	0.84518600	3.45686800	-1.61309700	C	1.72625500	1.88579600	-1.75344200
C	1.09844600	3.07969300	-0.27479000	C	1.85082900	2.31700500	-0.40609100
C	2.41338800	3.07262300	0.21688200	C	3.14121900	2.46507100	0.14569900
C	3.47074200	3.43750100	-0.61323700	C	4.27973200	2.23346400	-0.61562400
H	4.04443500	4.10219200	-2.58257800	H	5.03819500	1.65633700	-2.55397000
H	1.71897500	4.12272900	-3.45548000	H	2.78475300	1.34239800	-3.53517800
H	2.60541900	2.76966300	1.23983900	H	3.25483800	2.73862200	1.18620000
H	4.48646700	3.42356000	-0.23081100	H	5.26035500	2.35185800	-0.16616700
C	-0.06510900	2.66779800	0.51988900	C	0.63208300	2.53046100	0.39419300
C	-0.58851800	3.46022100	-2.07750700	C	0.38301600	1.62627900	-2.40019600
H	-1.11736200	4.30272900	-1.61047300	H	0.36242400	2.08654400	-3.39449300
H	-0.64249500	3.60587100	-3.16085500	H	0.26732200	0.54587600	-2.55398900
C	-1.05328900	1.76790000	-0.18451700	C	-0.58861300	1.76480500	-0.07188200
H	-2.00632000	1.80110000	0.34967200	H	-1.46748200	2.08886000	0.49014200
C	-1.27254000	2.13997600	-1.68058400	C	-0.79987600	2.10531200	-1.56072500
H	-2.34624000	2.19645600	-1.87916800	H	-0.91605600	3.19286200	-1.64420900
H	-0.88867200	1.33270300	-2.30925000	H	-1.71864300	1.63688900	-1.91704800
C	-0.24753300	3.00491900	1.83551000	C	0.53750100	3.36234100	1.48247100
C	0.66437700	3.82610100	2.57556700	C	1.56893500	4.24093700	1.94769300
C	-1.40615700	2.57109700	2.56194500	C	-0.67693300	3.42720800	2.24448300
N	1.39713500	4.48111700	3.19856000	N	2.38189400	4.97135300	2.34748700
N	-2.36061200	2.23290500	3.13569200	N	-1.66567900	3.44659500	2.85879300
C	-0.49628200	0.30066700	-0.05757700	C	-0.36071700	0.25614100	0.21395000
C	-1.57513400	-0.69368000	-0.53025700	C	-1.45478000	-0.64145500	-0.38437400
C	-0.22256900	-0.18545900	1.33660500	C	-0.30649600	-0.09879100	1.71045900
C	-2.15629000	-1.43185500	0.68263900	C	-2.26242600	-1.29659000	0.72053800
C	-1.09293000	-1.13811000	1.71246000	C	-1.32002600	-1.22624800	1.91876800
0	-1.88798000	-0.88011200	-1.68461100	0	-1.62253000	-0.80461400	-1.57579800
0	-1.11692100	-1.83125900	2.86719000	0	-1.40411600	-1.91309500	2.91423200
C	-2.32283000	-2.92623900	0.38492200	C	-2.74198700	-2.70052500	0.37706100
H	-2.73042700	-3.43169800	1.26634500	H	-3.27848200	-3.12183600	1.23302300
H	-3.00667700	-3.05468000	-0.45744600	H	-3.40239400	-2.66303700	-0.49223100
H	-1.35676100	-3.37838500	0.13772500	H	-1.87630400	-3.32837700	0.14651800
C	-3.50805300	-0.78074500	1.13956400	C	-3.44897100	-0.32623100	1.10876700
H	-3.84396600	-1.35739900	2.00878700	H	-3.96580900	-0.81889800	1.93958200
H	-3.30388200	0.23547400	1.49345600	H	-3.03875900	0.61451000	1.49618000
H	0.58401800	0.18703500	1.95690100	H	-0.59631400	0.73912600	2.35582000
H	0.37396400	0.23818600	-0.72512900	H	0.57405800	-0.03368700	-0.26386700
C	-4.57506700	-0.75407100	0.07566900	C	-4.39942700	-0.02927200	-0.02171800
C	-5.43300500	-1.84351500	-0.11933400	C	-5.42546500	-0.92176100	-0.35682600
C	-4.71267100	0.36379200	-0.75659300	C	-4.26125500	1.14739600	-0.76790400
C	-6.39777600	-1.82124900	-1.12783600	C	-6.28202500	-0.65155300	-1.42499600
H	-5.34078300	-2.71172300	0.52741600	H	-5.55097600	-1.82867900	0.22711500
C	-5.67672200	0.39400000	-1.76383400	C	-5.11599800	1.42352100	-1.83529300
H	-4.05801300	1.21880500	-0.60616600	H	-3.48449100	1.85757100	-0.49849800
C	-6.52127100	-0.70220400	-1.95441300	C	-6.12711000	0.52003900	-2.16985200
H	-7.05613300	-2.67454300	-1.26482200	H	-7.07366700	-1.35296800	-1.67226900
H	-5.77042400	1.27110100	-2.39803600	H	-4.99698600	2.34377000	-2.40005500
H	-7.27355700	-0.68226600	-2.73764200	H	-6.79518000	0.73129500	-2.99963100
C	5.24429000	-1.64886000	0.72845600	C	4.39058500	-1.86943800	-0.91407400
C	5.75657000	-1.26454900	-0.66613100	C	3.79547700	-2.10639800	-2.30837200
C	4.99675900	-1.90810900	-1.83186000	C	2.46722600	-2.87490800	-2.32923000
C	3.79225800	-1.20704900	0.98449900	C	3.45113100	-1.08506300	0.01817000
C	3.48171000	-1.61038500	-1.83323700	C	1.33392700	-2.18058800	-1.54021600

C	2.72841900	-2.49469700	-0.86064600	C	1.41481800	-2.50528100	-0.06059200
H	5.32041200	-2.73397600	0.87948900	H	4.64859500	-2.82477400	-0.43753300
H	5.68730300	-0.17108300	-0.76414800	H	3.63190500	-1.12441200	-2.77475400
H	5.14131400	-2.99614300	-1.82560000	H	2.60496200	-3.89091700	-1.93746500
H	3.31099000	-0.55033100	-1.62397100	H	1.38978100	-1.10460600	-1.73651000
H	3.61721200	-0.23155100	0.51705400	H	2.97395200	-0.27597100	-0.54029600
H	5.88776800	-1.17933300	1.48229100	H	5.32486800	-1.30415200	-1.02308700
H	6.82035800	-1.51988100	-0.74345600	H	4.52871700	-2.63506900	-2.93000700
H	5.42366900	-1.53829700	-2.77157800	H	2.14602800	-2.98063600	-3.37216500
H	3.62031800	-1.07907200	2.05787800	H	4.02778100	-0.60945500	0.81709600
H	3.06390100	-1.82809700	-2.81799600	H	0.35943800	-2.53010700	-1.88041000
C	2.54076300	-3.28805300	1.42856100	C	2.83377600	-2.54757800	1.92302800
C	1.46703900	-4.48679200	-0.48049600	C	0.73169300	-3.90301600	1.74490500
C	1.30390600	-4.06629400	0.98726000	C	1.61254200	-3.06396300	2.68002800
H	3.42566700	-3.94345500	1.42925400	H	3.52535200	-3.37847400	1.70714700
H	2.41744900	-2.88976300	2.44098700	H	3.38222400	-1.81369200	2.52413600
H	0.48440400	-4.69779000	-0.91926400	H	-0.26535500	-4.00794300	2.18414500
H	2.03966800	-5.42282300	-0.54595300	H	1.14520000	-4.91803400	1.65052400
H	0.42379800	-3.42803900	1.09334000	H	1.03036800	-2.22636700	3.07035700
H	1.16879700	-4.94422600	1.62856800	H	1.93740000	-3.66220800	3.53858500
N	2.75782800	-2.14553900	0.51719800	N	2.42456600	-1.89553900	0.67472600
N	2.13534400	-3.51981000	-1.34409300	N	0.57860800	-3.37685600	0.38940100
H	1.91809100	-1.61304900	0.62348600	H	0.68831700	-0.43144200	2.01526400
	TS ${ }_{\text {PD }}$			1C'			
C	3.05755400	3.14510600	-2.36220300	C	2.42466600	3.68641400	-1.52367600
C	2.01462600	2.32463000	-2.78494700	C	1.66760100	2.77956900	-2.26049800
C	0.91627000	2.04159900	-1.96249400	C	0.43016800	2.30127600	-1.80338100
C	0.86340200	2.61619900	-0.66267500	C	-0.09002700	2.80038000	-0.57767700
C	1.93362400	3.44091300	-0.24910100	C	0.71587000	3.68100700	0.17924200
C	3.01469500	3.70392100	-1.08136800	C	1.95339400	4.11810300	-0.28021900
H	3.89410400	3.34915800	-3.02414400	H	3.37591600	4.04421300	-1.90742900
H	2.03491800	1.89242600	-3.78238400	H	2.03347800	2.42107400	-3.22008600
H	1.94214900	3.85782700	0.74717900	H	0.37623000	4.02548300	1.14544500
H	3.82171300	4.33816800	-0.72839600	H	2.53950900	4.80136300	0.32651000
C	-0.29475000	2.32194000	0.20186200	C	-1.45774800	2.41991400	-0.16593400
C	-0.16075600	1.12462000	-2.48974600	C	-0.24724400	1.21297400	-2.59369500
H	-0.34599900	1.35994100	-3.54471900	H	-0.11457600	1.39960100	-3.66645700
H	0.18792400	0.08616500	-2.45409200	H	0.26573500	0.27917600	-2.33061400
C	-1.14072600	1.12123800	-0.17087000	C	-2.02443300	1.14162300	-0.74911000
H	-2.10776200	1.22968900	0.32758500	H	-3.11578500	1.18768700	-0.67907200
C	-1.44435900	1.18675600	-1.67505600	C	-1.72127500	1.03022600	-2.25105000
H	-1.97693700	2.12586200	-1.87022100	H	-2.31397900	1.80496500	-2.75463800
H	-2.10678600	0.36420400	-1.94512900	H	-2.07702200	0.05849500	-2.60190500
C	-0.68330800	3.07891000	1.28639500	C	-2.25268700	3.16807400	0.68244900
C	-0.05979800	4.27558100	1.76617200	C	-1.88665800	4.38620800	1.33760400
C	-1.86002800	2.73787200	2.03650900	C	-3.61537300	2.79825300	0.93685000
N	0.41275300	5.25033200	2.19362900	N	-1.63185000	5.38174800	1.88680500
N	-2.81186800	2.47586000	2.65409900	N	-4.72681800	2.51955600	1.14545700
C	-0.51499300	-0.18950200	0.35014200	C	-1.60928400	0.01758400	0.18399300
C	-0.98369200	-1.42835100	-0.25573000	C	-0.60605700	-0.91769200	0.09736500
C	-0.61933000	-0.36933400	1.87791700	C	-2.53468900	-0.25565700	1.34979800
C	-1.60544800	-2.34767400	0.82816300	C	-0.85349100	-2.05468700	1.10089500
C	-0.82988500	-1.87404900	2.04722100	C	-1.97357600	-1.51553900	1.98509800
0	-0.90024600	-1.78848500	-1.44048700	0	0.39130800	-1.03522400	-0.73236600
0	-0.40297600	-2.57178400	2.94403100	0	-2.34304800	-2.02857300	3.02284000
C	-1.53705900	-3.84243700	0.54339900	C	0.36049400	-2.47775000	1.92658600
H	-2.09802400	-4.39699800	1.30170700	H	0.07040200	-3.26591200	2.62786900
H	-1.96195100	-4.04589400	-0.44435500	H	1.14480200	-2.85901100	1.26543200
H	-0.51083200	-4.21120900	0.55921200	H	0.76521800	-1.64605900	2.51020300
C	-3.11427700	-1.89432900	1.06921700	C	-1.36763000	-3.30898400	0.32287200

H	-3.67233300	-2.81101200	1.29098200	H	-0.54116900	-3.63487600	-0.31909000
H	-3.17521500	-1.27738600	1.97171400	H	-1.56645300	-4.09381300	1.06184300
H	-1.48849600	0.15148100	2.30809500	H	-3.57417600	-0.43951200	1.03620300
C	-3.79730600	-1.13946400	-0.04961500	C	-2.59835000	-3.05155600	-0.50978400
C	-3.92089900	-1.68925400	-1.33328100	C	-2.47806600	-2.55288300	-1.81348500
C	-4.33239500	0.13235600	0.19138800	C	-3.87761000	-3.23864100	0.02721600
C	-4.55545700	-0.97926400	-2.35209000	C	-3.61312500	-2.25667100	-2.56877000
H	-3.49018700	-2.66301100	-1.53900400	H	-1.48300200	-2.37469300	-2.21212900
C	-4.96647800	0.84755900	-0.82769700	C	-5.01637400	-2.93815900	-0.72413500
H	-4.23779100	0.57387300	1.18069700	H	-3.97478700	-3.60516000	1.04570800
C	-5.07959000	0.29294000	-2.10340500	C	-4.88690700	-2.44762400	-2.02516200
H	-4.63651500	-1.41704900	-3.34304900	H	-3.50550300	-1.87157600	-3.57942100
H	-5.36886500	1.83514100	-0.62091800	H	-6.00247800	-3.08460600	-0.29269700
H	-5.57142500	0.84588500	-2.89872100	H	-5.77136300	-2.21436500	-2.61105300
H	0.25274700	-0.05220000	2.46104800	H	-2.58798300	0.55216700	2.09517900
C	3.58619300	-2.01836200	-1.82138100	C	4.81277100	-0.46834100	-1.44945400
C	3.37037800	-3.52907500	-1.65439700	C	5.46878900	-1.85705200	-1.44852300
C	3.10685700	-3.97567000	-0.21324700	C	5.33362600	-2.62670500	-0.13100600
C	2.33702600	-1.17809500	-1.52652100	C	3.28462800	-0.52034600	-1.37855500
C	1.93493800	-3.22726400	0.45733700	C	3.88441500	-2.75216000	0.38870200
C	2.31709500	-1.84973500	0.92007000	C	3.37402800	-1.46781300	0.98655300
H	4.42591200	-1.68066500	-1.19954200	H	5.20508300	0.14525300	-0.62732300
H	2.51530800	-3.82126300	-2.27884600	H	5.01661100	-2.44649400	-2.25793000
H	4.00655300	-3.84057300	0.40022900	H	5.93294300	-2.14498500	0.65145200
H	1.09136400	-3.16465100	-0.23658800	H	3.21252500	-3.08693200	-0.41087800
H	1.41840000	-1.69952600	-1.79984300	H	2.88658100	-1.41232800	-1.86639900
H	3.87352800	-1.81620400	-2.85938000	H	5.08068100	0.05060400	-2.37601800
H	4.24590900	-4.06144000	-2.04411700	H	6.53223900	-1.75252000	-1.69160600
H	2.87709900	-5.04686800	-0.21067500	H	5.73882500	-3.63542800	-0.26656700
H	2.36189800	-0.23934600	-2.08146500	H	2.82193000	0.34635800	-1.85383800
H	1.60380900	-3.75913000	1.35068700	H	3.85025500	-3.49142500	1.19122100
C	3.11906700	0.36717900	0.24433800	C	2.65091200	0.87741900	0.56642000
C	3.01489700	-0.32164700	2.62759900	C	2.93853700	-0.03397500	2.85689900
C	2.80693800	0.84630600	1.65106600	C	2.05265200	0.83286400	1.95863100
H	4.14096400	-0.02076500	0.17698800	H	3.66489500	1.28719800	0.56393100
H	2.98336000	1.14116000	-0.50531400	H	2.02941200	1.43414000	-0.12391200
H	2.41151100	-0.18601000	3.53243400	H	2.39331700	-0.36548000	3.74714300
H	4.06067400	-0.36686200	2.95816500	H	3.80289000	0.53811600	3.21946000
H	1.77318000	1.20145600	1.67834100	H	1.03635300	0.42974300	1.88472400
H	3.45346800	1.69051000	1.90880300	H	1.97447300	1.85140000	2.34911700
N	2.18490100	-0.75405800	-0.08878000	N	2.72401000	-0.51925600	0.02279400
N	2.68755600	-1.64082100	2.10772900	N	3.47026000	-1.23552200	2.22066400
H	1.12685300	-0.41462000	0.02411100	H	1.79099300	-0.80508900	-0.12457400
		TS ${ }_{\text {HS }}$					
C	6.45673000	-0.85348100	0.68759800				
C	5.57521400	-1.83133500	0.22211000				
C	4.27362300	-1.50747200	-0.15782600				
C	3.82522200	-0.15999500	-0.07899900				
C	4.72157500	0.81082300	0.41899100				
C	6.01815000	0.46927800	0.79135200				
H	7.46817200	-1.12304900	0.97990900				
H	5.89449000	-2.86904000	0.15444200				
H	4.39620300	1.83623700	0.53307200				
H	6.68300300	1.23838000	1.17467800				
C	2.45687300	0.14181500	-0.51404200				
C	3.29954500	-2.56310600	-0.60831300				
H	3.14632600	-2.50732600	-1.69683700				
H	3.68893200	-3.56233900	-0.38140600				
C	1.40052200	-0.93369800	-0.37215000				
H	0.95669300	-1.09112100	-1.36751100				

References:

3. C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 1988, 37, 785-789.
4. a) W. J. Hehre, L. Radom, P. R. Schleyer and J. A. Pople, Ab Initio Molecular Orbital theory; Wiley: New York, 1986; b) P. C. Hariharan and J. A. Pople, Theor. Chim. Acta 1973, 28, 213222.
5. M. J. Frisch, et. al, Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford, CT, USA, 2010.

Spectroscopic Data of Synthesized Compounds

Compound 3a was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using 1a $(0.22 \mathrm{mmol}, 42 \mathrm{mg})$ and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as white solid ($73 \mathrm{mg}, 84 \%$), melting point $=119-121^{\circ} \mathbf{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.30(\mathrm{bs}, 1 \mathrm{H})$, $8.26(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{~d}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.07-7.05(\mathrm{~m}, 2 \mathrm{H}), 3.24(\mathrm{dd}, J=14.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{~d}, J=18.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.93(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.18-1.07(\mathrm{~m}, 1 \mathrm{H}), 0.69-0.63(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 216.6,214.7,182.1,171.5,140.7,136.4,133.5,130.2,129.8,128.8,128.1,127.9,127.5,127.3,113.9$, $103.2,62.8,59.2,47.7,45.2,44.3,29.8,25.7,21.6$. IR: $3240,2921,2855,2212,1755,1725,1634,1590,1457$, 1335, $757 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} 395.1754$, found 395.1750.

Compound $\mathbf{3 b}$ was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using 1b $(0.22 \mathrm{mmol}, 49 \mathrm{mg})$ and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as white solid ($73 \mathrm{mg}, 78 \%$), melting point $=165-167{ }^{\circ} \mathbf{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.30(\mathrm{~s}, 1 \mathrm{H})$, $7.75(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.11(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.01(\mathrm{~m}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.23$ $-3.18(\mathrm{~m}, 1 \mathrm{H}), 3.06-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.63(\mathrm{~m}, 3 \mathrm{H}), 1.93(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.14-1.04(\mathrm{~m}$, $1 \mathrm{H}), 0.67-0.62(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 216.6,214.6,182.1,171.7,158.3,136.4,133.2,130.7$, $130.2,128.8,128.6,127.5,121.8,114.0,110.4,103.2,62.9,59.2,55.6,47.7,45.1,44.2,29.1,26.0,21.6$ HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} 425.1860$, found 425.1865 .

3c

Compound $\mathbf{3 c}$ was prepared by general procedure for synthesis of $[4,4]$-carbospirocycles described above using 1c $(0.22 \mathrm{mmol}, 46 \mathrm{mg})$ and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as white solid ($68 \mathrm{mg}, 76 \%$), melting point $=157-159{ }^{\circ} \mathbf{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.28(\mathrm{bs}, 1 \mathrm{H})$, $8.06(\mathrm{~s}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.10(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.04(\mathrm{~m}, 2 \mathrm{H}), 3.21(\mathrm{dd}, J=14.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.12$ $-2.93(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.66(\mathrm{~m}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.15-1.04(\mathrm{~m}, 1 \mathrm{H}), 0.68$ $-0.63(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 216.6,214.7,182.2,171.6,137.9,137.1,136.4,134.6,130.2,129.6$, $128.8,128.2,127.9,127.5,113.9,102.9,62.9,59.2,47.8,45.2,44.3,29.5,25.9,21.6,21.2$. IR: 3450, 3368, 2925, 2212, 1620, 1585, 1487, 1456, 1270, 1068, 1011, $703 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}[\mathrm{M}$ $\left.+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} 409.1911$, found 409.1918 .

Compound 3d was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using 1d $(0.22 \mathrm{mmol}, 55 \mathrm{mg})$ and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as white solid ($71 \mathrm{mg}, 72 \%$). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.28(\mathrm{bs}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.27-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.06-7.05(\mathrm{~m}, 2 \mathrm{H}), 3.24-3.19(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{q}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.82$ $-2.67(\mathrm{~m}, 3 \mathrm{H}), 1.94(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.34(\mathrm{~s}, 9 \mathrm{H}), 1.18-1.05(\mathrm{~m}, 1 \mathrm{H}), 0.69-0.64(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 216.6,214.7,182.2,172.3,150.5,137.8,136.4,131.1,130.2,129.4,128.8,127.6,127.5$, $124.9,114.0,102.9,62.9,59.2,47.8,45.1,44.2,35.0,31.2,29.3,25.9,21.6$. IR: 3271, 2963, 2881, 2222, 1781, $1727,1632,1589,1437,1365,1330,1224,1011,875 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{30} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}$[M $\left.+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} 451.2380$, found 451.2381 .

3 e

Compound $\mathbf{3 e}$ was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using $\mathbf{1 e}$ $(0.22 \mathrm{mmol}, 50 \mathrm{mg})$ and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as white solid ($81 \mathrm{mg}, 86 \%$), melting point $=196-198{ }^{\circ} \mathbf{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.30(\mathrm{bs}, 1 \mathrm{H})$, $8.26(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.06-7.04 (m, 2H), $3.23(\mathrm{dd}, J=14.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.75$ $(\mathrm{m}, 2 \mathrm{H}), 2.70(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.16-1.08(\mathrm{~m}, 1 \mathrm{H}), 0.69-0.65(\mathrm{~m}, 1 \mathrm{H}) ;$ ${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 216.5,214.6,182.1,171.4,140.7,136.4,133.5,130.2,129.7,128.8,128.1,128.0$, $127.5,127.3,113.8,103.2,62.8,59.2,47.7,45.1,44.2,29.8,25.7,21.6$. IR: 2951, 2905, 2212, 1771, 1724, 1624, 1586, 1452, 1332, 1189, 1021, $861 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}+\mathrm{K}\right]^{+}\left[\mathrm{M}+\mathrm{K}^{+}\right] \mathrm{m} / \mathrm{z}$ 467.0923 , found 467.0875 .

$3 f$

Compound $\mathbf{3 f}$ was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using $\mathbf{1 f}$ $(0.22 \mathrm{mmol}, 60 \mathrm{mg})$ and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as white solid ($84 \mathrm{mg}, 81 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.31(\mathrm{bs}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.04(\mathrm{~m}, 2 \mathrm{H}), 3.23$ $(\mathrm{dd}, J=14.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{q}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.85-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~d}, J=$ $18.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.18-1.07(\mathrm{~m}, 1 \mathrm{H}), 0.70-0.64(\mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 216.5,214.6$, $182.1,171.4,140.7,136.4,133.5,130.2,129.8,128.8,128.1,128.0,127.5,127.3,113.8,103.2,62.9,59.2,47.7$, 45.2, 44.3, 29.9, 25.7, 21.6. IR: $3125,3065,2212,1755,1715,1630,1580,1452,1335,1173,859 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}+\mathrm{H}\right]^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} 475.0839$, found 475.0881.

Compound $\mathbf{3 g}$ was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using 1a ($0.22 \mathrm{mmol}, 42 \mathrm{mg}$) and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as white solid ($75 \mathrm{mg}, 83 \%$). ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.27(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.99$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.26(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.27$ $(\mathrm{s}, 3 \mathrm{H}), 2.01(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.20-1.12(\mathrm{~m}, 1 \mathrm{H}), 0.86-0.82(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 216.7,214.6,182.2,171.7,140.7,137.5,134.9,133.5,131.4,130.8,129.8,128.1,128.0,127.7,127.3$, $126.0,113.8,103.2,63.0,58.6,47.5,45.1,41.1,29.9,25.8,21.7,19.8$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} 409.1911$, found 409.1915.

Compound $\mathbf{3 h}$ was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using 1a ($0.22 \mathrm{mmol}, 42 \mathrm{mg}$) and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as white solid ($68 \mathrm{mg}, 75 \%$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.31(\mathrm{bs}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ $(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.01(\mathrm{~m}, 3 \mathrm{H}), 3.40(\mathrm{dd}, J=14.1,4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.05(\mathrm{~s}, 2 \mathrm{H}), 2.91-2.86(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.37-1.26$ $(\mathrm{m}, 1 \mathrm{H}), 1.09-1.03(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 215.4,212.9,182.1,171.3,160.9(\mathrm{~d}, J=247.9 \mathrm{~Hz})$, 140.7, 133.6, $132.8(\mathrm{~d}, J=4.0 \mathrm{~Hz}), 129.8,129.6(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 128.2,128.0,127.4,124.4(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 123.2(\mathrm{~d}$, $J=15.8 \mathrm{~Hz}), 115.8(\mathrm{~d}, J=22.3 \mathrm{~Hz}), 113.8,103.1,63.1,57.5,47.5,44.6,36.8,29.9,25.9,21.0 .{ }^{19}$ F NMR (461 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-113.9 \mathrm{ppm}$ IR: 3343, 3073, 2929, 2218, 1759, 1729, 1588, 1509, 1447, 1369, 1223, 1051, $827 \mathrm{~cm}^{-}$ ${ }^{1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}+\mathrm{H}\right]^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} 413.1660$, found 413.1663.

$3 i$

Compound $3 \mathbf{i}$ was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using 1a ($0.22 \mathrm{mmol}, 42 \mathrm{mg}$) and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as white solid ($69 \mathrm{mg}, 71 \%$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.38(\mathrm{bs}, 1 \mathrm{H}), 8.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.13$ $(\mathrm{d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.38(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.68-3.62(\mathrm{~m}, 2 \mathrm{H}), 3.29-3.11(\mathrm{~m}, 4 \mathrm{H}), 2.93(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.53$ (s, 3H); ${ }^{13} \mathbf{C}$ NMR (100 MHz, CDCl_{3}) $\delta 213.7,212.5,182.0,172.1,149.1,141.1,134.3,133.6,133.5,131.1,129.9$, $128.9,128.2,128.1,127.3,125.7,113.9,102.9,63.4,55.4,47.8,43.3,39.6,30.1,26.4,20.4$. IR: 3250, 2931, 2885, 2217, 1771, 1727, 1639, 1589, 1526, 1437, 1343, 1275, 1023, $864 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{4}+\mathrm{Na}\right]^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] \mathrm{m} / \mathrm{z} 462.1424$, found 462.1424 .

Compound $\mathbf{3} \mathbf{j}$ was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using 1a $(0.22 \mathrm{mmol}, 42 \mathrm{mg})$ and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as white solid ($78 \mathrm{mg}, 73 \%$), melting point $=157-159{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.32(\mathrm{bs}, 1 \mathrm{H})$, $8.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.12(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-6.87(\mathrm{~m}, 3 \mathrm{H}), 6.79-6.78(\mathrm{~m}, 1 \mathrm{H}), 6.73(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=14.1,4.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.91(\mathrm{~m}, 3 \mathrm{H}), 2.74(\mathrm{~d}, J=18.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~d}, J=18.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}$, $3 \mathrm{H}), 1.35-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.02-0.97(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 216.3,214.1,182.0,171.3,157.8$, $156.7,140.8,138.5,133.5,130.1,130.0,129.8,128.2,128.0,127.3,124.9,123.9,120.4,119.0,117.5,113.8,103.2$, 63.0, 58.9, 47.7, 45.2, 43.9, 29.9, 25.9, 21.7. IR: 3255, 3062, 2936, 2222, 1776, 1727, 1634, 1587, 1485, 1427, 1254, 1138, $798 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} 487.2016$, found 487.2005.

Compound $\mathbf{3 k}$ was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using 1a $(0.22 \mathrm{mmol}, 42 \mathrm{mg})$ and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as white solid ($73 \mathrm{mg}, 80 \%$), melting point $=139-141^{\circ} \mathbf{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.34(\mathrm{bs}, 1 \mathrm{H})$, $8.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.96(\mathrm{~m}, 1 \mathrm{H})$, $6.86(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.76(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{dd}, J=14.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=$ $12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{~d}, J=18.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.18(\mathrm{~m}$, $1 \mathrm{H}), 0.84-0.80(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 216.3,214.1,181.9,171.3,162.9(\mathrm{~d}, J=247.6 \mathrm{~Hz}), 140.7$, $139.0(\mathrm{~d}, J=7.1 \mathrm{~Hz}), 133.6,130.5(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 129.8,128.2,127.9,127.4,126.0(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 117.0(\mathrm{~d}, J=$ $21.0 \mathrm{~Hz}), 114.5(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 113.8,103.2,62.9,59.0,47.8,45.1,43.5,29.8,25.9,21.7 .{ }^{19} \mathbf{F} \mathbf{N M R}(471 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta$-111.9. IR: $3255,2955,2926,2217,1758,1727,1623,1589,1451,1363,1259,1153,869 \mathrm{~cm}^{-1} . \mathbf{H R M S}$ (TOF MS ES+) calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}+\mathrm{H}\right]^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} 413.1660$, found 413.1648.

Compound 31 was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using 1a $(0.22 \mathrm{mmol}, 42 \mathrm{mg})$ and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as white solid ($71 \mathrm{mg}, 78 \%$). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.34(\mathrm{bs}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.47$ $(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-6.95(\mathrm{~m}, 4 \mathrm{H}), 3.24(\mathrm{~d}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.05-2.89(\mathrm{~m}, 3 \mathrm{H}), 2.83-2.75(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~d}, J=18.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.27-1.21(\mathrm{~m}, 1 \mathrm{H}), 0.78-0.75$ $(\mathrm{m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 216.5,214.5,181.9,171.1,162.2(\mathrm{~d}, J=247.3 \mathrm{~Hz}), 140.6,133.6,132.2(\mathrm{~d}$, $J=3.0 \mathrm{~Hz}), 131.8(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 129.8,128.1,127.8,127.3,115.6(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 113.8,103.2,62.8,59.2,47.7$, 45.1, 42.9, 29.7, 25.8, 21.6. ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-115.5. IR: 2922, 2835, 2222, 1777, 1725, 1620, 1593, 1450, 1346, 1225, 1051, $857 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~F}+\mathrm{H}\right]^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} 413.1660$, found 413.1669.

Compound $\mathbf{3 m}$ was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using 1a ($0.22 \mathrm{mmol}, 42 \mathrm{mg}$) and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as white solid ($58 \mathrm{mg}, 79 \%$), melting point $=180-182{ }^{\circ} \mathbf{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.39(\mathrm{bs}, 1 \mathrm{H})$, $8.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 1 \mathrm{H}), 5.66-5.55(\mathrm{~m}, 1 \mathrm{H})$, $5.12-5.08(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{dd}, J=14.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.13-3.09(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{~d}, J=17.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.46-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 215.5,213.3,181.8,170.9,140.8,133.6,132.0,129.9,128.2,128.0,127.5,120.4,113.9,103.2,63.3,57.1,47.5$, 44.8, 41.9, 29.9, 26.6, 20.3. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}\right]^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] \mathrm{m} / \mathrm{z} 367.1417$, found 367.1441 .

Compound $\mathbf{3 n}$ was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using 1a ($0.22 \mathrm{mmol}, 42 \mathrm{mg}$) and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as white solid ($65 \mathrm{mg}, 87 \%$), melting point $=110-112{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.41(\mathrm{~s}, 1 \mathrm{H})$, $8.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 3.87-3.82(\mathrm{~m}, 1 \mathrm{H})$, $3.13-3.04(\mathrm{~m}, 4 \mathrm{H}), 2.62-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.032 .01(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 214.5,212.2,181.7,171.1,140.8,133.7,129.9,128.2,128.0,127.4,113.9,103.1$, 79.9, 71.0, 63.4, 55.5, 47.6, 45.6, 29.9, 26.9, 26.2, 20.6. IR: 3296, 2971, 2850, 2212, 1776, 1727, 1636, 1588, 1452, 1366, 1282, 1087, $732 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} 343.1441$, found 343.1432 .

Compound 30 was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using 1a $(0.22 \mathrm{mmol}, 42 \mathrm{mg})$ and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as white solid ($67 \mathrm{mg}, 82 \%$). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.46(\mathrm{bs}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ $-7.47(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 5.87(\mathrm{dq}, J=16.0,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.57(\mathrm{dq}, J=17.1,8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.18-5.06(\mathrm{~m}, 4 \mathrm{H}), 3.62-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.09-3.01(\mathrm{~m}, 3 \mathrm{H}), 2.79(\mathrm{~d}, J=19.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.58(\mathrm{~m}, 2 \mathrm{H})$, $2.50-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.02-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.63(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 214.4,212.8,181.5$, $170.6,140.6,133.6,132.2,131.7,129.9,128.2,128.0,127.5,120.5,119.7(2 \times \mathrm{C}), 113.9,63.0,60.6,48.6,45.1,38.9$, 38.5, 29.9, 26.7. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}\right]^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] \mathrm{m} / \mathrm{z} 393.1573$, found 393.1571.

$3 a \mathrm{a}$
Compound 3aa was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using 1aa $(0.22 \mathrm{mmol}, 43 \mathrm{mg})$ and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as yellow solid ($66 \mathrm{mg}, 76 \%$), melting point $=190-191{ }^{\circ} \mathbf{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.32(\mathrm{~s}$, $1 \mathrm{H}), 8.09(\mathrm{dd}, J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.94(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=13.8,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=10.2,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.97(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.54-1.49(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $215.4,213.5,181.4,164.3,157.2,136.2,136.1,130.1,129.2,127.9,127.8,122.2,118.3,115.8,113.2,101.2,66.4$, 60.5, 58.9, 44.9, 44.3, 42.3, 21.4. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} 397.1547$, found 397.1524.

Compound 3ab was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using 1ab ($0.22 \mathrm{mmol}, 46 \mathrm{mg}$) and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as yellow solid ($67 \mathrm{mg}, 74 \%$). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.29(\mathrm{~s}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.36-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.08-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.63(\mathrm{~m}, 1 \mathrm{H}), 3.41-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.17-$ $3.09(\mathrm{~m}, 2 \mathrm{H}), 2.99(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.48(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 215.4,213.6,181.5,164.9,155.5,137.1,136.2,130.0,129.2,127.9,127.7,125.4,121.6,115.3$, $113.4,100.9,66.5,60.6,58.9,44.9,44.3,42.3,21.5,16.1$. IR: $3261,2931,2217,1766,1724,1624,1588,1421$, 1329, 1218, 1133, $862 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] \mathrm{m} / \mathrm{z} 433.1523$, found 433.1525.

Compound 3ac was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using 1ac $(0.22 \mathrm{mmol}, 49 \mathrm{mg})$ and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as yellow solid ($72 \mathrm{mg}, 77 \%$), melting point $=205-209{ }^{\circ} \mathbf{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.31(\mathrm{~s}$, $1 \mathrm{H}), 7.53-7.52(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.87(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.65-$ $3.62(\mathrm{~m}, 1 \mathrm{H}), 3.35-3.29(\mathrm{~m}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.00-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.52-$ $1.48(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 215.5,213.5,181.4,164.5,154.3,151.9,136.2,130.0,129.2,127.9$, $125.3,119.4,115.5,113.4,108.3,100.9,66.5,60.6,58.9,55.9,44.9,44.3,42.4,21.3$. IR: 3204, 2943, 2207, 1761, $1725,1623,1588,1491,1447,1325,1031,854 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}\right]^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right]$ $\mathrm{m} / \mathrm{z} 427.1652$, found 427.1659 .

3ad

Compound 3ad was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using $1 \mathbf{a d}(0.22 \mathrm{mmol}, 46 \mathrm{mg})$ and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as yellow solid ($71 \mathrm{mg}, 79 \%$), melting point $=143-145{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.24(\mathrm{~s}$, $1 \mathrm{H}), 7.97(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.06-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 3.62$ (dd, $J=13.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.35-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~d}, J=17.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.48(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 215.5,213.5,181.6,164.3,157.3,148.0$, $136.2,130.0,129.1,127.9,127.5,123.6,118.3,113.4,113.3,100.0,66.3,60.5,58.9,44.9,44.3,42.3,22.2,21.3$. IR: 2906, 2813, 2217, 1766, 1730, 1634, 1579, 1437, 1330, 1224, 1143, $854 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z}$ 411.1703, found 411.1715.

$3 a e$

Compound 3ae was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using 1ae ($0.22 \mathrm{mmol}, 60 \mathrm{mg}$) and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as yellow solid ($73 \mathrm{mg}, 70 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.36(\mathrm{bs}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J$ $=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.35(\mathrm{~m}, 4 \mathrm{H}), 7.08-7.00(\mathrm{~m}, 3 \mathrm{H}), 3.68(\mathrm{dd}$, $J=13.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=13.9,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.12-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.98(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~d}, J=$ $17.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.54-1.50(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 215.4,213.4,181.3,164.3,156.5,139.0,136.2$, $135.3,134.8,130.0,129.2(2 \times C), 127.9,127.8,126.7,125.5,118.7,115.9,113.2,101.4,66.5,60.6,58.9,44.9,44.3$, 42.4, 21.4. IR: 3250, 3032, 2217, 1761, 1728, 1631, 1603, 1480, 1452, 1204, 1037, $762 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} 473.1860$, found 473.1883

Compound 3af was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using 1af $(0.22 \mathrm{mmol}, 50 \mathrm{mg})$ and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as yellow solid ($68 \mathrm{mg}, 72 \%$). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.41(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.33$ $(\mathrm{m}, 4 \mathrm{H}), 7.06-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=13.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.11-2.96(\mathrm{~m}, 3 \mathrm{H}), 2.58(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.52-1.48(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 215.2,213.2$, $181.0,162.5,155.6,136.2$, 135.8, 130.0, 129.2, 127.9, 127.4, 126.6, 119.8, 116.6, 112.6, 102.2, 66.4, 60.4, 58.9, 44.9, 44.2, 42.1, 21.3. IR: $3260,3058,2936,2850,2217,1761,1728,1640,1598,1453,1376,1341,1207,1092$, $875 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}+\mathrm{H}\right]^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} 431.1157$, found 431.1166.

Compound 3ag was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using $\mathbf{1 a g}(0.22 \mathrm{mmol}, 60 \mathrm{mg})$ and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as yellow solid ($79 \mathrm{mg}, 76 \%$), melting point $=188-190{ }^{\circ} \mathbf{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.41(\mathrm{~s}$, $1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.05-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61-$ $3.56(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.10-2.95(\mathrm{~m}, 3 \mathrm{H}), 2.57(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.51-1.46(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 215.1,213.2,180.9,162.4,156.1,138.6,136.1,130.0,129.7,129.2,127.9,120.1,117.2$, $114.5,112.6,102.2,66.4,60.4,58.9,44.9,44.2,42.1,21.3$. IR: $3265,3062,2222,1766,1728,1643,1603,1476$, 1452, 1332, 1219, $861 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Br}+\mathrm{H}\right]^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} 475.0652$, found 475.0671 .

Compound 3ah was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using 1ah ($0.22 \mathrm{mmol}, 46 \mathrm{mg}$) and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as yellow solid ($66 \mathrm{mg}, 73 \%$), melting point $=184-186{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.29(\mathrm{~s}$, $1 \mathrm{H}), 7.86(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.26(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.63$ (dd, $J=14.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.09(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{~d}, J=17.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.48(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 215.4,213.5,181.5,164.4,155.3,137.3$, $136.2,131.7,130.0,129.1,127.9,127.2,118.0,115.4,113.3,100.8,66.3,60.5,58.9,44.9,44.3,42.4,21.3,20.6$. IR: 2922, 2835, 2222, 1776, 1725, 1620, 1593, 1450, 1346, 1225, 1051, $857 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z}$ 411.1703, found 411.1715.

Compound 3ai was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using 1ai $(0.22 \mathrm{mmol}, 47 \mathrm{mg})$ and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as yellow solid ($62 \mathrm{mg}, 68 \%$). ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.32(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{dd}, J=8.9,6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.35-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.79(\mathrm{~m}, 1 \mathrm{H}), 6.65(\mathrm{dd}, J=9.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{dd}, J=13.8,5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.39-3.35(\mathrm{~m}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=10.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.58(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.52-1.48(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 215.4,213.4,181.2,167.1(\mathrm{~d}, J=$ $258.4 \mathrm{~Hz}), 163.0,159.0(\mathrm{~d}, J=13.5 \mathrm{~Hz}), 136.2,130.1,129.9(\mathrm{~d}, J=11.1 \mathrm{~Hz}), 129.2,127.9,113.2,112.5(\mathrm{~d}, J=2.8$ $\mathrm{Hz}), 110.8(\mathrm{~d}, ~ J=23.1 \mathrm{~Hz}), 105.4(\mathrm{~d}, J=24.7 \mathrm{~Hz}), 100.8,66.6,60.4,58.9,44.9,44.3,42.1,21.3 ;{ }^{19}$ F NMR (471 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$-98.8. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F}+\mathrm{Na}\right]^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] \mathrm{m} / \mathrm{z} 437.1272$, found 437.1265.

Compound 3aj was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using 1aj ($0.22 \mathrm{mmol}, 50 \mathrm{mg}$) and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as yellow solid ($62 \mathrm{mg}, 65 \%$). ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.36(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.36-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=13.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=$ $13.9,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{dd}, J=10.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~d}, J=$ $17.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.52-1.48(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 215.3,213.3,181.1,162.9,157.5,141.9,136.2$, $130.1,129.2$, 128.6, 127.9, 123.0, 118.5, 114.3, 113.0, 101.5, 66.5, 60.4, 58.9, 44.9, 44.3, 42.1, 21.3. IR: 3054, 2986, 2308, 1768, 1731, 1623, 1595, 1422, 1352, 1266, 896, $740 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Cl}+\mathrm{H}\right]^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} 431.1157$, found 431.1155.

Compound 3ak was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using 1ak ($0.22 \mathrm{mmol}, 58 \mathrm{mg}$) and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as yellow solid ($73 \mathrm{mg}, 72 \%$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.49(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.37-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.30(\mathrm{dd}, J=8.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-7.05(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{dd}, J=13.8$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=13.8,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.11-3.06(\mathrm{~m}, 2 \mathrm{H}), 2.99(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~d}, J=17.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.54-1.51(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 215.2,213.1,180.8,162.4,156.9,136.9(\mathrm{q}, J=33.3 \mathrm{~Hz})$, $136.2,130.1,129.2,128.5,128.0,123.0(\mathrm{q}, J=273.1 \mathrm{~Hz}), 118.5(\mathrm{q}, J=3.6 \mathrm{~Hz}), 118.3,115.7(\mathrm{q}, J=4.0 \mathrm{~Hz}), 112.6$, 103.4, 66.6, 60.4, 58.9, 44.9, 44.2, 42.2, 21.3; ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-63.8$. IR: 3266, 3077, 2950, 2869, 2218, 1759, 1729, 1629, 1606, 1499, 1376, 1207, 1066, $858 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~F}_{3}+\mathrm{H}\right]^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} 465.1421$, found 465.1444

Compound 3al was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using 1al ($0.22 \mathrm{mmol}, 54 \mathrm{mg}$) and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as yellow solid ($63 \mathrm{mg}, 64 \%$), melting point $=172-174{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.29(\mathrm{~s}, 1 \mathrm{H})$, $8.22(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.34(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.03(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{dd}, J=14.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.53$ $(\mathrm{dd}, J=14.2,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=10.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.62$ $(\mathrm{d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.59-1.55(\mathrm{~m}, 4 \mathrm{H}){ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 215.5,213.6,181.7,163.7,155.4,137.1$, $136.3,130.2,130.1,129.2,128.2,127.9,127.0,124.6,123.8,122.2,122.0,113.7,110.3,100.2,67.1,60.6,59.0$, 44.9, 44.3, 41.9, 21.4. IR: 2923, 2850, 2212, 1736, 1680, 1614, 1536, 1508, 1368, 1269, 1108, $806 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} 447.1703$, found 447.1715.

Compound 3am was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using 1ac ($0.22 \mathrm{mmol}, 49 \mathrm{mg}$) and purified by silica gel column chromatography ($5 \rightarrow 15 \%$ EtOAc: hexane) to provide pure compound as yellow solid ($75 \mathrm{mg}, 78 \%$). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.30(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.27-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.14(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=9.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.84(\mathrm{~m}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{dd}$, $J=13.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.30(\mathrm{~m}, 1 \mathrm{H}), 3.07-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.91(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.33(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.45(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 215.6,213.5,181.5,164.6,154.2,152.0,139.1$, $136.1,130.5,129.1,128.5,127.0,125.2,119.4,115.5,113.3,108.3,101.0,66.6,60.6,58.8,55.9,44.9,44.2,42.5$, 21.4, 21.2. IR: 3260, 2952, 2869, 2218, 1770, 1729, 1634, 1600, 1490, 1330, 1209, 1044, $733 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4}+\mathrm{H}\right]^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} 441.1809$, found 441.1790 .

Compound 3an was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using 1ag ($0.22 \mathrm{mmol}, 60 \mathrm{mg}$) and purified by silica gel column chromatography $(5 \rightarrow 15 \%$ EtOAc : hexane) to provide pure compound as yellow solid ($77 \mathrm{mg}, 71 \%$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.44(\mathrm{bs}, 1 \mathrm{H}), 8.15(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~d}, J$ $=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.03-7.01(\mathrm{~m}, 4 \mathrm{H}), 6.85(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.15$ $(\mathrm{m}, 1 \mathrm{H}), 3.06(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.56-1.39(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 215.0,212.9,180.7,162.3(\mathrm{~d}, J=248.1 \mathrm{~Hz}), 162.1,156.0,138.7,131.9$ (d, $J=3.5 \mathrm{~Hz}$), 131.6 (d, $J=7.7 \mathrm{~Hz}$), 129.6, 120.2, 117.1, 116.0 (d, $J=21.2 \mathrm{~Hz}$), 114.5, 112.6, 102.2, 66.5, 60.4, $58.8,44.2,43.6$, 42.1, 21.5; ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-113.4. IR: 3250, 2960, 2900, 2217, 1787, 1729, 1644, 1603, 1509, 1391, 1325, 1221, $850 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{FBr}+\mathrm{H}\right]^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} 493.0558$, found 493.0555.

Compound 3ao was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using $1 \mathrm{am}(0.22 \mathrm{mmol}, 46 \mathrm{mg})$ and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as yellow solid ($64 \mathrm{mg}, 71 \%$), melting point $=167-199{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.37$ (bs, $1 \mathrm{H}), 8.26$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.05(\mathrm{~m}, 2 \mathrm{H}), 3.62-3.57(\mathrm{~m}, 1 \mathrm{H})$, $3.07(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.45(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~d}, J=18.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.45-1.41(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 215.2$, 213.7, 180.7, 167.1, 138.2, 136.2, 133.4, 130.0, 129.8, 129.2, 127.8, 127.4, 125.4, 125.3, 113.6, 104.6, 62.8, 58.9, 45.5, 44.9, 44.6, 27.3, 21.5. IR: $3055,2986,2308,1765,1731,1266,896,740,706 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+}[\mathrm{M}+$ $\mathrm{H}^{+} \mathrm{m} / \mathrm{z} 413.1318$, found 413.1325.

Compound 3ap was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above by using $1 \mathrm{am}(0.22 \mathrm{mmol}, 46 \mathrm{mg})$ and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as yellow solid ($69 \mathrm{mg}, 64 \%$), melting point $=185-187{ }^{\circ} \mathbf{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.37$ (bs, $1 \mathrm{H}), 8.27(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.13$ $(\mathrm{m}, 4 \mathrm{H}), 3.75(\mathrm{dd}, J=14.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.63(\mathrm{~m}, 2 \mathrm{H})$, $2.15(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 213.9,211.4,180.6$, $167.1,138.0,135.7(2 \times C), 133.9,133.4,132.7,129.8,129.5,127.9,127.4,125.4(2 \times \mathrm{C}), 113.5,104.7,63.1,57.3$, 45.4, 44.3, 43.3, 27.7, 21.2. IR: 3250, 2921, 2843, 2217, 1762, 1730, 1633, 1586, 1438, 1349, 1041, 1021, $879 \mathrm{~cm}^{-}$ ${ }^{1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{BrS}+\mathrm{H}\right]^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} 491.0423$, found 491.0430.

Compound 3aq was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using $\operatorname{1am}(0.22 \mathrm{mmol}, 46 \mathrm{mg})$ and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as yellow solid ($62 \mathrm{mg}, 66 \%$), melting point $=211-213{ }^{\circ} \mathbf{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.36(\mathrm{bs}$, $1 \mathrm{H}), 8.27(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.64(\mathrm{~m}$, $2 \mathrm{H}), 3.62(\mathrm{dd}, J=14.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.51(\mathrm{dd}, J=14.0,12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{~d}, J=17.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.52-1.47(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 215.2,213.6,180.7,167.1,139.2,138.2,136.1,133.4,130.6,129.8,129.1,128.4,127.3,127.0,125.4$, $125.3,113.6,104.7,62.8,58.8,45.4,45.0,44.7,27.4,21.6,21.5$. IR: 3270, 2916, 2860, 2217, 1766, 1728, 1634, 1583, 1437, 1348, 1306, $859 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}+\mathrm{H}\right]^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} 427.1475$, found 427.1483 .

Compound 3ar was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using $\operatorname{1am}(0.22 \mathrm{mmol}, 46 \mathrm{mg})$ and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as yellow solid ($69 \mathrm{mg}, 62 \%$), melting point $=207-209{ }^{\circ} \mathbf{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.40(\mathrm{bs}$, $1 \mathrm{H}), 8.29(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 6.91-6.89(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=14.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, J=12.6$ $\mathrm{Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{t}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 214.8,213.2,180.5,167.0,158.3,156.3,138.2(2 \times \mathrm{C}), 133.4,130.4,130.1$, $129.8,127.4,125.4,125.3,124.3,124.2,119.8,119.5,117.3,113.6,104.7,62.9,58.6,45.4,44.7,44.5,27.5,21.8$. IR: $3286,3058,2212,1771,1728,1630,1583,1486,1437,1345,1258,1143,870 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}+\mathrm{H}\right]^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} 505.1580$, found 505.1592.

Compound 3as was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using 1am ($0.22 \mathrm{mmol}, 46 \mathrm{mg}$) and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as yellow solid ($66 \mathrm{mg}, 70 \%$), melting point $=160-162{ }^{\circ} \mathbf{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.41(\mathrm{bs}$, $1 \mathrm{H}), 8.26(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.05-6.98(\mathrm{~m}, 4 \mathrm{H}), 3.60-3.55(\mathrm{~m}$, $1 \mathrm{H}), 3.04(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{t}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.78$ $(\mathrm{d}, J=18.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.59-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 215.1,213.5,180.4,166.9$, $162.3(\mathrm{~d}, J=248.3 \mathrm{~Hz}), 138.1,133.4,132.0(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 131.7(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 129.8,127.4,125.4(2 \times \mathrm{C}), 116.0$ $(\mathrm{d}, J=21.2 \mathrm{~Hz}), 113.6,104.7,62.8,58.8,45.7,44.5,43.5,27.6,21.7 ;{ }^{19} \mathbf{F} \mathbf{N M R}\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-113.6$. IR: 3255, 3062, 2976, 2864, 2223, 1766, 1729, 1633, 1586, 1439, 1371, 1241, 1040, $866 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{FS}+\mathrm{Na}\right]^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] \mathrm{m} / \mathrm{z}$ 453.1043, found 453.1054.

3at

Compound 3at was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using 1an ($0.22 \mathrm{mmol}, 32 \mathrm{mg}$) and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as white sticky solid ($47 \mathrm{mg}, 62 \%$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.02-6.98$ $(\mathrm{m}, 2 \mathrm{H}), 3.17-3.13(\mathrm{~m}, 1 \mathrm{H}), 3.02-2.95(\mathrm{~m}, 2 \mathrm{H}), 2.68(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.52-2.44(\mathrm{~m}$, $1 \mathrm{H}), 2.15-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{~d}, J=18.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.36-1.29(\mathrm{~m}, 5 \mathrm{H}), 0.97-0.94(\mathrm{~m}, 1 \mathrm{H}), 0.70-0.60(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 213.4,212.8,198.0,197.5,136.1,130.0,128.9,127.7,111.0,110.6,67.6,59.3$, 48.2, 43.9, 41.9, 31.5, 31.4, 27.3, 24.6, 21.1. IR: 2941, 2860, 2227, 1767, 1730, 1712, 1624, 1585, 1451, 1224, 1021, $847 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{Na}\right]^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] \mathrm{m} / \mathrm{z} 370.1414$, found 370.1417.

Compound 3au was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using $1 \mathbf{a o}(0.22 \mathrm{mmol}, 40 \mathrm{mg})$ and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as yellow solid ($32 \mathrm{mg}, 38 \%$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) (major diastereomer) $\delta 9.35(\mathrm{~s}, 1 \mathrm{H})$, $7.76-7.73(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.51(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 2 \mathrm{H}), 3.33-3.27(\mathrm{~m}, 1 \mathrm{H}), 3.06(\mathrm{~d}, \mathrm{~J}=$ $12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{~d}, J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 0.55(\mathrm{~d}, J$ $=7.4 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 214.1 \mathrm{CC}^{*}, 214.0 \mathrm{CC}^{*}, 179.5 \mathrm{CC}^{*}, 177.0 \mathrm{CC}^{*}, 136.3 \mathrm{CC}^{*}, 135.1$ $\mathrm{C}^{*}, 134.0 \mathrm{C}, 132.7 \mathrm{C}, 131.0 \mathrm{C}^{*}, 130.0 \mathrm{CC}^{*}, 129.7 \mathrm{C}^{*}, 129.5 \mathrm{C}, 129.0 \mathrm{C}^{*}, 128.9 \mathrm{C}, 128.4 \mathrm{C}^{*}, 128.2 \mathrm{C}, 127.7 \mathrm{CC}^{*}$, $113.6 \mathrm{CC}^{*}, 107.6 \mathrm{C}, 101.9 \mathrm{C}^{*}, 69.7 \mathrm{C}^{*}, 65.2 \mathrm{C}, 59.1 \mathrm{CC}^{*}, 44.6 \mathrm{C}^{*}, 44.4 \mathrm{C}, 43.8 \mathrm{C}^{*}, 43.6 \mathrm{C}, 42.6 \mathrm{C}^{*}, 42.4 \mathrm{C}, 22.6$ $\mathrm{C}, 21.6 \mathrm{C}^{*}, 17.1 \mathrm{C}^{*}, 16.4 \mathrm{C} .\left[\mathrm{C}=\right.$ major diastereomer, $\mathrm{C}^{*}=$ minor diastereomer, \& $\mathrm{CC} *=$ both diastereomers peaks were merging]. IR: $3260,3067,2956,2855,2218,1767,1728,1637,1600,1493,1372,1224,1092,879 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} 383.1754$, found 383.1757.

Compound 3av was prepared by general procedure for synthesis of [4,4]-carbospirocycles described above using $1 \mathbf{a p}(0.22 \mathrm{mmol}, 40 \mathrm{mg})$ and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as white solid ($57 \mathrm{mg}, 68 \%$). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of major diastereomer: $\delta 8.27(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.14-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.52-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.09-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{dd}, J=18.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{dd}, J$ $=18.6,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H}), 1.24-1.18(\mathrm{~m}, 1 \mathrm{H}), 0.85(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ of major diastereomer : $\delta 214.7,213.8,179.9,152.3,136.8,135.8,135.6,130.7,128.8,128.6,127.3,126.1,125.5$, $113.0,112.7,75.1,59.1,48.0,43.9,40.9,37.6,32.6,22.8$. IR: 3457, 3062, 2925, 2855, 2225, 1763, 1728, 1608, 1570, 1493, 1373, 1244, 1046, $738 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z}$ 381.1598 , found 381.1598 .

5a

Compound 5a was prepared by general procedure for isolation of reaction of intermediate 5a described above using $1 \mathbf{a}(0.22 \mathrm{mmol}, 42 \mathrm{mg})$ and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as yellow sticky solid ($20 \mathrm{mg}, 23 \%$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.84(\mathrm{dd}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49$ $-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.02-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.91-6.89(\mathrm{~m}$, $2 \mathrm{H}), 3.45-3.41(\mathrm{~m}, 1 \mathrm{H}), 3.03(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.78(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.66(\mathrm{~m}$, $2 \mathrm{H}), 2.28-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.56(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $215.4,213.6,174.7,140.0,135.9,133.7,129.8,129.3,128.7,128.5,128.4,127.5,127.1,113.3,113.0,80.3,59.4$, 47.0, 43.8, 42.7, 40.6, 24.9, 24.8, 20.2. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}\right]^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} 395.1754$, found 395.1752 .

Compound 8 was prepared by general procedure for chemoselective reduction for synthesis of compound described above using $\mathbf{3 a}(0.22 \mathrm{mmol}, 87 \mathrm{mg})$ and purified by silica gel column chromatography $(15 \rightarrow 35 \% \mathrm{EtOAc}$: hexane) to provide pure compound as yellow solid ($75 \mathrm{mg}, 86 \%$), melting point $=142-144{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.38(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.12(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-6.99(\mathrm{~m}, 3 \mathrm{H}), 4.43(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.30(\mathrm{bs}, 2 \mathrm{H}), 3.06-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.53(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~d}, J=19.2 \mathrm{~Hz}, 1 \mathrm{H})$, $1.81-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 1.11-1.00(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 216.1,215.3,159.3,136.2$, $136.0,134.4,129.9,129.7,128.9,128.5,127.8,126.8,126.5,117.7,84.8,66.2,59.3,43.8,43.6,43.2,41.8,28.7$, 22.5, 21.7. IR: $3356,2956,2934,2197,1723,1644,1579,1457,1376,1224,1088,748 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{Na}\right]^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] \mathrm{m} / \mathrm{z} 419.1730$, found 419.1730.

Compound 9 was prepared by general procedure for synthesis of triketone spirocyclic compound described above using 3a ($0.22 \mathrm{mmol}, 87 \mathrm{mg}$) and purified by silica gel column chromatography ($5 \rightarrow 15 \% \mathrm{EtOAc}$: hexane) to provide pure compound as white solid ($58 \mathrm{mg}, 67 \%$), melting point $=189-191{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.40(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.27(\mathrm{~m}, 4 \mathrm{H}), 7.05-7.03(\mathrm{~m}, 2 \mathrm{H})$, $3.23(\mathrm{dd}, J=14.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.07-2.99(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.80(\mathrm{~m}, 2 \mathrm{H}), 2.72(\mathrm{~d}, J=18.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{~d}, J=18.7$ $\mathrm{Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.26-1.19(\mathrm{~m}, 1 \mathrm{H}), 0.77-0.71(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 214.1,213.4,199.4$, $182.7,141.4,136.3,134.9,130.2,130.0,129.2,128.9,127.9,127.6(2 \times \mathrm{C}), 113.1,105.2,66.3,59.3,46.4,43.7,42.5$, 29.8, 25.9, 20.8. IR: 3055, 2982, 2926, 2855, 2303, 1763, 1730, 1688, 1578, 1432, 1266, 890, $706 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{3}+\mathrm{H}\right]^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} 396.1594$, found 396.1589.

10

Compound 10 was prepared by general procedure for synthesis of N-protected carbospirocycle described above using $\mathbf{3 a}(0.22 \mathrm{mmol}, 87 \mathrm{mg})$ and purified by crystallization technique to provide pure compound as white solid (85 $\mathrm{mg}, 78 \%)$, melting point $=101-103{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 2 \mathrm{H}), 4.35(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.21(\mathrm{dd}, J=14.2$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{q}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.91-2.76(\mathrm{~m}, 3 \mathrm{H}), 2.00(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.36(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.22-1.14(\mathrm{~m}, 1 \mathrm{H}), 0.71-0.66(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 214.1,213.5,179.3,173.5$, $165.3,158.6,141.5,136.1,134.9,130.2,129.9,128.9,128.5,127.7(2 \times C), 127.5,113.6,100.3,63.7,63.6,59.0$, $47.6,44.5,44.3,29.8,25.9,21.5,14.0$. IR: $3266,2978,2917,2223,1765,1727,1708,1584,1453,1269,1232$, 1082, $821 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{5}+\mathrm{Na}\right]^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] \mathrm{m} / \mathrm{z} 517.1734$, found 517.1727.

11a

Compound 11a was prepared by general procedure for synthesis of pyrimidine fused spirocycles described above using 3a ($0.22 \mathrm{mmol}, 87 \mathrm{mg}$) and purified by silica gel column chromatography ($10 \rightarrow 25 \% \mathrm{EtOAc}$: hexane) to provide pure compound as white solid ($59 \mathrm{mg}, 55 \%$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.99(\mathrm{~s}, 1 \mathrm{H}), 8.63(\mathrm{~s}, 1 \mathrm{H}), 7.90$ $(\mathrm{d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.13(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.43-2.37(\mathrm{~m}, 2 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.07-0.99(\mathrm{~m}, 1 \mathrm{H}), 0.68-0.59(\mathrm{~m}, 1 \mathrm{H})$; IR: 3067, 2958, 2843, 1755, 1728, 1629, 1589, 1453, 1328, 1264, 1088, $745 \mathrm{~cm}^{-1} .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.7$, $184.5,174.7,158.8,154.0,150.1,148.1,137.0,136.8,135.7,135.3,133.3,130.7,129.6,129.0,127.9,127.6(2 \times \mathrm{C})$, $127.4,126.1,73.6,63.9,40.8,29.0,24.2,20.5$. IR: 2906, 2813, 2217, 1766, 1730, 1634, 1579, 1437, 1330, 1224, 1143, $854 \mathrm{~cm}^{-1}$. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}_{2}+\mathrm{Na}\right]^{+}\left[\mathrm{M}+\mathrm{Na}^{+}\right] \mathrm{m} / \mathrm{z} 509.0794$, found 509.0792.

Compound 11b was prepared by general procedure for synthesis of pyrimidine fused spirocycles described above using 3ao ($0.22 \mathrm{mmol}, 90 \mathrm{mg}$) and purified by silica gel column chromatography ($10 \rightarrow 25 \% \mathrm{EtOAc}$: hexane) to provide pure compound as white solid ($58 \mathrm{mg}, 52 \%$), melting point $=135-137{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $10.01(\mathrm{~s}, 1 \mathrm{H}), 8.65(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 4 \mathrm{H}), 3.29(\mathrm{~d}, J=13.9 \mathrm{~Hz}$, $1 \mathrm{H}), 3.16(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 206.1,184.4,174.0,159.2,154.5,150.9,142.4,137.7,135.7,134.5,134.1,132.6,130.7,129.2$, 129.0, 128.9, 128.5, 128.4, 127.9, 125.4, 73.6, 64.4, 40.9, 24.2, 22.5. HRMS (TOF MS ES+) calcd. for $\left[\mathrm{C}_{27} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}_{2} \mathrm{~S}+\mathrm{H}\right]^{+}\left[\mathrm{M}+\mathrm{H}^{+}\right] \mathrm{m} / \mathrm{z} 505.0539$, found 505.0521.

NMR SPECTRA

$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

210	200	190	180	170	160	150	140	130	120			90	80	70	60	50	40	30	20	10	0	-10

$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

\%

$\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$

	景	区		\％	等最	0		
\％	\dagger		－－me		－	1		

[^0]

3at
$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

3au, 1:5 dr $\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

ำ

3av, 1:9 dr $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

3av, 1:9 dr $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

5a
$\mathrm{CDCl}_{3}, 125 \mathrm{MHz}$

$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

8
$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$

1D NOE spectra of compound 8

2D NOE spectrum of compound 8

$\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$

$\mathrm{CDCl}_{3}, \mathbf{1 0 0} \mathrm{MHz}$

[^0]: $\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{fl} & (\mathrm{ppm})\end{array}$

