Enantioselective formal [2+2+2] cycloaddition of 1,3,5-triazinanes to construct tetrahydropyrimidin-4-one derivatives

Peiran Ruan, Qiong Tang, Zun Yang, Xiaohua Liu* and Xiaoming Feng*

Abstract: A chiral Lewis acid-catalyzed enantioselective formal [2+2+2] cycloaddition of 1,3,5-triazinanes with azlactones or β , γ -unsaturated pyrazole amides were developed to synthesize chiral tertiary/quaternary tetrahydropyrimidin-4-one derivatives with good yields and enantioselectivities. Two competitive reaction pathways were proposed based on experiments.

DOI: 10.1039/x0xx00000x

Index

1.	General Information1
2.	Substrates synthesis
3.	General procedure for the catalytic asymmetric cycloaddition2
4.	Scope limitation
5.	Experimental procedure for the scale-up reaction and further conversion
6.	The nonlinear effect study4
7.	Control experiments and other catalysts screening5
8.	Optimazition reaction condition
9.	Possible reaction pathways for β , γ -unsaturated pyrazole amide
10.	Determination of absolute configurations of the compounds14
11.	Analysis results of 2D NMR spectra of the product 3ac16
12.	Characterization of products19
13.	References
14.	Copies of NMR spectra for products61

1. General Information

NMR characterization data were collected on bruker ASCENDTM operating at 400 MHz for ¹H NMR, 101 MHz for ¹³C NMR (with complete proton decoupling), and 376 MHz for 19 F NMR (with complete proton decoupling). 14 NMR and 13 C NMR: chemical shifts δ were recorded in ppm relative to tetramethylsilane and internally referenced to the residual solvent signal (for ¹H NMR: CDCl₃ = 7.26 ppm, DMSO-*d*₆ = 2.50 ppm; for ¹³C NMR: CDCl₃ = 77.1 ppm, DMSO-d₆ = 39.6 ppm). Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, dd = doublet of doublets, td = triplet of doublets, dt = doublet of triplets, ddd = doublet of doublet of doublets, m = multiplet), coupling constants (Hz), integration. High performance liquid chromatography (HPLC) was performed on Alliance e2695 using Daicel Chiralcel IA, IE, IH, ADH, ODH at 23 °C with UV detector at 254 nm, supercritical fluid chromatography (SFC) was performed on Acquity UPC² using Daicel Chiralcel OX-3, IB-3 at 25 °C with UV detector at 254 nm, enantiomeric excesses (ee) and enantiomeric ratio (er) were determined in comparison with the authentic racemates. High resolution mass spectra (HRMS) were performed on Thermo Q-Exactive Focus (FTMS+c ESI) and data were reported as (m/z). Infrared spectra (IR) were recorded on Bruker Tensor II spectrometer with Plantium ATR accessory and the peaks are reported as absorption maxima (ν_c cm⁻¹). Optical rotations were measured on Rudolph Research Analytic Automatic Polarimeter, and reported as follows: [α]^T_D (c: g/100 mL, solvent). Melting point ranges were determined on OptiMelt. X-ray crystallographic data were collected by a Bruker D8 Venture Photon II. The experiments requiring chiral N, N'-dioxide ligands¹ and azlactone² were synthesized according to known procedures and purified by recrystallization prior to use. All of the starting materials including the metal salts were purchased from TCI, Aladdin, Adamas, Acros, Aldrich and other companies, and used without further purification. The 3/4/5Å MS was purchased from Acros, and oven-dried by the muffle furnace for 4 h prior to use. All the solvents including toluene, tetrahydrofuran, diethyl ether, dichloromethane, chloroform, 1,2-dichloroethane and so on were pre-dried over appropriate desiccants, and distilled prior to use. Reactions were monitored using thin-layer chromatography (TLC) on GF254 silica gel. Visualization of the developed plates was performed under UV light (254 nm) or using iodine, cobalt thiocyanate or KMnO4. The products were purified by flash column chromatography with silicycle 300-400 mesh silica gel.

2. Substrates synthesis

2.1 General procedure for the synthesis of β , γ -unsaturated pyrazole amide compounds³

A solution of β , γ -unsaturated carboxylic acid (4.0 mmol) and the substituted pyrazole (4.2 mmol, 1.05 equiv) in CH₂Cl₂ (30 mL) at 0 °C was added DCC (1.2 equiv, 4.8 mmol in 10 mL of CH₂Cl₂) and 4-DMAP (4.0 mmol, 1.0 equiv) successively. The resulting mixture was stirred at 0 °C for 30 minutes, then gradually warmed to room temperature and further stirred at room temperature for 24 hours. Water (75 mL) was added to the crude product which was then extracted with CH₂Cl₂ (80 mL × 2). The combined organic phase was washed with water, brine, dried over Na₂SO₄, filtered, concentrated under reduced pressure and purified by column chromatography to afford the desired product.

2.2 General procedure for the synthesis of 1,3,5-triazinane compounds⁴

In a 100 mL round-bottomed flask equipped with a Dean-Stark apparatus, a mixture of aniline (30 mmol), paraformaldehyde (30 mmol), and toluene (50 mL) was heated with refluxing for 2 hours. Then the solvent was concentrated under reduced pressure at 50°C, a precipitate came out from the mixture. The precipitate was collected by filtration, washed with *n*-hexane several times, and dried to obtain 1,3,5-triazinane.

3. General procedure for the catalytic asymmetric cycloaddition

The reactions were carried out with $Zn(OTf)_2/L_2$ -PiEt₂Me (1:1, 15 mol%) in THF (0.3 mL) under N₂ at 35 °C for 0.5 h. After removing the solvent in vacuo, 1,3,5-triazinane 1 (0.1 mmol), azlactone 2 (0.1 mmol), *i*Pr₂NPh (5 mol%) and solvent (1 mL) were added successively under N₂ and kept stirring at 40 °C for 38-72 h. The reaction mixture was subjected to column chromatography on silica gel and eluted with petroleum ether–ethyl acetate (v/v, 5:1) to afford the corresponding product **3**. The racemic product was prepared through the same process without catalyst or *i*Pr₂NPh.

The reaction was conducted with Mg(OTf)₂ (0.01 mmol), L_3 -PrPr₂ (0.01 mmol) and pyrazole amide **6** (0.10 mmol) in 1.0 mL of DCE. The mixture was stirred at 35 °C under N₂ for 30 min. 1,3,5-Triazinane **1** (0.15 mmol) and RNH₂ were added, and the resulting mixture was stirred at 45 °C for 120 h. The reaction mixture was subjected to column chromatography on silica gel and eluted with petroleum ether–ethyl acetate (v/v, 4:1) to afford the corresponding product **7**. The racemic product was prepared using Mg(OTf)₂/(±)-L₃-PrPr₂ complex as catalyst.

4. Scope limitation

The substrates above had no reactivities in the catalytic system.

5. Experimental procedure for the scale-up reaction and further conversion

A dry 50 mL round-bottom flask was charged with $Zn(OTf)_2$ (15 mol%, 226.8 mg), L_2 -PiEt₂Me (15 mol%, 382.2 mg). Then, THF (12.0 mL) was added and the mixture was stirred at 35 °C under N₂ for 10 h. After removing the solvent in vacuo, *N*-phenyl 1,3,5-triazinane **1a** (4.2 mmol, 1.32 g), azlactone **2d** (4.2 mmol, 1.05 g), *i*Pr₂NPh (5 mol%, 42 µL) and CHCl₃ (42 mL) were added successively under N₂ and kept stirring at 40°C for 60 h. The solvent was removed in vacuo and the residue was subjected to column chromatography on silica gel and eluted with petroleum ether–ethyl acetate (v/v, 5:1) to afford the corresponding product **3ad** (1.28 g, 64% yield, 94:6 er).

Self-disproportionation of enantiomers (SDE) was observed in the flash chromatography separation, but it did not attain the significant level. The products of the first four tubes, the next four tubes, and all were obtained in 93:7 er, 95:5 er, 94:6 er, separately.

	Retention Time	Area	% Area
1	7.118	1439694	7.03
2	20.275	19043897	92.97

3ad (0.1 mmol, 96:6 er) was dissolved in ethyl acetate (1 mL), and then H_2O (0.1 mmol, 1.8 μ L), DDQ (0.2 mmol, 45.4 mg) were added successively. After stirring at 30 °C for 3 h, the reaction mixture was subjected to column chromatography on silica gel and eluted with petroleum ether–ethyl acetate (v/v, 3:1) to afford the corresponding product **8ad** with maintained optically activity.

A dry reaction 50 mL round-bottom flask was charged with Mg(OTf)₂ (10 mol%, 161.0 mg), L₃-PrPr₂ (10 mol%, 310.5 mg) and the substrate **6a** (5.0 mmol, 1.285 g). Then, DCE (50.0 mL) was added and the mixture was stirred at 35 °C under N₂ for 5 h. Subsequently, **1f** (1.5 equiv., 3.700 g) and ArNH₂ was added and the reaction mixture was stirred at 45 °C for 120 h. The solvent was removed in vacuo and the residue was subjected to column chromatography on silica gel and eluted with petroleum ether–ethyl acetate (v/v, 6:1) to afford the corresponding product **7fa** (1.701 g, 85% yield, 96:4 er).

6. The nonlinear effect study

Table S1 The relationship between ee of the ligand and ee of the product 3ad

entry ^[a]	ee of L2-PiEt2Me (%)	yield (%) ^[b]	ee of 3ad (%) [c]
1	0	79	0
2	20	67	18
3	40	75	30
4	60	73	46
5	80	74	65
6	100	63	90

Table S2. The relationship between ee of the ligand and ee of the product 7aa

[a] All reactions were carried out with Mg(OTf)₂/L₃-PrPr₂ (1:1, 10 mol%), 6a (0.10 mmol), 1a (0.15 mmol), PhNH₂ (20 mol%) in DCE (1.0 mL) at 45 °C for 120 h. [b] Yield of isolated product. [c] Determined by HPLC analysis on a chiral stationary phase.

ee of L₃-PrPr₂ (%)

Figure S2 Linear relationship between ee of the ligand and ee of the product 7aa.

7. Control experiments and other catalysts screening

Table S3 Control experiments and other catalysts screening

[a] All reactions were carried out with **ligand** (0 or 15 mol%), metal salts (0 or 15 mol%), **1a** (0.1 mmol), **2a** (0.1 mmol), *i*Pr₂NPh (0 or 5 mol%) in CHCl₃ (1.0 mL) at 40 °C for 38 h. [b] Isolated yield. [c] Determined by chiral SFC analysis.

Scheme S1 Control experiments about byproducts

Under standard conditions, the reaction between 1a and 2a was analyzed at different reaction time.

It is testified by TLC analysis that the byproduct **4aa** is an intermediate to partly form **3aa**, leading to slightly lower yield of **3aa**. The **5aa** is formal hydrolysate of **3aa** via losing a formaldehyde. Moreover, the formal Mannich product **4aa** has distinctly lower ee than the correspongding **3aa** (70% vs. 90% ee at 3 h).

SFC analysis for **4aa**: dissolved **4aa** in MeOH for SFC; SFC (Daicel chiralcel OX-3, CO₂/EtOH = 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t_{minor} = 4.53 min, t_{major} = 5.21 min. Reaction time = 3 h, ee= 70%.

SFC analysis for **5aa**: dissolved **5aa** in MeOH for SFC; SFC (Daicel chiralcel OX-3, $CO_2/EtOH = 80/20$, flow rate = 1.5 mL/min, $\lambda = 254$ nm) retention time: t_{minor} = 5.90 min, t_{major} = 7.85 min. Reaction time = 3 h, ee= 82%; reaction time = 65 h ee= 84%.

Scheme S2 cross-over experiment

A cross-over experiment was performed by subjecting *N*-Ph triazinane **1a** and *N*-PMP triazinane **1c** with azlactone **2a** to the standard reaction conditions. Not only were the corresponding products **3aa** and **3ca** detected, but also so was the *N*-substitution cross-over product **3ia**, with these three products observed in a 10 : 17 : 15 ratio after 65 hours.

8. Optimazition reaction condition

Optimazition for the reaction with azlactone

Table S4 Optimization of metal salts

[a] Unless otherwise noted, all reactions were carried out with metal salts/L₃-PiPr₂ (1:1, 10 mol%), 1a (0.1 mmol), 2a (0.1 mmol), in DCM (1.0 mL) at 35 °C for 24 h. [b] Isolated yield. [c] Determined by chiral SFC analysis.

Table S5 Optimization of the ligands

2	L ₃ -RaPr ₂	85	51:49
3	L ₃ -PiPr ₂	84	71:29
4	L ₄ -PiPr ₂	53	60:40
5	L ₂ -PiPr ₂	54	83:17
6	L ₂ -PiEt ₂	69	88:12
7	L ₂ -PiPr ₃	57	79:21
8	L ₂ -PiMe ₃	64	89:11

er (%)^[c]

58:42

[a] Unless otherwise noted, all reactions were carried out with Zn(OTf)₂/ligand (1:1, 10 mol%), **1a** (0.1 mmol), **2a** (0.1 mmol), in DCM (1.0 mL) at 35 °C for 24 h. [b] Isolated yield. [c] Determined by chiral SFC analysis.

Table S6 Optimization of solvents

entry ^[a]	solvent	yield (%) ^[b]	er (%) ^[c]
1	DCM	64	89:11
2 ^[d]	THF	43	59:41
3	PhMe	69	59:41
4	Et ₂ O	68	69.5:30.5
5 ^[d]	CHCl₃	65	80.5:19.5
6 ^[d]	DCE	60	88:12

[a] Unless otherwise noted, all reactions were carried out with $Zn(OTf)_2/L_2$ -PiMe₃ (1:1, 10 mol%), **1a** (0.1 mmol), **2a** (0.1 mmol), in solvent (1.0 mL) at 35 °C for 24 h. [b] Isolated yield. [c] Determined by chiral SFC analysis. [d] The reaction time was 34-38 h.

Table S7 Optimization of temperature

	Ph N N H Ph	$Bn \rightarrow 0$ $N \rightarrow 0$ Ph	Zn(OTf) ₂ /L ₂ -PiMe ₃ P (1:1, 10 mol%) DCM, T °C	h N N ^{Ph} Bn NHCOPh	
	1a	2a		3aa	
entry ^[a]	Т (°	C)	yield (%) ^{[l}	b]	er (%) ^[c]
1 ^[d]	35	5	64		88.5:11.5
2	30)	59		91.5:8.5
3	20)	52		91:9
4	10)	51		88.5:11.5
5 ^[e]	30)	57		92.5:7.5

[a] Unless otherwise noted, all reactions were carried out with Zn(OTf)₂/L₂-PiMe₃ (1:1, 10 mol%), 1a (0.1 mmol), 2a (0.1 mmol), in DCM (1.0 mL) at T °C for 38 h. [b] Isolated yield. [c] Determined by chiral SFC analysis. [d] The reaction time was 24 h. [e] 15 mol% catalyst loading.

Table S8: Optimization of additive

	Ph N N + Ph +	Bn	Ph N N O Bn NHCOPh	
	1a	2a	3aa	
entry ^[a]	addi	tive	yield (%) ^[b]	er (%) ^[c]
1	Eta	зN	58	94.5:5.5
2	Ph	зN	60	91:9
3	<i>i</i> Bu	ıзN	63	93.5:6.5
4	<i>i</i> Pr ₂	EtN	57	93:7
5	<i>i</i> Pr ₂	NH	57	93:7
6	<i>i</i> Pr ₂ I	NPh	67	94.5:5.5
7 ^[d]	Eta	зN	62	93.5:6.5
8 ^[d]	K ₂ C	03	34	93.5:6.5
9 ^[d]	<i>t</i> Bu	ОК	54	91.5:8.5
10 ^[e]	<i>i</i> Pr ₂ I	NPh	48	94:6
11 ^[f]	<i>i</i> Pr ₂ I	NPh	60	94:6

[a] Unless otherwise noted, all reactions were carried out with Zn(OTf)₂/L₂-PiMe₃ (1:1, 15 mol%), 1a (0.1 mmol), 2a (0.1 mmol) and additive (5 mol%) in DCM (1.0 mL) at 30 °C for 38 h. [b] Isolated yield. [c] Determined by chiral SFC analysis. [d] DCE was used instead of DCM. [e] 10 mol% additive loading. [f] 2.5 mol% additive loading.

Table S9 Reoptimization of ligands

	Ph N N H Ph	Bn N N Ph	Zn(OTf) ₂ /Ligand (1:1, 15 mol%) <i>i</i> Pr ₂ NPh (5 mol%) DCM, 30 °C Ph N Ph O Bn NHCOPh	
	1a	2a	3aa	
entry ^[a]	Ligan	d	yield (%) ^[b]	er (%) ^[c]
1	L ₂ -PiN	le₃	67	94.5:5.5
2	L ₂ -PiN	le ₂	50	94:6
3	L ₂ -PiE	t2	60	94:6
4 ^[d]	L ₂ -PiEt ₂	Me	66	94:6
5 ^{[d][e]}	L ₂ -PiEt ₂	Me	63	94:6
6 ^{[d][f]}	L ₂ -PiEt ₂	Me	57	94:6

[a] Unless otherwise noted, all reactions were carried out with Zn(OTf)₂/Ligand (1:1, 15 mol%), 1a (0.1 mmol), 2a (0.1 mmol) and *i*Pr₂NPh (5 mol%) in DCM (1.0 mL) at 30 °C for 38 h. [b] Isolated yield. [c] Determined by chiral SFC analysis. [d] The ligand involved can be purified more efficiently by recrystallization. [e] 12.5 mol% catalyst loading. [f] 10 mol% catalyst loading.

Table S10 Optimization of substrates ratio and concentration

	Ph N N Ph Ph	Bn → O N ⇒ O Ph → Cn(OTf) ₂ /L ₂ -PiEt ₂ / (1:1, 15 mol%) /Pr ₂ NPh (5 mol%) DCM, 30 °C	Me Ph N Ph b) O Bn NHCOPh	
	1a	2a	3aa	
entry ^[a]	1a (X mmol)	2a (Y mmol)	yield (%) ^[b]	er (%) ^[c]
1	0.16	0.10	66	93.5:6.5
2	0.13	0.10	71	93.5:6.5
3	0.10	0.10	66	94:6
4	0.07	0.10	65	94:6
5	0.07	0.15	40	95:5

[a] Unless otherwise noted, all reactions were carried out with Zn(OTf)₂/L₂-PiEt₂Me (1:1, 15 mol%), 1a (X mmol), 2a (Y mmol) and *i*Pr₂NPh (5 mol%) in DCM (1.0 mL) at 30 °C for 38 h. [b] Isolated yield. [c] Determined by chiral SFC analysis.

Table S11 Optimization of solvent and temperature

1	DCM	30	66	94:6
2	DCE	30	64	93.5:6.5
3	CHCl₃	30	74	94.5:5.5
4	CHCl₃	40	71	95:5
5	CHCl₃	20	60	93:7

[a] Unless otherwise noted, all reactions were carried out with Zn(OTf)2/L2-PiEt2Me (1:1, 15 mol%), 1a (0.1 mmol), 2a (0.1 mmol) and iPr2NPh (5 mol%) in solvent (1.0 mL) at T °C for 38 h. [b] Isolated yield. [c] Determined by chiral SFC analysis.

Optimazition for the reaction with $\,\beta,\!\gamma$ -unsaturated pyrazole amide

Table S12 Metal salts effect

Ph _{、1}	$N \rightarrow Ph + N \rightarrow N \rightarrow Ph + Ph + Ph + Ph + Pr + Ph + Pr + Pr +$	L ₃ -PiPr₂/metal (1:1, 10 mol%) DCE, 50 °C	O N Ph Ph
	1a 6a		7aa
entry ^[a]	metal salt	yield (%) ^[b]	er (%) ^[c]
1	Mg(OTf) ₂	65	86.5:13.5
2	Ni(OTf)2	74	63.5:36.5
3	Zn(OTf)2	35	69:31
4	La(OTf)₃	34	53.5:46.5
5	Sc(OTf)₃	36	60:40
6	Y(OTf) ₃	39	75:25
7	Yb(OTf)₃	34	73.5:26.5
8	In(OTf)₃	33	52.5:47.5

[a] All reactions were carried out with metal salt/L₃-PrPr₂ (1:1, 10 mol%), 6a (0.10 mmol), 1a (0.15 mmol) in DCE (1.0 mL) at 50 °C for 72 h. [b] Yield of isolated product. [c] Determined by HPLC analysis on a chiral stationary phase.

O

Ρh 7aa Ph

Table S13 Ligand effect

entry ^[a]	ligand	yield (%) ^[b]	er (%) ^[c]
1	L ₃ -PrPr ₂	73	93:7
2	L ₃ -PiPr ₂	65	86.5:13.5
3	L ₃ -RaPr ₂	64	90:10
4	L ₃ -PrPh	39	50:50
5	L ₃ -PrMe ₂	50	88:12
6	L ₃ -PrEt ₂	60	89.5:10.5
7	L ₂ -PrPr ₂	26	80:20
8	L ₄ -PrPr ₂	63	94:6
9	L ₅ -PrPr ₂	66	92.5:7.5
10	L₃-PrBn	35	77.5:22.5

11	L₃-Pr(OMe)₂	1	68.5:31.5

[a] All reactions were carried out with Mg(OTf) ₂ /ligand (1:1, 10 mol%), 6a (0.10 mmol), 1a (0.15 mmol) in DCE (1.0 mL) at 50 °C for
72 h. [b] Yield of isolated product. [c] Determined by HPLC analysis on a chiral stationary phase.

Table S14 Solvent effect

Ph N N + Ph 1a	O N-N Br 6a	Mg(OTf) ₂ /L ₃ -PrPr ₂ (1:1, 10 mol%) solvent, 50 °C	O N Ph 7aa
entry ^[a]	solvent	yield (%) ^[b]	er (%) ^[c]
1	DCE	73	93:7
2	EtOAc	N.R.	
3	CH₃CN	62	82.5:17.5
4	Acetone	41	65:35
5	THF	N.R.	
6	CICH ₂ CH ₂ CI	73	93:7
7	Toluene	N.R.	
8	CHCl₃	71	92.5:7.5
9	Cl ₂ CHCHCl ₂	59	92:8
10	Cl ₂ CHCH ₂ Cl	79	92:8

[a] All reactions were carried out with Mg(OTf)₂/L₃-PrPr₂ (1:1, 10 mol%), **6a** (0.10 mmol), **1a** (0.15 mmol) in solvent (1.0 mL) at 50 °C for 72 h. [b] Yield of isolated product. [c] Determined by HPLC analysis on a chiral stationary phase.

Table S15 Additive effect

Ph_N_N_PI Ph	n + O N-N Br	Mg(OTf) ₂ /L ₃ -PrPr ₂ (1:1, 10 mol%) additive DCE, 50 °C	O N Ph Ph
1a	6a		7aa
entry ^[a]	additive	yield (%) ^[b]	er (%) ^[c]
1	3Å MS (20 mg)	65	93.5:6.5
2	4Å MS (20 mg)	56	82:18
3	5Å MS (20 mg)	87	89:11
4	NH₄Cl (20 mol%)	68	90:10
5	PhCOOH (20 mol%)	63	50:50
6	Et₃N (20 mol%)	N.R.	
7	K2CO3 (20 mol%)	N.R.	
8	H₂O (20 mol%)	75	86.5:13.5
9	PhNH₂(20 mol%)	88	93.5:6.5
10		73	93:7

[a] All reactions were carried out with Mg(OTf)₂/L₃-PrPr₂ (1:1, 10 mol%), **6a** (0.10 mmol), **1a** (0.15 mmol), additive in DCE (1.0 mL) at 50 °C for 72 h. [b] Yield of isolated product. [c] Determined by HPLC analysis on a chiral stationary phase.

Table S16 Metal salt/ligand ratio effect

Ph~N	N Ph + O N N Ph + Br	Mg(OTf) ₂ /L ₃ -PrPr ₂ (x:y, 10 mol%) PhNH ₂ (20 mol%) DCE, 50 °C	O N N Ph	
	1a 6a		7aa	
entry ^[a]	Mg(OTf) ₂ :L ₃ -PrPr ₂	yield (%) ^[b]	er (%) ^[c]	
1	2:1	69	90.5:9.5	
2	1.1:1	73	93.5:6.5	
3	1:1	88	93.5:6.5	
4	1:1.1	81	93:7	
5	1:1.2	80	93:7	
6	1:1.5	69	93:7	
7	1.2	55	93 5.6 5	

[a] All reactions were carried out with Mg(OTf)₂/L₃-PrPr₂ (g:h, 10 mol%), 6a (0.10 mmol), 1a (0.15 mmol), PhNH₂ (20 mol%) in DCE (1.0 mL) at 50 °C for 72 h. [b] Yield of isolated product. [c] Determined by HPLC analysis on a chiral stationary phase.

Table S17 Solvent dosage effect

Ph N N Ph 1a	Ph + N-N-Br 6a	Mg(OTf) ₂ /L ₃ -PrPr ₂ (1:1, 10 mol%) PhNH ₂ (20 mol%) DCE, 50 °C	O N Ph 7aa	
entry ^[a]	DCE (mL)	yield (%) ^[b]	er (%) ^[c]	
1	0.2	65	79:21	
2	0.5	70	86.5:13.5	
3	1.0	89	93.5:6.5	
4	1.2	86	93:7	
5	1.5	80	93:7	
6	2.0	71	92.5:7.5	

[a] All reactions were carried out with Mg(OTf)₂/L₃-PrPr₂ (1:1, 10 mol%), **6a** (0.10 mmol), **1a** (0.15 mmol), PhNH₂ (20 mol%) in DCE at 50 °C for 72 h. [b] Yield of isolated product. [c] Determined by HPLC analysis on a chiral stationary phase.

Table S18 Temperature effect

[a] All reactions were carried out with $Mg(OTf)_2/L_3$ -PrPr₂ (1:1, 10 mol%), **6a** (0.10 mmol), **1a** (0.15 mmol), PhNH₂ (20 mol%) in DCE (1.0 mL) at T °C for 120 h. [b] Yield of isolated product. [c] Determined by HPLC analysis on a chiral stationary phase. [d] The reaction time was longed to 120 h.

Table S19 The effect of the amount of PhNH₂

Pł	n N N Ph + O N N Ph Ph Ph Br Ia 6a	Mg(OTf) ₂ /L ₃ -PrPr ₂ (1:1,10 mol%) PhNH ₂ DCE, 45 °C	O N Ph 7aa
entry ^[a]	PhNH ₂ (mol%)	yield (%) ^[b]	er (%) ^[c]
1	0	33	96:4
2	10	48	96:4
3	20	66	96:4
4	30	70	95.5:4.5
5	40	88	96:4
6	50	88	95:5
7	70	90	93:7
8	100	93	93.5:6.5

[a] All reactions were carried out with Mg(OTf)₂/L₃-PrPr₂ (1:1, 10 mol%), **6a** (0.10 mmol), **1a** (0.15 mmol), PhNH₂ in DCE (1.0 mL) at 45 °C for 120 h. [b] Yield of isolated product. [c] Determined by HPLC analysis on a chiral stationary phase.

9. Possible reaction pathways for β,γ-unsaturated pyrazole amide

Based on experiments, reaction mechanism sililar to azlatone was proposed (Scheme S3). Reagents I and II competitively react with pyrazole aminde **6**, then intermediate **A** and **B** were respectively obtained. **A** and **B** could mutually transform via Mannich/retro-Mannich reaction.Losing a pyrazole as leaving group, substituted hydropyrimidin-4(1H)-one **7** was obtained.

Scheme S3 Possible reaction pathways for β , γ -unsaturated pyrazole amide

10. Determination of absolute configurations of the compounds

Crystals suitable for the X-ray crystal structure analysis were obtained from a solution of compound **3ac** in DCM (ca. 1 mL) and petroleum ether (1 mL) at r.t.The colourless crystal in flake-shape, with approximate dimensions of $0.046 \times 0.083 \times 0.451$ mm³, was selected and mounted for the single-crystal X-ray diffraction. The data set was collected by Bruker D8 Venture Photon II diffractometer at 172(2) K equipped with micro-focus Cu radiation source (K_{α} = 1.54178 Å). Applied with face-indexed numerical absorption correction, the structure solution was solved and refinement was processed by SHELXTL (version 6.14) and OLEX 2.3 program package^{5,6,7,8}. The structure was analyzed by ADDSYM routine implemented in PLATON suite and no higher symmetry was suggested⁹. The crystal data and further details are listed in Table S20. CCDC 2096416 which contains the crystallographic data for the structure have been deposited with the Cambridge Crystallographic Data Centre (CCDC), 12 Union Road, Cambridge CB2 1EZ, UK, which can be obtained free of charge via Fax: +44 (0)1223 336033; E-Mail: deposit@ccdc.cam.ac.uk, https://www.ccdc.cam.ac.uk/structures/.

Figure S3 the thermal ellipsoid figure of 3ad with 50% probabilities

Table S20 Crystallographic Data for C₃₁H₂₉N₃O₃.

Formula	C31H29N3O3
Formula mass (amu)	491.57
Space group	P212121
a (Å)	10.0721(3)
<i>b</i> (Å)	12.0628(4)
<i>c</i> (Å)	20.9044(6)
α (deg)	90
<i>θ</i> (deg)	90
γ (deg)	90
√ (ų)	2540.05(13)
Ζ	4
λ (Å)	1.54178
Т (К)	172
$ ho_{ m calcd}$ (g cm ⁻³)	1.285
μ (mm ⁻¹)	0.667
Transmission factors	0.676-1.000
$ heta_{\max}(deg)$	68.129
No. of unique data, including $F_0^2 < 0$	4449
No. of unique data, with $F_0^2 > 2\sigma(F_0^2)$	4014
No. of variables	340
$R(F)$ for $F_0^2 > 2\sigma(F_0^2)^a$	0.0485
$R_{\rm w}(F_{\rm o}^2)^{b}$	0.1303
Goodness of fit	1.088

 ${}^{\alpha}R(F) = \sum ||F_{\circ}| - |F_{c}|| / \sum |F_{\circ}|.$

 ${}^{b} R_{w}(F_{o}{}^{2}) = \left[\sum [w(F_{o}{}^{2} - F_{c}{}^{2})^{2}\right] / \sum wF_{o}{}^{4}\right]^{1/2}; w^{-1} = \left[\sigma^{2}(F_{o}{}^{2}) + (Ap)^{2} + Bp\right], \text{ where } p = \left[\max(F_{o}{}^{2}, 0) + 2F_{c}{}^{2}\right] / 3.$

11. Analysis results of 2D NMR spectra of the product 3ac

Number of Atom	H (ppm)	C (ppm)
1		59.9
2		170.2
3	4.93(dd), 5.08(d)	68.2
4	4.12(d), 4.49(dd)	53.2
5	3.53(q)	41.6
6		135.5
7	7.22(t)	130.6
8	7.02-7.59	116.0-131.5
9	7.02-7.59	116.0-131.5
10		147.6
11	7.02-7.59	116.0-131.5
12	7.02-7.59	116.0-131.5
13	7.02-7.59	116.0-131.5
14		140.4
15	7.02-7.59	116.0-131.5
16	7.02-7.59	116.0-131.5
17	7.02-7.59	116.0-131.5
18		167.0
19		116.0-131.5
20	7.02-7.59	116.0-131.5
21	7.02-7.59	116.0-131.5
22		142.2
23	2.40 (s)	21.5

12. Characterization of products

(S)-N-(5-benzyl-4-oxo-1,3-diphenylhexahydropyrimidin-5-yl)benzamide (3aa)

32.8 mg, 71% yield; white solid, melting point: 67.1-72.6 °C, $[\alpha]^{26}_{D}$ = -41.0 (c = 0.65, CH₂Cl₂). Dissolved in MeOH for SFC; SFC (Daicel chiralcel OX-3, CO₂/EtOH = 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t_{minor} = 5.72 min, t_{major} = 13.66 min. er = 95:5.

Bn NHCOPh ¹H NMR (400 MHz, Chloroform-*d*) δ 7.72 – 7.60 (m, 2H), 7.52 – 7.40 (m, 3H), 7.40 – 7.25 (m, 10H), 7.23 – 7.15 (m, 2H), 7.06 – 6.97 (m, 3H), 6.94 (t, *J* = 7.3, 1.1 Hz, 1H), 5.04 (d, *J* = 10.5 Hz, 1H), 4.89 (dd, *J* = 10.6, 1.6 Hz, 1H), 4.45 (dd, *J* = 13.4, 1.6 Hz, 1H), 4.10 (d, *J* = 13.4 Hz, 1H), 3.48 (m, 2H).

¹³C NMR (101 MHz, CDCl₃) δ 170.1, 167.1, 147.7, 140.5, 135.4, 134.3, 131.7, 130.6, 129.6, 129.5, 128.6, 128.6, 127.6, 127.4, 127.0, 126.3, 121.3, 117.0, 68.2, 60.0, 53.1, 41.6.

IR (neat): ν (cm⁻¹): 3318, 3060, 3032, 1651, 1490.

HRMS (ESI-TOF) calcd for $C_{30}H_{28}N_3O_2^+$ ([M]+H⁺) = 462.2176, found 462.2170.

	Retention Time	Area	% Area
1	5.693	4959840	49.76
2	13.995	5008233	50.24

	Retention Time	Area	% Area
1	5.719	359738	5.14
2	13.662	6643964	94.86

(S)-N-(5-benzyl-4-oxo-1,3-diphenylhexahydropyrimidin-5-yl)-4-fluorobenzamide (3ab)

25.0 mg, 52% yield; white solid, melting point: 71.0-74.2 °C, $[\alpha]^{27}_{D}$ = -45.7 (c = 0.23, CH₂Cl₂).

Dissolved in MeOH for SFC; SFC (Daicel chiralcel OX-3, CO₂/EtOH = 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t_{minor} = 4.13 min, t_{major} = 9.57 min. er = 93:7.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.72 – 7.60 (m, 2H), 7.54 – 7.41 (m, 2H), 7.39 – 7.28 (m, 8H), 7.24 – 7.16 (m, 2H), 7.12 – 7.00 (m, 4H), 7.00 – 6.89 (m, 2H), 5.05 (d, *J* = 10.6 Hz, 1H), 4.92 (dd, *J* = 10.6, 1.5 Hz, 1H), 4.47 (dd, *J* = 13.5, 1.6 Hz, 1H), 4.12 (d, *J* = 13.4 Hz, 1H), 3.53 (q, 2H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 170.1, 166.1, 147.7, 140.5, 135.4, 130.6, 129.7 (d, $J_{C-F} = 6.5$ Hz), 129.4 (d, $J_{C-F} = 9.0$ Hz), 128.7, 127.7, 127.5, 126.3, 117.0, 115.6 (d, $J_{C-F} = 22.0$ Hz), 68.3, 60.2, 53.1, 41.7.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -107.79.

IR (neat): v (cm⁻¹): 3317, 3062, 2922, 1652, 1492.

HRMS (ESI-TOF) calcd for $C_{30}H_{27}FN_3O_2^+$ ([M]+H⁺) = 480.2082, found 480.2076.

	Retention Time	Area	% Area
1	4.127	360461	6.69
2	9.567	5030362	93.31

(S)-N-(5-benzyl-4-oxo-1,3-diphenylhexahydropyrimidin-5-yl)-4-methoxybenzamide (3ac)

^N 33.0 mg, 67% yield; white solid, melting point: 65.7-77.4 °C, $[\alpha]^{27}_{D} = -45.4$ (c = 0.52, CH₂Cl₂).

Dissolved in MeOH for SFC; SFC (Daicel chiralcel OX-3, CO₂/EtOH = 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t_{minor} = 8.50 min, t_{major} = 19.18 min. er = 96:4.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.63 – 7.52 (m, 2H), 7.51 – 7.41 (m, 2H), 7.41 – 7.28 (m, 7H), 7.24 – 7.15 (m, 4H), 7.09 – 6.91 (m, 4H), 5.07 (d, *J* = 10.6 Hz, 1H), 4.92 (dd, *J* = 10.5, 1.6 Hz, 1H), 4.48 (dd, *J* = 13.4, 1.7 Hz, 1H), 4.10 (d, *J* = 13.4 Hz, 1H), 3.51 (q, *J* = 13.6 Hz, 2H), 2.39 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 170.2, 167.1, 147.7, 142.2, 135.5, 131.5, 130.6, 129.6, 129.5, 129.3, 128.7, 127.6, 127.4, 127.0, 126.3, 121.3, 117.0, 68.3, 60.0, 53.2, 41.7, 21.5.

IR (neat): v (cm⁻¹) 3332, 3032, 2929, 1650, 1602, 1492.

Ph_N

Bn NH

0=

ò

ÒMe

HRMS (ESI-TOF) calcd for $C_{31}H_{30}N_3O_3^+$ ([M]+H⁺) = 492.2282, found 492.2292.

	Retention Time	Area	% Area
1	8.361	18411899	49.94
2	18.743	18458405	50.06

	Retention Time	Area	% Area
1	8.498	545674	4.27
2	19.182	12234418	95.73

(S)-N-(5-benzyl-4-oxo-1,3-diphenylhexahydropyrimidin-5-yl)-4-methylbenzamide (3ad)

37.1 mg, 78% yield; white solid, melting point: 64.2-68.4 $^{\circ}$ C, [α]²⁷_D = -42.6 (*c* = 0.57, CH₂Cl₂).

Dissolved in MeOH for SFC; SFC (Daicel chiralcel OX-3, CO₂/EtOH = 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t_{minor} = 8.52 min, t_{major} = 19.97 min. er = 96:4.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.69 – 7.59 (m, 2H), 7.51 – 7.42 (m, 2H), 7.40 – 7.28 (m, 7H), 7.25 – 7.18 (m, 2H), 7.07 – 6.99 (m, 2H), 6.99 – 6.93 (m, 1H), 6.92 – 6.86 (m, 3H), 5.07 (d, *J* = 10.5 Hz, 1H), 4.92 (dd, *J* = 10.6, 1.6 Hz, 1H), 4.46 (dd, *J* = 13.4, 1.6 Hz, 1H), 4.09 (d, *J* = 13.4 Hz, 1H), 3.84 (s, 3H), 3.51 (q, *J* = 13.6 Hz, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 170.3, 166.7, 162.4, 147.7, 140.6, 135.5, 130.6, 129.6, 129.5, 128.9, 128.7, 127.6, 127.4, 126.6, 126.3, 121.3, 117.0, 113.8, 68.3, 59.9, 55.5, 53.2, 41.7.

IR (neat): v (cm⁻¹) 3390, 3032, 2931, 1650, 1602, 1492.

Ph

0=

HRMS (ESI-TOF) calcd for $C_{24}H_{23}N_3O_2^+$ ([M]-PhCH₂+H⁺) = 385.1785, found 385.1790.

	Retention Time	Area	% Area
1	8.429	12768769	50.13
2	20.264	12703611	49.87

	Retention Time	Area	% Area
1	8.521	1327123	4.11
2	19.967	30992290	95.89

(S)-N-(5-benzyl-4-oxo-1,3-diphenylhexahydropyrimidin-5-yl)-4-isopropylbenzamide (3ae)

35.3 mg, 70% yield; white solid, melting point: 71.0-74.0 °C, $[\alpha]^{27}_{D}$ = -45.5 (*c* = 0.47, CH₂Cl₂).

Dissolved in MeOH for SFC; SFC (Daicel chiralcel IB-3, CO₂/MeOH = 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t_{major} = 4.46 min, t_{minor} = 6.93 min. er = 95:5.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.63 – 7.53 (m, 2H), 7.49 – 7.39 (m, 2H), 7.37 – 7.26 (m, 7H), 7.25 – 7.16 (m, 4H), 7.06 – 6.89 (m, 4H), 5.05 (d, *J* = 10.5 Hz, 1H), 4.89 (dd, *J* = 10.5, 1.6 Hz, 1H), 4.45 (dd, *J* = 13.4, 1.6 Hz, 1H), 4.07 (d, *J* = 13.4 Hz, 1H), 3.50 (q, 2H), 3.02 – 2.81 (m, 1H), 1.23 (d, *J* = 7.0 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 170.2, 167.1, 153.0, 147.7, 140.6, 135.5, 131.9, 130.6, 129.6, 129.5, 128.7, 127.6, 127.4, 127.2, 126.7, 126.3, 121.3, 117.0, 68.3, 60.0, 53.2, 41.7, 34.2, 23.8.

IR (neat): ν (cm⁻¹) 3390, 2961,1654, 1492.

HRMS (ESI-TOF) calcd for $C_{33}H_{34}N_3O_2^+$ ([M]+H⁺) = 504.2646, found 504.2630.

Retention Tin	ne Area	% Area
4.451	2411795	50.38
6.823	2375627	49.62

	Retention Time	Area	% Area
1	4.458	14003887	94.88
2	6.931	755634	5.12

(S)-N-(5-benzyl-4-oxo-1,3-diphenylhexahydropyrimidin-5-yl)-3-methylbenzamide (3af)

31.9 mg, 67% yield; white solid, melting point: 60.6-66.6 °C, $[\alpha]^{27}$ = -45.0 (*c* = 0.34, CH₂Cl₂).

Dissolved in MeOH for SFC; SFC (Daicel chiralcel OX-3, CO₂/EtOH = 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t_{minor} = 5.88 min, t_{major} = 16.24 min. er = 94:6.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 – 7.40 (m, 4H), 7.40 – 7.28 (m, 9H), 7.25 – 7.18 (m, 2H), 7.08 – 6.92 (m, 4H), 5.06 (d, *J* = 10.6 Hz, 1H), 4.92 (dd, *J* = 10.6, 1.6 Hz, 1H), 4.49 (dd, *J* = 13.4, 1.6 Hz, 1H), 4.13 (d, *J* = 13.4 Hz, 1H), 3.53 (dd, *J* = 21.4, 13.6 Hz, 2H), 2.37 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.1, 167.4, 147.7, 140.6, 138.5, 135.5, 134.3, 132.5, 130.6, 129.6, 129.6, 128.7, 128.5, 127.8, 127.7, 127.5, 126.3, 124.0, 121.3, 117.0, 68.2, 60.1, 53.2, 41.7, 21.4.

IR (neat): v (cm⁻¹) 3387, 3033, 1652, 1496.

HRMS (ESI-TOF) calcd for $C_{31}H_{30}N_3O_2^+$ ([M]+H⁺) = 476.2333, found 476.2330.

2

16.235

23236653

93.59

(S)-N-(5-benzyl-4-oxo-1,3-diphenylhexahydropyrimidin-5-yl)-3,5-dimethylbenzamide (3ag)

32.3 mg, 66% yield; white solid, melting point: 68.1-72.9 °C, $[\alpha]^{27}$ = -53.9 (c = 0.08, CH₂Cl₂).

Dissolved in MeOH for SFC; SFC (Daicel chiralcel OX-3, CO₂/EtOH = 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t_{minor} = 5.08 min, t_{major} = 8.97 min. er = 95:5.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.48 – 7.38 (m, 2H), 7.37 – 7.26 (m, 7H), 7.25 – 7.22 (m, 3H), 7.22 – 7.13 (m, 2H), 7.11 – 7.06 (m, 1H), 7.03 – 6.89 (m, 4H), 5.03 (d, *J* = 10.6 Hz, 1H), 4.88 (dd, *J* = 10.6, 1.5 Hz, 1H), 4.47 (dd, *J* = 13.5, 1.6 Hz, 1H), 4.10 (d, *J* = 13.4 Hz, 1H), 3.51 (dd, *J* = 20.5, 13.6 Hz, 2H), 2.29 (s, 6H).

[/] ¹³**C NMR** (101 MHz, CDCl₃) δ 170.1, 167.5, 147.7, 140.5, 138.3, 135.6, 134.3, 133.3, 130.6, 129.6, 129.5, 128.6, 127.6, 127.4, 126.3, 124.8, 121.2, 116.9, 68.2, 60.1, 53.2, 41.7, 21.3, 21.3.

IR (neat): ν (cm⁻¹) 3330, 2923, 2859, 1656, 1599, 1497.

HRMS (ESI-TOF) calcd for $C_{32}H_{32}N_3O_2^+$ ([M]+H⁺) = 490.2489, found 490.2482.

	Retention Time	Area	% Area
1	5.080	239816	5.33
2	8.967	4256797	94.67

(S)-N-(-5-benzyl-4-oxo-1,3-diphenylhexahydropyrimidin-5-yl)adamantane-1-carboxamide (3ah)

38.0 mg, 73% yield; white solid, melting point: 69.0-76.0 °C, $[\alpha]^{28}$ = -44.2 (c = 0.43, CH₂Cl₂).

Dissolved in MeOH for SFC; SFC (Daicel chiralcel OX-3, CO₂/EtOH = 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t_{minor} = 5.33 min, t_{major} = 8.58 min. er = 93:7.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.51 – 7.39 (m, 2H), 7.37 – 7.26 (m, 8H), 7.23 – 7.09 (m, 2H), 7.04 – 6.89 (m, 3H), 6.45 (s, 1H), 5.03 (d, *J* = 10.5 Hz, 1H), 4.87 (dd, *J* = 10.5, 1.6 Hz, 1H), 4.33 (dd, *J* = 13.4, 1.7 Hz, 1H), 3.93 (d, *J* = 13.4 Hz, 1H), 3.37 (s, 2H), 2.01 (s, 1H), 1.84 – 1.59 (m, 14H).

¹³**C NMR** (101 MHz, CDCl₃) δ 177.9, 170.4, 147.8, 140.7, 135.5, 130.7, 129.6, 129.5, 128.6, 127.5, 127.4, 126.2, 121.1, 117.0, 68.1, 59.1, 53.2, 41.6, 41.0, 39.1, 36.5, 28.2.

IR (neat): ν (cm⁻¹) 3400, 2906, 2851, 1655, 1495.

HRMS (ESI-TOF) calcd for $C_{34}H_{38}N_3O_2^+$ ([M]+H⁺) = 520.2959, found 520.2949.

	Retention Time	Area	% Area
1	5.330	653564	6.72
2	8.576	9070412	93.28

(S)-N-(5-benzyl-4-oxo-1,3-diphenylhexahydropyrimidin-5-yl)-1-naphthamide (3ai)

33.8 mg, 66% yield; white solid, melting point: 71.3-78.3 °C, $[\alpha]^{27}$ = -51.1 (c = 0.54, CH₂Cl₂).

Dissolved in MeOH for SFC; SFC (Daicel chiralcel OX-3, CO₂/EtOH = 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t_{minor} = 9.92 min, t_{major} = 16.30 min. er = 94:6.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.41 – 8.26 (m, 1H), 7.91 – 7.81 (m, 2H), 7.54 – 7.41 (m, 5H), 7.42 – 7.29 (m, 6H), 7.30 –

7.26 (m, 2H), 7.25 – 7.16 (m, 3H), 7.12 – 7.03 (m, 2H), 6.98 (t, J = 7.3 Hz, 1H), 6.75 (s, 1H), 5.09 (d, J = 10.7 Hz, 1H), 4.89 (d, J = 10.7 Hz, 1H), 4.41 (s, 2H), 3.54 (s, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 170.1, 169.5, 147.8, 140.6, 135.3, 133.8, 133.7, 131.0, 130.7, 130.2, 129.7, 129.6, 128.7, 128.3, 127.7, 127.5, 127.3, 126.5, 126.4, 125.5, 125.4, 124.7, 121.4, 117.2, 68.3, 60.6, 53.0, 42.0.

IR (neat): v (cm⁻¹) 3385, 3299, 3056, 1651, 1491.

HRMS (ESI-TOF) calcd for $C_{34}H_{30}N_3O_2^+$ ([M]+H⁺) = 512.2333, found 512.2325.

	Retention Time	Area	% Area
1	9.920	1894526	6.09
2	16.304	29237953	93.91

(S)-N-(5-benzyl-4-oxo-1,3-diphenylhexahydropyrimidin-5-yl)thiophene-2-carboxamide (3aj)

24.8 mg, 53% yield; white solid, melting point: 67.6-74.1 °C, $[\alpha]^{27}$ = -40.5 (*c* = 0.42, CH₂Cl₂).

Ph N Ph Bh NH O S

Dissolved in MeOH for SFC; SFC (Daicel chiralcel OX-3, CO₂/EtOH = 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t_{minor} = 7.28 min, t_{major} = 20.50 min. er = 90:10.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.52 – 7.41 (m, 3H), 7.40 – 7.29 (m, 8H), 7.24 – 7.12 (m, 2H), 7.07 – 7.00 (m, 3H), 6.96 (t, *J* = 7.4 Hz, 1H), 6.86 (s, 1H), 5.06 (d, *J* = 10.5 Hz, 1H), 4.91 (dd, *J* = 10.5, 1.7 Hz, 1H), 4.44 (dd, *J* = 13.4, 1.8 Hz, 1H), 4.05 (d, *J* = 13.4 Hz, 1H), 3.49 (q, *J* = 13.6 Hz, 2H).

¹³**C NMR** (101 MHz, CDCl₃) δ 169.9, 161.6, 147.7, 140.5, 138.9, 135.3, 130.6, 130.5, 129.6, 129.6, 128.7, 128.4, 127.7, 127.7, 127.5, 126.4, 121.4, 117.1, 68.4, 60.0, 53.2, 41.7.

IR (neat): v (cm⁻¹) 3324, 3062, 3032, 1645, 1494.

HRMS (ESI-TOF) calcd for $C_{28}H_{26}N_3O_2S^+$ ([M]+H⁺) = 468.1740, found 468.1734.

	Retention Time	Area	% Area
1	7.281	1396948	10.18
2	20.504	12321657	89.82

(S)-N-(5-(4-fluorobenzyl)-4-oxo-1,3-diphenylhexahydropyrimidin-5-yl)-4-methylbenzamide(3ak)

29.6 mg, 60% yield; white solid, melting point: 71.1-73.7 °C, $[\alpha]^{26}$ = -50.0 (*c* = 0.38, CH₂Cl₂).

Dissolved in MeOH for SFC; SFC (Daicel chiralcel OX-3, CO₂/EtOH = 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t_{minor} = 5.24 min, t_{major} = 12.87 min. er = 93:7.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.62 – 7.53 (m, 2H), 7.51 – 7.43 (m, 2H), 7.41 – 7.28 (m, 5H), 7.25 – 7.09 (m, 4H), 7.07 – 6.89 (m, 6H), 5.04 (d, *J* = 10.5 Hz, 1H), 4.95 (dd, *J* = 10.5, 1.5 Hz, 1H), 4.61 (dd, *J* = 13.4, 1.6 Hz, 1H), 4.09 (d, *J* = 13.4 Hz, 1H), 3.59 (d, *J* = 13.8 Hz, 1H), 3.46 (d, *J* = 13.7 Hz, 1H), 2.39 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 170.0, 167.3, 163.4, 160.9, 147.5, 142.3, 140.4, 132.0 (d, $J_{C-F} = 8.0$ Hz), 131.5, 131.3(d, $J_{C-F} = 3.3$ Hz), 129.6, 129.3, 127.8, 127.0, 126.3, 121.3, 116.8, 115.3 (d, $J_{C-F} = 21.2$ Hz), 68.2, 60.4, 53.6, 40.9, 21.5 (d, $J_{C-F} = 2.3$ Hz).

¹⁹**F NMR** (376 MHz, CDCl₃) δ -115.32.

IR (neat): v (cm⁻¹) 3330, 3037, 2923, 1648, 1496.

HRMS (ESI-TOF) calcd for $C_{31}H_{29}N_3O_2F^+$ ([M]+H⁺) = 494.2238, found 494.2232.

	Retention Time	Area	% Area
1	5.246	943050	6.95
2	12.865	12635540	93.05

(S)-N-(5-(4-chlorobenzyl)-4-oxo-1,3-diphenylhexahydropyrimidin-5-yl)-4-methylbenzamide(3al)

29.6 mg, 58% yield; white solid, melting point: 81.3-85.4 °C, $[\alpha]^{27}_{D}$ = -48.4 (c = 0.55, CH₂Cl₂).

Dissolved in MeOH for SFC; SFC (Daicel chiralcel OX-3, CO₂/EtOH = 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t_{minor} = 7.52 min, t_{major} = 16.66 min. er = 90:10.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.61 – 7.54 (m, 2H), 7.52 – 7.43 (m, 2H), 7.41 – 7.27 (m, 5H), 7.25 – 7.18 (m, 4H), 7.13 – 7.06 (m, 2H), 7.04 – 6.90 (m, 2H), 5.04 (d, *J* = 10.4 Hz, 1H), 4.96 (dd, *J* = 10.5, 1.5 Hz, 1H), 4.63 (dd, *J* = 13.5, 1.6 Hz, 1H), 4.07 (d, *J* = 13.4 Hz, 1H), 3.61 (d, *J* = 13.6 Hz, 1H), 3.46 (d, *J* = 13.6 Hz, 1H), 2.39 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 169.8, 167.3, 147.5, 142.4, 140.3, 134.1, 133.2, 131.8, 131.5, 129.6, 129.3, 128.6, 127.8, 127.0, 126.2, 121.3, 116.8, 68.3, 60.4, 53.7, 41.0, 21.6.

IR (neat): ν (cm⁻¹) 3330, 3035, 2923, 1650, 1493.

HRMS (ESI-TOF) calcd for $C_{31}H_{29}N_3O_2Cl^+$ ([M]+H⁺) = 510.1943, 511, 512.1913, found 510.1933, 512.1912.

	Retention Time	Area	% Area
1	7.515	3163558	9.65
2	16.655	29635922	90.35

(S)-N-(5-(4-bromobenzyl)-4-oxo-1,3-diphenylhexahydropyrimidin-5-yl)-4-methylbenzamide(3am)

29.4 mg, 53% yield; white solid, melting point: 85.0-89.2 °C, $[\alpha]^{26}$ = -40.0 (c = 0.57, CH₂Cl₂).

Dissolved in MeOH for SFC; SFC (Daicel chiralcel OX-3, CO₂/EtOH = 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t_{minor} = 10.52 min, t_{major} = 24.59 min. er = 89:11.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.63 – 7.53 (m, 2H), 7.51 – 7.43 (m, 2H), 7.41 – 7.27 (m, 7H), 7.25 – 7.18 (m, 2H), 7.10 – 6.91 (m, 6H), 5.03 (d, *J* = 10.4 Hz, 1H), 4.96 (dd, *J* = 10.4, 1.6 Hz, 1H), 4.63 (dd, *J* = 13.5, 1.6 Hz, 1H), 4.06 (d, *J* = 13.4 Hz, 1H), 3.60 (d, *J* = 13.6 Hz, 1H), 3.44 (d, *J* = 13.6 Hz, 1H), 2.39 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 169.8, 167.3, 147.5, 142.4, 140.3, 134.7, 132.2, 131.5, 131.5, 129.6, 129.3, 127.8, 127.0, 126.2, 121.4, 121.3, 116.8, 68.3, 60.4, 53.7, 41.1, 21.6.

IR (neat): v (cm⁻¹) 3328, 3035, 2922, 2855, 1649, 1492.

HRMS (ESI-TOF) calcd for $C_{31}H_{29}N_3O_2Br^+$ ([M]+H⁺) = 554.1438, 556.1417, found 554.1428, 556.1407.

	Retention Time	Area	% Area
1	10.237	7262825	49.19
2	24.092	7501355	50.81

	Retention Time	Area	% Area
1	10.518	574070	11.39
2	24.591	4467462	88.61

(S)-4-methyl-N-(5-(4-methylbenzyl)-4-oxo-1,3-diphenylhexahydropyrimidin-5-yl)benzamide(3an)

37.8 mg, 71% yield; white solid, melting point: 68.2-73.6 °C, $[\alpha]^{27}_{D}$ = -46.7 (c = 0.55, CH₂Cl₂).

Dissolved in MeOH for SFC; SFC (Daicel chiralcel OX-3, CO₂/EtOH = 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t_{minor} = 6.88 min, t_{major} = 12.80 min. er = 94:6.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.62 – 7.54 (m, 2H), 7.50 – 7.42 (m, 2H), 7.41 – 7.27 (m, 4H), 7.24 – 7.17 (m, 2H), 7.16 – 7.07 (m, 4H), 7.08 – 7.01 (m, 2H), 6.99 – 6.92 (m, 2H), 5.10 (d, J = 10.6 Hz, 1H), 4.95 (dd, J = 10.6, 1.6 Hz, 1H), 4.43 (dd, J = 13.4, 1.7 Hz, 1H), 4.07 (d, J = 13.3 Hz, 1H), 3.48 (dd, J = 30.0, 13.7 Hz, 2H), 2.39 (s, 3H), 2.34 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 170.3, 167.0, 147.8, 142.2, 140.7, 137.1, 132.3, 131.5, 130.4, 129.6, 129.5, 129.4, 129.3, 127.6, 127.0, 126.4, 121.2, 117.1, 68.3, 59.9, 53.1, 41.1, 21.5, 21.2.

IR (neat): v (cm⁻¹) 3389, 3031, 2922, 1651, 1490.

HRMS (ESI-TOF) calcd for $C_{32}H_{32}N_3O_2^+$ ([M]+H⁺) = 490.2489, found 490.2480.

	Retention Time	Area	% Area
1	6.883	2344167	6.20
2	12.795	35448342	93.80

(S)-4-methyl-N-(5-(2-methylbenzyl)-4-oxo-1,3-diphenylhexahydropyrimidin-5-yl)benzamide(3ao)

25.5mg, 52% yield; white solid, melting point: 66.8-72.0 °C, $[\alpha]^{27}$ _D = -50.5 (c = 0.44, CH₂Cl₂).

Dissolved in MeOH for SFC; SFC (Daicel chiralcel OX-3, CO₂/EtOH = 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t_{minor} = 7.00 min, t_{major} = 10.14 min. er = 97:3.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.59 – 7.51 (m, 2H), 7.50 – 7.42 (m, 2H), 7.42 – 7.27 (m, 5H), 7.23 – 7.09 (m, 6H), 7.08 – 7.00 (m, 2H), 6.98 – 6.89 (m, 2H), 5.01 (d, *J* = 10.4 Hz, 1H), 4.91 (dd, *J* = 10.4, 1.6 Hz, 1H), 4.48 (dd, *J* = 13.4, 1.6 Hz, 1H), 4.15 (d, *J* = 13.4 Hz, 1H), 3.68 (d, *J* = 14.0 Hz, 1H), 3.49 (d, *J* = 14.1 Hz, 1H), 2.37 (d, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 170.3, 167.1, 147.8, 142.2, 140.5, 137.8, 134.1, 131.5, 131.1, 130.9, 129.6, 129.5, 129.3, 127.7, 127.5, 127.0, 126.4, 126.1, 121.4, 117.1, 68.5, 60.4, 53.6, 38.1, 21.5, 20.1.

IR (neat): ν (cm⁻¹) 3395, 3031, 2922, 1650, 1488.

HRMS (ESI-TOF) calcd for $C_{32}H_{32}N_3O_2^+$ ([M]+H⁺) = 490.2489, found 490.2479.

	Retention Time	Area	% Area
1	6.998	223165	3.14
2	10.143	6892722	96.86

(S)-4-methyl-N-(5-(naphthalen-1-ylmethyl)-4-oxo-1,3-diphenylhexahydropyrimidin-5-yl)benzamide(3ap)

27.4 mg, 52% yield; white solid, melting point: 77.5-84.5 °C, $[\alpha]^{26}$ = -51.1 (*c* = 0.56, CH₂Cl₂).

Dissolved in MeOH for SFC; SFC (Daicel chiralcel OX-3, CO₂/EtOH = 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t_{minor} = 12.59 min, t_{major} = 15.67 min. er = 97:3.

¹**H NMR** (400 MHz, Chloroform-d) δ 8.38 (d, *J* = 8.4 Hz, 1H), 7.90 (dd, *J* = 8.2, 1.4 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.98 – 7.73 (m, 2H), 7.56 – 7.28 (m, 13H), 7.15 – 7.03 (m, 4H), 7.04 – 6.94 (m, 1H), 6.86 (s, 1H), 5.10 (d, *J* = 10.4 Hz, 1H), 4.94 (dd, *J* = 10.4, 1.8 Hz, 1H), 4.32 (dd, *J* = 13.2, 1.9 Hz, 1H), 4.18 (d, *J* = 14.1 Hz, 1H), 4.02 (d, *J* = 13.1 Hz, 1H), 3.82 (d, *J* = 14.1 Hz, 1H), 2.34 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.6, 166.9, 147.9, 142.1, 140.6, 134.1, 133.2, 131.8, 131.1, 129.6, 129.4, 129.2, 129.1, 128.4, 127.5, 127.0, 126.9, 126.5, 126.0, 125.5, 124.3, 121.7, 117.7, 69.0, 60.3, 52.9, 37.3, 21..

IR (neat): ν (cm⁻¹) 3434, 2922, 1655, 1491.

HRMS (ESI-TOF) calcd for $C_{35}H_{32}N_3O_2^+$ ([M]+H⁺) = 526.2489, found 526.2483.

	Retention Time	Area	% Area
1	12.425	9592780	48.50
2	15.852	10185389	51.50

	Retention Time	Area	% Area
1	12.587	218607	3.07
2	15.672	6892713	96.93

(S)-4-methyl-N-(4-oxo-5-phenethyl-1,3-diphenylhexahydropyrimidin-5-yl)benzamide(3aq)

31.9 mg, 65% yield; white solid, melting point: 80.3-85.7 °C, [α]²⁷_D = -52.4 (c = 0.54, CH₂Cl₂).

Dissolved in MeOH for SFC; SFC (Daicel chiralcel OX-3, CO₂/EtOH = 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t_{minor} = 6.30 min, t_{major} = 7.64 min. er = 93:7. **¹H NMR** (400 MHz, DMSO-d₆) δ 8.56 (s, 1H), 7.80 (d, J = 8.2 Hz, 2H), 7.50 - 7.37 (m, 4H), 7.36 - 7.25 (m, 5H), 7.24 - 7.07 (m, 5H),

The NMR (400 MHz, DMSO- a_6) 0.8.56 (s, 1H), 7.80 (d, J = 8.2 Hz, 2H), 7.50 – 7.37 (m, 4H), 7.86 – 7.25 (m, 5H), 7.24 – 7.07 (m, 5H), 7.02 – 6.94 (m, 2H), 6.90 (t, J = 7.3 Hz, 1H), 5.30 (d, J = 11.5 Hz, 1H), 5.01 (dd, J = 11.5, 2.3 Hz, 1H), 4.25 (dd, J = 13.7, 2.4 Hz, 1H), 4.03 (d, J = 13.7 Hz, 1H), 2.82 (td, J = 12.9, 4.6 Hz, 1H), 2.64 (td, J = 12.9, 4.4 Hz, 1H), 2.37 (s, 3H), 2.13 – 2.00 (m, 1H), 1.85 (td, J = 13.5, 4.6 Hz, 1H).

¹³**C NMR** (101 MHz, DMSO-*d*₆) δ 171.5, 167.5, 148.6, 142.1, 142.0, 141.8, 131.6, 129.9, 129.4, 129.2, 128.7, 128.6, 128.4, 127.0, 126.7, 126.2, 120.5, 116.8, 66.6, 59.0, 53.6, 29.8, 21.5.

IR (neat): ν (cm⁻¹) 3298, 3032, 2925, 1645, 1492.

HRMS (ESI-TOF) calcd for $C_{32}H_{32}N_3O_2^+$ ([M]+H⁺) = 490.2489, found 490.2481.

	Retention Time	Area	% Area
1	6.261	2516272	50.21
2	7.729	2494779	49.79

	Retention Time	Area	% Area
1	6.299	1025301	7.43
2	7.643	12766352	92.57
(S)-4-methyl-N-(5-methyl-4-oxo-1,3-diphenylhexahydropyrimidin-5-yl)benzamide(3ar)

h 24.8 mg, 62% yield; white solid, melting point: 85.6-88.7 °C, $[\alpha]^{23}$ = -46.8 (c = 0.53, CH₂Cl₂).

Dissolved in MeOH for SFC; SFC (Daicel chiralcel IB-3, CO₂/EtOH = 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t_{major} = 5.12 min, t_{minor} = 6.30 min. er = 88:12.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.69 (d, *J* = 8.3 Hz, 2H), 7.51 – 7.38 (m, 4H), 7.37 – 7.27 (m, 3H), 7.21 (d, *J* = 8.0 Hz, 2H), 7.01 (d, 2H), 6.94 (m, 1H), 6.82 (s, 1H), 5.24 (d, *J* = 10.9 Hz, 1H), 5.01 (dd, *J* = 10.9, 2.3 Hz, 1H), 4.30 (dd, *J* = 13.4, 2.4 Hz, 1H), 4.09 (d, *J* = 13.3 Hz, 1H), 2.39 (s, 3H), 1.63 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 171.7, 167.4, 148.0, 142.3, 140.6, 131.2, 129.6, 129.5, 129.2, 127.5, 127.2, 126.5, 121.0, 116.6, 67.4, 0. 21.5

56.7, 56.5, 25.0, 21.5.

IR (neat): ν (cm⁻¹) 3316, 3035, 2986, 2925, 1644, 1496.

HRMS (ESI-TOF) calcd for $C_{25}H_{26}N_3O_2^+$ ([M]+H⁺) = 400.2020, found 400.2016.

	Retention Time	Area	% Area
1	5.123	11534460	87.93
2	6.296	1583777	12.07

(S) - 4 - methyl - N - (5 - (2 - (methylthio)ethyl) - 4 - oxo - 1, 3 - diphenyl hexahydropyrimidin - 5 - yl) benzamide (3 as) - 4 - methyl - N - (5 - (2 - (methylthio)ethyl) - 4 - oxo - 1, 3 - diphenyl hexahydropyrimidin - 5 - yl) benzamide (3 as) - 4 - methyl - N - (5 - (2 - (methylthio)ethyl) - 4 - oxo - 1, 3 - diphenyl hexahydropyrimidin - 5 - yl) benzamide (3 as) - 4 - methyl - N - (5 - (2 - (methylthio)ethyl) - 4 - oxo - 1, 3 - diphenyl hexahydropyrimidin - 5 - yl) benzamide (3 as) - 4 - methyl - N - (5 - (2 - (methylthio)ethyl) - 4 - oxo - 1, 3 - diphenyl hexahydropyrimidin - 5 - yl) benzamide (3 as) - 4 - methyl - N - (5 - (2 - (methylthio)ethyl) - 4 - oxo - 1, 3 - diphenyl hexahydropyrimidin - 5 - yl) benzamide (3 as) - 4 - methyl - N - (5 - (2 - (methylthio)ethyl) - 4 - oxo - 1, 3 - diphenyl hexahydropyrimidin - 5 - yl) benzamide (3 as) - 4 - methyl - N - (5 - (2 - (methylthio)ethyl) - 4 - oxo - 1, 3 - diphenyl hexahydropyrimidin - 5 - yl) benzamide (3 as) - 4 - methyl - 3 - methy

29.4 mg, 64% yield; white solid, melting point: 59.4-63.0 °C, $[\alpha]^{26}D$ = -47.0 (*c* = 0.53, CH₂Cl₂).

Dissolved in MeOH for SFC; SFC (Daicel chiralcel OX-3, CO₂/EtOH = 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t_{minor} = 6.38 min, t_{major} = 7.47 min. er = 87:13.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.72 (d, *J* = 8.4 Hz, 3H), 7.52 – 7.27 (m, 7H), 7.23 (d, *J* = 8.0 Hz, 2H), 7.05 – 6.90 (m, 3H), 5.18 (d, *J* = 10.6 Hz, 1H), 5.01 (dd, *J* = 10.6, 2.1 Hz, 1H), 4.44 (dd, *J* = 13.5, 2.1 Hz, 1H), 4.06 (d, *J* = 13.4 Hz, 1H), 2.85 – 2.57 (m, 2H), 2.52 – 2.25 (m, 5H), 2.07 (s, 3H).

 $^{13}\mathbf{C}\,\mathbf{NMR}\,(101\,\,\mathrm{MHz},\,\mathrm{CDCI_3})\,\delta\,170.5,\,167.2,\,147.8,\,142.3,\,140.5,\,131.1,\,129.7,\,129.6,\,129.3,\,127.7,\,127.2,\,126.5,\,121.2,\,116.6,\,129.3,\,127.7,\,127.2,\,126.5,\,121.2,\,116.6,\,129.3,\,127.7,\,127.2,\,126.5,\,121.2,\,116.6,\,129.3,\,127.7,\,127.2,\,126.5,\,121.2,\,116.6,\,129.3,\,127.7,\,127.2,\,126.5,\,121.2,\,116.6,\,129.3,\,127.7,\,127.2,\,126.5,\,121.2,\,116.6,\,129.3,\,127.7,\,127.2,\,126.5,\,121.2,\,116.6,\,129.3,\,127.7,\,127.2,\,126.5,\,121.2,\,116.6,\,129.3,\,127.7,\,127.2,\,126.5,\,121.2,\,116.6,\,129.3,\,127.7,\,127.2,\,126.5,\,121.2,\,116.6,\,129.3,\,127.7,\,127.2,\,126.5,\,121.2,\,116.6,\,129.3,\,127.7,\,127.2,\,126.5,\,121.2,\,116.6,\,129.3,\,127.7,\,127.2,\,126.5,\,121.2,\,116.6,\,129.3,\,127.7,\,127.2,\,126.5,\,121.2,\,116.6,\,129.3,\,127.7,\,127.2,\,126.5,\,121.2,\,116.6,\,129.3,\,127.7,\,127.2,\,126.5,\,121.2,\,116.6,\,129.3,\,127.2,\,126.5,\,121.2,\,126.5,\,121.2,\,126.5,\,121.2,\,126.5,\,121.2,\,126.5,\,121.2,\,126.5,\,121.2,\,126.5,\,121.2,\,126.5,\,122.2,\,122.2$

67.7, 59.6, 54.8, 35.1, 28.7, 21.5, 15.7.

IR (neat): ν (cm⁻¹) 3327, 3035, 2918, 1647, 1529.

HRMS (ESI-TOF) calcd for $C_{27}H_{30}N_3O_2S^+$ ([M]+H⁺) = 460.2053, found 460.2051.

	Retention Time	Area	% Area
1	6.326	597246	49.07
2	7.530	619807	50.93

	Retention Time	Area	% Area
1	6.382	3080735	13.31
2	7.469	20058271	86.69

(S)-N-(5-benzyl-1,3-bis(4-fluorophenyl)-4-oxohexahydropyrimidin-5-yl)-4-methylbenzamide(3bd)

34.8 mg, 68% yield; white solid, melting point: 68.7-71.8 °C, $[\alpha]^{26}_{D}$ = -38.1 (*c* = 0.67, CH₂Cl₂). Dissolved in MeOH for SFC; SFC (Daicel chiralcel OX-3, CO₂/EtOH = 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t_{minor} = 3.39 min, t_{major} = 6.89 min. er = 93:7.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.57 (d, *J* = 8.2 Hz, 2H), 7.40 – 7.28 (m, 5H), 7.23 – 7.09 (m, 6H), 7.07 – 6.94 (m, 4H), 6.87 (s, 1H), 4.98 (d, *J* = 10.3 Hz, 1H), 4.76 (dd, *J* = 10.2, 1.8 Hz, 1H), 4.19 (dd, *J* = 13.2, 1.8 Hz, 1H), 4.02 (d, *J* = 13.1 Hz, 1H), 3.49 (dd, *J* = 31.2, 13.5 Hz, 2H), 2.38 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-d) δ 170.4, 167.1, 162.9, 160.4, 159.4, 157.0, 144.2 (d, *J*_{C-F} = 2.6 Hz), 142.4, 136.5 (d, *J*_{C-F} = 3.3 Hz), 135.3, 131.2, 130.6, 129.3, 128.8, 128.3 (d, *J*_{C-F} = 8.6 Hz), 127.6, 127.0, 119.5 (d, *J*_{C-F} = 7.7 Hz), 116.5, 116.3, 116.1, 69.8, 59.6, 53.8, 41.9, 21.5.

 $^{19}\mathbf{F}$ NMR (376 MHz, CDCl3) δ -113.79, -121.65.

IR (neat): ν (cm⁻¹) 3332, 3058, 2925, 1648, 1503.

HRMS (ESI-TOF) calcd for $C_{31}H_{28}N_3O_2F_2^+$ ([M]+H⁺) = 512.2144, found 512.2150.

	Retention Time	Area	% Area
1	3.394	3364571	7.27
2	6.885	42896525	92.73

(S)-N-(5-benzyl-1,3-bis(4-bromophenyl)-4-oxohexahydropyrimidin-5-yl)-4-methylbenzamide(3cd)

43.7 mg, 69% yield; white solid, melting point: 88.7-93.4 °C, $[\alpha]^{26}$ = -47.5 (*c* = 0.68, CH₂Cl₂).

Dissolved in MeOH for SFC; SFC (Daicel chiralcel OX-3, CO₂/EtOH = 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t_{minor} = 10.11 min, t_{major} = 27.93 min. er = 91:9.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.64 – 7.50 (m, 4H), 7.45 – 7.36 (m, 2H), 7.36 – 7.27 (m, 3H), 7.26 – 7.12 (m, 6H), 6.95 – 6.78 (m, 3H), 5.02 (d, *J* = 10.6 Hz, 1H), 4.80 (dd, *J* = 10.6, 1.7 Hz, 1H), 4.28 (dd, *J* = 13.5, 1.8 Hz, 1H), 4.06 (d, *J* = 13.4 Hz, 1H), 3.44 (dd, *J* = 19.1, 13.6 Hz, 2H), 2.39 (s, 3H).

¹³C NMR (101 MHz, CDCl₃) δ 170.2, 167.2, 146.7, 142.5, 139.5, 135.1, 132.7, 132.5, 131.2, 130.5, 129.3, 128.8, 128.0, 127.7, 127.0, 121.3, 118.8, 113.9, 68.1, 59.7, 53.0, 41.9, 21.6.

IR (neat): ν (cm⁻¹) 3331, 3031, 2924, 1650, 1487.

 $\label{eq:HRMS} \text{(ESI-TOF) calcd for $C_{31}H_{28}N_3O_2Br_2^+$ ([M]+H^+)$ = 632.0543$, 634.0522$, 636.0502$, found 632.0538$, 634.0515$, 636.0501$. \\$

	Retention Time	Area	% Area
1	10.113	2018927	9.04
2	27.934	20314156	90.96

(S)-N-(5-benzyl-4-oxo-1,3-di-p-tolylhexahydropyrimidin-5-yl)-4-methylbenzamide(3dd)

33.8 mg, 67% yield; white solid, melting point: 67.9-72.4 °C, $[\alpha]^{27}_{D}$ = -44.7 (c = 0.47, CH₂Cl₂). Dissolved in MeOH for SFC; SFC (Daicel chiralcel OX-3, CO₂/EtOH = 80/20, flow rate = 1.5 mL/min, λ = 254 nm)

retention time: $t_{minor} = 7.34 \text{ min}$, $t_{major} = 15.03 \text{ min}$. er = 95:5.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.55 (d, *J* = 8.2 Hz, 2H), 7.33 – 7.14 (m, 11H), 7.10 (d, *J* = 8.2 Hz, 2H), 6.98 – 6.89 (m, 3H), 4.97 (d, *J* = 10.5 Hz, 1H), 4.82 (dd, *J* = 10.4, 1.6 Hz, 1H), 4.39 (dd, *J* = 13.4, 1.6 Hz, 1H), 4.05 (d, *J* = 13.3 Hz, 1H), 3.50 (q, *J* = 13.5 Hz, 2H), 2.37 (s, 6H), 2.28 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 170.2, 167.1, 145.5, 142.1, 138.0, 137.5, 135.6, 131.6, 130.8, 130.7, 130.1, 129.2, 128.6, 127.3, 127.0, 126.1, 117.3, 68.9, 60.0, 53.5, 41.7, 21.5, 21.2, 20.6.

IR (neat): ν (cm⁻¹) 3388, 3029, 2922, 1651, 1515, 1486.

HRMS (ESI-TOF) calcd for $C_{33}H_{34}N_3O_2^+$ ([M]+H⁺) = 504.2646, found 504.2638.

	Retention Time	Area	% Area
1	7.343	1239674	5.14
2	15.034	22871848	94.86

(S)-N-(5-benzyl-4-oxo-1,3-di-m-tolylhexahydropyrimidin-5-yl)-4-methylbenzamide(3ed)

28.7 mg, 57% yield; white solid, melting point: 49.7-54.9 °C, $[\alpha]^{25}$ = -35.8 (*c* = 0.61, CH₂Cl₂).

Dissolved in MeOH for SFC; SFC (Daicel chiralcel OX-3, CO₂/EtOH = 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t_{minor} = 6.88 min, t_{major} = 23.57 min. er = 91:9.

¹**H NMR** (400 MHz, CDCl₃) δ 7.59 (d, *J* = 8.2 Hz, 2H), 7.39 – 7.27 (m, 4H), 7.25 – 7.10 (m, 8H), 7.01 (s, 1H), 6.89 – 6.74 (m, 3H), 5.03 (d, *J* = 10.5 Hz, 1H), 4.90 (dd, *J* = 10.5, 1.5 Hz, 1H), 4.51 (dd, *J* = 13.3, 1.6 Hz, 1H), 4.07 (d, *J* = 13.3 Hz, 1H), 3.53 (q, *J* = 13.6 Hz, 2H), 2.40 (d, 6H), 2.33 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 170.1, 167.1, 147.7, 142.2, 140.5, 139.5, 139.4, 135.6, 131.6, 130.6, 129.4, 129.3, 129.2, 128.6, 128.5, 127.4, 127.0, 127.0, 123.4, 122.0, 117.7, 113.9, 68.3, 60.1, 53.1, 41.6, 21.8, 21.5.

IR (neat): ν (cm⁻¹) 3416, 3031, 2922, 1815, 1651, 1511.

HRMS (ESI-TOF) calcd for $C_{33}H_{34}N_3O_2^+$ ([M]+H⁺) = 504.2646, found 504.2643.

	Retention Time	Area	% Area
1	6.883	1960563	8.74
2	23.573	20478250	91.26

(S)-N-(5-benzyl-1,3-bis(2-chloro-4-methylphenyl)-4-oxohexahydropyrimidin-5-yl)-4-methylbenzamide(3fd)

45.8 mg, 80% yield; white solid, melting point: 71.8-75.9 °C, $[\alpha]^{27}$ = -40.3 (c = 0.67, CH₂Cl₂). Dissolved in MeOH for SFC; SFC (Daicel chiralcel OX-3, CO₂/EtOH = 80/20, flow rate = 1.5 mL/min, λ = 254 nm)

retention time: $t_{minor} = 8.09$ min, $t_{major} = 17.35$ min. er = 92:8.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.66 – 7.47 (m, 2H), 7.43 – 7.28 (m, 5H), 7.25 – 7.08 (m, 6H), 7.05 – 6.86 (m, 2H), 6.86 – 6.77 (m, 1H), 4.99 (d, *J* = 10.5 Hz, 1H), 4.79 (dd, *J* = 10.5, 1.7 Hz, 1H), 4.31 (dd, *J* = 13.4, 1.7 Hz, 1H), 4.03 (d, *J* = 13.4 Hz, 1H), 3.46 (dd, *J* = 19.7, 13.6 Hz, 2H), 2.52 – 2.25 (m, 9H).

 $^{13}\mathbf{C} \ \mathbf{NMR} \ (101 \ \mathsf{MHz}, \mathsf{CDCl}_3) \ \delta \ 170.2, \ 167.1, \ 146.7, \ 142.3, \ 139.1, \ 135.7, \ 135.2, \ 134.9, \ 131.7, \ 131.6, \ 131.3, \ 130.6, \ 129.3, \ 128.8, \ 127.6, \ 127.0, \ 126.9, \ 124.7, \ 117.9, \ 115.6, \ 68.3, \ 59.8, \ 53.1, \ 41.9, \ 21.5, \ 19.8, \ 19.2.$

IR (neat): v (cm⁻¹) 3345, 3030, 2923, 2859,1651, 1494.

 $\label{eq:HRMS} \text{(ESI-TOF) calcd for $C_{33}H_{32}N_3O_2Cl_2^+$ ([M]+H^+) = $572.1866, $574.1837, $576.1807, found $572.1859, $574.1835, $576.1812. $C_{33}H_{32}N_3O_2Cl_2^+$ ([M]+H^+) = $572.1866, $574.1837, $576.1807, found $572.1859, $574.1835, $576.1812. $C_{33}H_{32}N_3O_2Cl_2^+$ ([M]+H^+) = $572.1866, $574.1837, $576.1807, found $572.1859, $574.1835, $576.1812. $C_{33}H_{32}N_3O_2Cl_2^+$ ([M]+H^+) = $572.1866, $574.1837, $576.1807, found $572.1859, $574.1835, $576.1812. $C_{33}H_{32}N_3O_2Cl_2^+$ ([M]+H^+) = $572.1866, $574.1837, $576.1807, found $572.1859, $574.1835, $576.1812. $C_{33}H_{32}N_3O_2Cl_2^+$ ([M]+H^+) = $572.1866, $574.1837, $576.1807, found $572.1859, $574.1835, $576.1812. $C_{33}H_{32}N_3O_2Cl_2^+$ ([M]+H^+) = $572.1866, $574.1837, $576.1807, found $572.1859, $574.1835, $576.1812. $C_{33}H_{32}N_3O_2Cl_2^+$ ([M]+H^+) = $572.1866, $574.1837, $576.1807, found $572.1859, $574.1835, $576.1812. $C_{33}H_{32}N_3O_2Cl_2^+$ ([M]+H^+) = $572.1866, $574.1837, $576.1807, found $572.1859, $576.1812. $C_{33}H_{32}N_3O_2Cl_2^+$ ([M]+H^+) = $572.1866, $574.1837, $576.1812. $C_{33}H_{32}N_3O_2Cl_2^+$ ([M]+H^+) = $572.1866, $574.1837, $576.1807, found $572.1859, $576.1812. $C_{33}H_{32}N_3O_2Cl_2^+$ ([M]+H^+) = $572.1866, $574.1837, $576.1807, found $572.1859, $576.1812. $C_{33}H_{33}N_3O_2Cl_2^+$ ([M]+H^+) = $572.1866, $574.1837, $576.1807, found $572.1807, found $572.$

	Retention Time	Area	% Area
1	8.090	1226374	7.52
2	17.351	15088653	92.48

(S)-N-(5-benzyl-1,3-bis(4-(dimethylamino)phenyl)-4-oxohexahydropyrimidin-5-yl)-4-methylbenzamide(3gd)

21.4 mg, 38% yield; white solid, melting point: 77.5-81.6 °C, $[\alpha]^{26}$ = -37.7 (*c* = 0.42, CH₂Cl₂). Dissolved in MeOH for SFC; SFC (Daicel chiralcel OX-3, CO₂/EtOH = 80/20, flow rate = 1.5 mL/min, λ = 254 nm)

retention time: t_{minor} = 13.75 min, t_{major} = 23.58 min. er = 90:10.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.57 (d, *J* = 8.2 Hz, 2H), 7.34 – 7.26 (m, 3H), 7.25 – 7.14 (m, 6H), 7.03 – 6.96 (m, 3H), 6.79 – 6.70 (m, 4H), 4.85 (d, *J* = 10.2 Hz, 1H), 4.70 (dd, *J* = 10.2, 1.5 Hz, 1H), 4.27 (dd, *J* = 13.2, 1.5 Hz, 1H), 4.01 (d, *J* = 13.1 Hz, 1H), 3.58 (dd, *J* = 30.2, 13.5 Hz, 2H), 2.97 (s, 6H), 2.89 (s, 6H), 2.38 (s, 3H).

 $^{13}\textbf{C NMR} \ (101 \ \text{MHz}, \ \text{CDCl}_3) \ \delta \ 170.2, \ 167.0, \ 149.8, \ 146.5, \ 142.0, \ 139.1, \ 136.0, \ 131.8, \ 130.8, \ 129.6, \ 129.2, \ 128.5, \ 127.2, \ 127.1, \ 119.7, \ 114.3, \ 113.0, \ 70.4, \ 60.1, \ 54.4, \ 42.0, \ 41.4, \ 40.8, \ 21.5.$

IR (neat): ν (cm⁻¹) 3385, 2853, 2798, 1650, 1518.

HRMS (ESI-TOF) calcd for $C_{35}H_{40}N_5O_2^+$ ([M]+H⁺) = 562.3177, found 562.3173.

	Retention Time	Area	% Area
1	13.753	650881	9.73
2	23.580	6037897	90.27

(S)-4-methyl-N-(1,3,5-tribenzyl-4-oxohexahydropyrimidin-5-yl)benzamide(3hd)

38.8mg, 77% yield; white solid, melting point: 60.5-62.8 °C, $[\alpha]^{26}$ = -47.5 (*c* = 0.81, CH₂Cl₂).

. N^{∕Bn} Dissolved in MeOH for SFC; SFC (Daicel chiralcel OX-3, CO₂/EtOH = 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t_{major} = 4.78 min, t_{minor} = 5.70 min. er = 90:10. Bn NH

¹H NMR (400 MHz, Chloroform-d) δ 7.61 – 7.48 (m, 2H), 7.43 – 7.27 (m, 10H), 7.25 – 7.13 (m, 5H), 6.94 – 6.84 (m, 2H), 6.68 (s, 1H), 4.86 (d, J = 15.1 Hz, 1H), 4.51 (d, J = 15.1 Hz, 1H), 4.01 (dd, J = 8.6, 1.8 Hz, 1H), 3.95 (d, J = 8.7 Hz, 1H), 3.67 (d, J = 12.8 Hz, 1H), 3.67 (d, J = 1H), 3.57 (d, J = 13.3 Hz, 1H), 3.50 (d, J = 12.8 Hz, 1H), 3.34 (dd, J = 11.7, 1.8 Hz, 1H), 3.30 (d, J = 13.4 Hz, 1H), 3.04 (d, J = 11.8 Hz, 1H), 3.04 (d, J 1H), 2.37 (s, 3H).

 $^{13}\mathbf{C} \text{ NMR} (101 \text{ MHz}, \text{CDCl}_3) \\ \delta 170.1, 166.5, 142.1, 136.9, 136.6, 135.6, 131.4, 130.5, 129.5, 129.2, 128.7, 128.7, 128.6, 128.0, 127.7, 127.5, 127.2, 128.7, 128.6, 128.0, 127.7, 127.5, 127.2, 128.7, 128.7, 128.6, 128.0, 127.7, 127.5, 127.2, 128.7, 128.7, 128.6, 128.0, 127.7, 127.5, 127.2, 128.7, 128.7, 128.7, 128.7, 128.6, 128.0, 127.7, 127.5, 127.2, 128.7, 128.7, 128.7, 128.7, 128.6, 128.0, 127.7, 127.5, 127.2, 128.7, 12$ 127.0, 68.8, 58.8, 54.8, 48.9, 41., 21.5.

IR (neat): ν (cm⁻¹) 3435, 3030, 2921, 2812, 1647, 1486.

Bn.

0=

HRMS (ESI-TOF) calcd for $C_{33}H_{34}N_3O_2^+$ ([M]+H⁺) = 504.2646, found 504.2641.

3.00	

	Retention Time	Area	% Area
1	4.780	8906945	90.07
2	5.696	981497	9.93

Minutes

(S)-N-(2-benzyl-1-oxo-1-(phenylamino)-3-(N-phenylformamido)propan-2-yl)-4-methylbenzamide (8ad)

Ph_NH Ph OBn 50.5 mg, >99% yield; white solid, melting point: 93.6-96.9 °C, $[\alpha]^{25}_D = -22.0$ (c = 0.53, CH₂Cl₂).

Dissolved in MeOH for SFC; SFC (Daicel chiralcel OX-3, CO₂/EtOH = 80/20, flow rate = 1.5 mL/min, λ = 254 nm) retention time: t_{major} = 8.64 min, t_{minor} = 20.80 min. er = 94:6.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.84 (s, 1H), 8.22 (s, 1H), 7.55 (s, 1H), 7.43 (d, *J* = 7.9 Hz, 2H), 7.33 (t, *J* = 7.8 Hz, 2H), 7.24 (d, *J* = 6.5 Hz, 2H), 7.21 – 7.01 (m, 12H), 5.10 (d, *J* = 15.1 Hz, 1H), 4.86 (d, *J* = 15.1 Hz, 1H), 3.87 (d, *J* = 13.7 Hz, 1H), 3.40 (d, *J* = s, 3H).

13.7 Hz, 1H), 2.34 (s, 3H).

¹³**C NMR** (101 MHz, CDCl₃) δ 168.8, 167.7, 164.7, 142.0, 140.3, 137.2, 134.7, 131.8, 130.2, 129.6, 129.0, 128.9, 128.3, 127.5, 127.3, 126.8, 124.9, 124.8, 120.8, 67.1, 46.3, 39.8, 21.5.

IR (neat): *v* (cm⁻¹) 3318, 3060, 3032, 2927, 1651, 1598, 1490.

HRMS (ESI-TOF) calcd for $C_{24}H_{23}N_3O_2^+$ ([M]-PhCH₂+H⁺) = 399.1577, found 399.1567.

	Retention Tir	ne Area	% Area
	1 8.635	14917206	94.27
1	2 20.797	9060010	5.73

(E)-1,3-Diphenyl-5-(prop-1-en-1-yl)tetrahydropyrimidin-4(1H)-one (7aa)

25.7 mg, 88% yield; light yellow oil; $[\alpha]^{24}$ _D = -30.5 (*c* = 0.42, CH₂Cl₂).

Dissolved in *i*PrOH for HPLC; HPLC (Chiralcel ODH, hexane/*i*PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm) retention time: t_{minor} = 20.19 min, t_{major} = 21.61 min, er = 96:4.

(11112. tminor - 20.19 11111, tmajor - 21.01 11111, et - 90

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.42 (m, 2H), 7.31 (m, 5H), 6.99 – 6.90 (m, 3H), 5.75 – 5.56 (m, 2H), 5.14 (d, *J* = 11.6 Hz, 1H), 5.04 (dd, *J* = 11.6, 2.0 Hz, 1H), 3.97 (m, 1H), 3.59 (m, 1H), 3.40 (m, 1H), 1.74 (d, *J* = 4.0 Hz, 3H).

 13 C NMR (101 MHz, Chloroform-d) δ 169.8, 147.2, 140.9, 129.6, 129.4, 129.3, 127.0, 126.3, 125.8, 120.6, 116.0, 66.4, 52.4,

43.45, 18.2.

IR (neat): ν (cm⁻¹) 2914, 236, 1658, 1597, 1497, 1429, 1380, 1216, 1117, 1073, 965. HRMS (ESI-TOF) calcd for C₁₉H₂₀N₂NaO⁺ ([M]+Na⁺) = 315.1468, found 315.1468.

2

21.605

36990405

96.07

(E)-5-(Prop-1-en-1-yl)-1,3-bis(3-(trifluoromethyl)phenyl)tetrahydropyrimidin-4(1H)-one (7ba)

21.4 mg, 51% yield; light yellow oil; $[\alpha]^{24}_{D}$ = -25.9 (*c* = 2.17, CH₂Cl₂).

Dissolved in *i*PrOH for HPLC; HPLC (Chiralcel IH, hexane/*i*PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm) retention time:

 $t_{minor} = 7.21 \text{ min}, t_{major} = 11.47 \text{ min}, er = 98:2.$ ¹H NMR (400 MHz, Chloroform-d) δ7.63 – 7.34 (m, 5H), 7.18 (d, J = 7.6 Hz, 1H), 7.12 – 6.99 (m, 2H), 5.83 – 5.51 (m, 2H), 5.21 (d, J = 12.0 Hz, 1H), 5.10 (d, J = 12.0 Hz, 1H), 3.97 (m, 1H), 3.63 (m, 1H), 3.51 – 3.36 (m, 1H), 1.75 (d, J = 6.0 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 169.8, 147.3, 141.1, 131.9 (q, *J*_{C-F} = 58.58), 131.9 (d, *J*_{C-F} = 7.07), 130.3, 130.2, 129.9, $129.1, 125.4, 125.0, 123.8 \ (q, {\it J}_{C-F}=4.04), 122.5 \ (q, {\it J}_{CF}=4.04), 122.3 \ , 118.5 \ , 117.0 \ (q, {\it J}_{C-F}=4.04) \ , 111.9 \ (q, {\it J}_{C-F}=4.04) \ , 121.9 \ (q, {\it J}_{C-F}=4.04) \ , 122.9 \ , 12$ 65.4, 51.8, 43.9, 18.1.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -62.68.

IR (neat): *v* (cm⁻¹) 2919, 2336, 1663, 1592, 1479, 1438, 1382, 1313, 1264, 967. **HRMS** (ESI-TOF) calcd for $C_{21}H_{18}F_6N_2NaO^+$ ([M]+Na⁺) = 451.1216, found 451.1219.

2

5317243

97.77

11.467

(E)-1,3-Bis(3-chlorophenyl)-5-(prop-1-en-1-yl)tetrahydropyrimidin-4(1H)-one (7ca)

ੂ 0.1 ਡ

0.00

31.0 mg, 86% yield; colorless oil; $[\alpha]^{24}_{D}$ = -8.8 (c = 0.63, CH₂Cl₂).

Dissolved in *i*PrOH for HPLC; HPLC (Chiralcel ADH, hexane/*i*PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm) retention time: t_{major} = 14.91 min, t_{minor} = 18.54 min, er = 96:4.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.37 – 7.25 (m, 3H), 7.20 (q, *J* = 8.4 Hz, 2H), 6.94 – 6.82 (m, 2H), 6.75 (dd, *J* = 8.4, 2.0 Hz, 1H), 5.75 – 5.57 (m, 2H), 5.10 (d, *J* = 11.6 Hz, 1H), 5.04 – 4.97 (m, 1H), 3.89 (dd, *J* = 12.8, 6.4 Hz, 1H), 3.55 (dd, *J* = 12.8, 10.0 Hz, 1H), 3.46 – 3.34 (m, 1H), 1.75 (d, *J* = 5.6 Hz, 3H).

 $^{13}\mathbf{C} \text{ NMR} (101 \text{ MHz, Chloroform-}d) \ \delta 169.8, 148.2, 141.8, 135.5, 134.8, 130.6, 130.3, 130.01, 127.3, 126.1, 125.6, 123.9, 120.5, 115.7, 113.5, 65.6, 51.8, 43.8, 18.2.$

18.50 19.00

IR (neat): *v* (cm⁻¹) 2916, 2367, 1663, 1591, 1478, 1438, 1381, 1256, 1168, 966, 770.

 $\label{eq:HRMS} \text{(ESI-TOF) calcd for $C_{19}H_{19}Cl_2N_2O^{+}([M]+H^{+})$ = 448.9859, 450.9838, 452.9818, found $448.9861, 450.9838, 452.9816$. }$

Peak	Retention Time	Area	% Area
1	14.906	9079777	96.41
2	18.536	338277	3.59

(E)-1,3-Bis(3-bromophenyl)-5-(prop-1-en-1-yl)tetrahydropyrimidin-4(1H)-one (7da)

25.7 mg, 57% yield; pale yellow oil; $[\alpha]^{24}_{D}$ = -5.1 (*c* = 1.20, CH₂Cl₂).

Dissolved in *i*PrOH for HPLC; HPLC (Chiralcel ADH, hexane/*i*PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm) retention time: t_{major} = 9.93 min, t_{minor} = 11.97 min, er = 96:4.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.48 – 7.40 (m, 2H), 7.30 – 7.20 (m, 2H), 7.14 (t, *J* = 8.0 Hz, 1H), 7.07 – 6.99 (m, 2H), 6.79 (dd, *J* = 8.4, 2.0 Hz, 1H), 5.74 – 5.57 (m, 2H), 5.11 – 4.95 (m, 2H), 3.88 (dd, *J* = 12.8, 6.4 Hz, 1H), 3.54 (dd, *J* = 12.8, 10.4 Hz, 1H), 3.44 – 3.36 (m, 1H), 1.74 (d, *J* = 5.6 Hz, 3H).

Br ¹³C NMR (101 MHz, Chloroform-*d*) δ169.7, 148.3, 141.9, 130.9, 130.53, 130.2, 130.0, 128.9, 125.6, 124.4, 123.6, 123.4, 122.6, 118.6, 114.0, 65.6, 51.7, 43.8, 18.2.

IR (neat): ν (cm⁻¹) 2915, 2361, 1660, 1588, 1476, 1436, 1352, 1217, 1070, 965, 766.

HRMS (ESI-TOF) calcd for $C_{19}H_{19}Br_2N_2O^+$ ([M]+H⁺) = 448.9859, 450.9838, 452.9818, found 448.9861, 450.9838, 452.9816.

Peak	Retention Time	Area	% Area
1	9.976	13406726	95.56
2	12.067	623212	4.44

(E)-5-(Prop-1-en-1-yl)-1,3-di-m-tolyltetrahydropyrimidin-4(1H)-one (7ea)

19.5 mg, 61% yield; pale yellow oil; $[\alpha]^{24}_{D} = -26.6$ (*c* = 0.66, CH₂Cl₂).

Dissolved in *i*PrOH for HPLC; HPLC (Chiralcel ADH, hexane/*i*PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm) retention time: $t_{major} = 12.39 \text{ min}, t_{minor} = 13.65 \text{ min}, \text{ er = 92:8.}$

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.74 (t, *J* = 7.6 Hz, 1H), 7.66 – 7.59 (m, 1H), 7.57 – 7.48 (m, 3H), 7.19 (s, 3H), 6.16 – 6.04 (m, 2H), 5.52 (d, *J* = 11.6 Hz, 1H), 5.42 (dd, *J* = 11.6, 1.6 Hz, 1H), 4.37 (m, 1H), 3.99 (dd, *J* = 13.0, 10.0 Hz, 1H), 3.81 (m, 1H), 2.78 (d, *J* = 17.1 Hz, 6H), 2.17 (d, *J* = 3.8 Hz, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 170.5, 147.9, 141.4, 140.0, 139.8, 130.0, 129.9, 129.7, 128.5, 127.4, 127.0, 123.5, 122.1, 117.5, 113.8, 67.3, 52.98, 44.1, 22.4, 22.0, 18.8.

IR (neat): ν (cm⁻¹) 2361, 1659, 1603, 1491, 1441, 1261, 1159, 966, 744.

HRMS (ESI-TOF) calcd for $C_{21}H_{25}N_2O^+$ ([M]+H⁺) = 321.1961, found 321.1961.

Peak	Retention Time	Area	% Area
1	12.386	18496192	91.64
2	13.648	1688427	8.36

(E)-1,3-Bis(3-chloro-4-methylphenyl)-5-(prop-1-en-1-yl)tetrahydropyrimidin-4(1H)-one (7fa)

31.4 mg, 81% yield; colorless oil; $[\alpha]^{24}_{D} = -14.2$ (c = 0.82, CH₂Cl₂).

Dissolved in *i*PrOH for HPLC; HPLC (Chiralcel ADH, hexane/*i*PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm) retention time: t_{major} = 18.55 min, t_{minor} = 17.18 min, er = 95:5.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.30 – 7.23 (m, 2H), 7.14 – 7.05 (m, 2H), 6.90 (d, *J* = 2.4 Hz, 1H), 6.70 (dd, *J* = 8.4, 2.4 Hz, 1H), 5.73 – 5.52 (m, 2H), 5.03 (d, *J* = 11.6 Hz, 1H), 4.91 (dd, *J* = 11.6, 1.6 Hz, 1H), 3.86 (m, 1H), 3.51 (dd, *J* = 13.0, 10.4 Hz, 1H), 3.34 (dt, *J* = 10.4, 6.0 Hz, 1H), 2.32 (d, *J* = 30.0 Hz, 6H), 1.72 (d, *J* = 5.2 Hz, 3H).

 13 C NMR (101 MHz, Chloroform-d) δ 169.7, 146.2, 139.4, 135.3, 135.1, 134.7, 131.6, 131.4, 129.8, 128.1, 126.4, 125.9, 124.2, 116.8, 114.4, 66.5, 52.4, 43.5, 19.7, 19.0, 18.2.

IR (neat): *v* (cm⁻¹) 2361, 1660, 1609, 1563, 1497, 1433, 1381, 1222, 1004, 737.

Me

HRMS (ESI-TOF) calcd for C₂₁H₂₃Cl₂N₂O⁺ ([M]+H⁺) = 389.1182, 391.1152, 393.1123, found 389.1183, 391.1152, 393.1119.

Peak	Retention Time	Area	% Area
1	17.183	1631113	4.89
2	18.548	31738654	95.11

(E)-1,3-Bis(4-fluorophenyl)-5-(prop-1-en-1-yl)tetrahydropyrimidin-4(1H)-one (7ga)

F 27.2 mg, 83% yield; yellow oil; [α]²⁴_D = -49.5 (*c* = 1.09, CH₂Cl₂).

Dissolved in *i*PrOH for HPLC; HPLC (Chiralcel ADH, hexane/*i*PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm) retention time: t_{major} = 14.82 min, t_{minor} = 10.63 min, er = 97:3.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.25 (dd, *J* = 8.4, 4.8 Hz, 2H), 7.10 (t, *J* = 8.4 Hz, 2H), 7.00 (t, *J* = 8.8 Hz, 2H), 6.90 (dd, *J* = 9.2, 4.4 Hz, 2H), 5.73 – 5.53 (m, 2H), 5.09 – 4.87 (m, 2H), 3.87 (dd, *J* = 13.2, 6.4 Hz, 1H), 3.54 (dd, *J* = 13.2, 10.4 Hz, 1H), 3.34 (dt, *J* = 10.0, 6.0 Hz, 1H), 1.72 (d, *J* = 4.4 Hz, 3H).

F 1³C NMR (101 MHz, Chloroform-*d*) δ 169.8, 143.8 (d, J_{CF} = 2.02 Hz), 136.7 (d, J_{CF} = 2.02 Hz), 129.6, 127.7 (d, J_{CF} = 9.09 Hz), 126.1, 118.2 (d, J_{CF} = 7.07 Hz), 116.3(d, J_{CF} = 5.05 Hz), 116.1(d, J_{CF} = 4.04 Hz), 76.8, 67.7, 53.4, 43.4, 18.2.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) *δ*-114.51, -122.76.

IR (neat): v (cm⁻¹) 2361, 1658, 1601, 1508, 1258, 966, 752.

HRMS (ESI-TOF) calcd for $C_{19}H_{19}F_2N_2O^+$ ([M]+H⁺) = 329.1460, found 329.1460.

Peak	Retention Time	Area	% Area
1	11.510	120742	3.30
2	16.091	3540428	96.70

(E)-1,3-Bis(4-chlorophenyl)-5-(prop-1-en-1-yl)tetrahydropyrimidin-4(1H)-one (7ha)

28.2 mg, 78% yield; colorless oil; $[\alpha]^{24}$ = -11.43 (*c* = 0.29, CH₂Cl₂).

Dissolved in *i*PrOH for HPLC; HPLC (Chiralcel ADH, hexane/*i*PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm) retention time: t_{major} = 20.16 min, t_{minor} = 15.17 min, er = 96:4.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.38 (d, *J* = 8.4 Hz, 2H), 7.23 (dd, *J* = 13.2, 8.8 Hz, 4H), 6.82 (d, *J* = 8.8 Hz, 2H), 5.75 – 5.54 (m, 2H), 5.09 (d, *J* = 11.6 Hz, 1H), 4.97 (d, *J* = 11.6 Hz, 1H), 3.90 (dd, *J* = 13.2, 6.4 Hz, 1H), 3.55 (dd, *J* = 13.2, 10.4 Hz, 1H), 3.41 – 3.32 (m, 1H), 1.73 (d, *J* = 5.2 Hz, 3H).

¹³C NMR (101 MHz, Chloroform-d) δ169.7, 145.7, 139.2, 132.6, 129.9, 129.6, 129.5, 127.0, 125.8, 117.2, 66.2, 52.4, 43.6, 139.2, 145.7, 1

18.2.

IR (neat): *v* (cm⁻¹) 2361, 1661, 1595, 1493, 1437, 1264, 1009, 739.

 $\label{eq:HRMS} \text{(ESI-TOF) calcd for $C_{19}H_{19}Cl_2N_2O^{+}([M]+H^{+})=361.0869, 363.0839, 365.0810, \text{found } 361.0872, 363.9840, 365.0807. \\ \end{tabular}$

(E)-1,3-Bis(4-bromophenyl)-5-(prop-1-en-1-yl)tetrahydropyrimidin-4(1H)-one (7ia)

Br 38.7 mg, 86% yield; yellow oil; $[\alpha]^{24}$ = -8.4 (*c* = 0.70, CH₂Cl₂).

Dissolved in *i*PrOH for HPLC; HPLC (Chiralcel ADH, hexane/*i*PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm) retention time: t_{major} = 23.61 min, t_{minor} = 18.75 min, er = 94:6.

¹**H NMR** (400 MHz, Chloroform-*d*) δ = 7.53 (d, *J* = 8.4 Hz, 2H), 7.38 (d, *J* = 8.8 Hz, 2H), 7.15 (d, *J* = 8.4 Hz, 2H), 6.76 (d, *J* = 8.8 Hz, 2H), 5.75 – 5.55 (m, 2H), 5.09 (d, *J* = 12.0 Hz, 1H), 5.00 – 4.93 (m, 1H), 3.89 (m, 1H), 3.54 (dd, *J* = 13.2, 10.4 Hz, 1H), 3.37 (dt, *J* = 10.0, 6.4 Hz, 1H), 1.73 (d, *J* = 5.6 Hz, 3H).

 $^{13}\mathbf{C}\,\mathbf{NMR}\,(101\,\,\mathrm{MHz},\,\mathrm{Chloroform}\text{-}d)\,\delta$ = 169.7, 146.1, 139.7, 132.5, 132.4, 130.0, 127.3, 125.7, 117.4, 113.0, 65.9, 52.2, 43.6,

18.2.

IR (neat): *v* (cm⁻¹) 2361, 1661, 1595, 1493, 1437, 1278, 1009, 753.

 $\textbf{HRMS} \text{ (ESI-TOF) calcd for } C_{19}H_{19}Br_2N_2O^+ ([M]+H^+) = 448.9859, 450.9838, 452.9818, \text{ found } 448.9865, 450.9840, 452.9816.$

Peak	Retention Time	Area	% Area
1	18.749	764290	6.16
2	23.605	11633203	93.84

(E)-5-(Prop-1-en-1-yl)-1,3-di-p-tolyltetrahydropyrimidin-4(1H)-one (7ja)

25.9 mg, 81% yield; colorless oil; $[\alpha]^{24}_{D}$ = -19.8 (*c* = 0.86, CH₂Cl₂).

Dissolved in *i*PrOH for HPLC; HPLC (Chiralcel ODH, hexane/*i*PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm) retention time: t_{major} = 18.68 min, t_{minor} = 23.69 min, er = 95:5.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.26 – 7.15 (m, 4H), 7.11 (d, *J* = 6.4 Hz, 2H), 6.87 (d, *J* = 6.4 Hz, 2H), 5.65 (s, 2H), 5.09 – 4.91 (m, 2H), 3.92 (d, *J* = 11.6 Hz, 1H), 3.54 (t, *J* = 11.6 Hz, 1H), 3.36 (s, 1H), 2.33 (d, *J* = 28.0 Hz, 6H), 1.73 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 169.8, 145.0, 136.8, 130.3, 130.1, 129.9, 129.2, 126.6, 125.8, 116.5, 67.2, 52.9, 43.3,

28.00

21.1, 20.5, 18.2.

IR (neat): ν (cm⁻¹) 2920, 1658, 1613, 1513, 1438, 1221,1002, 814.

HRMS (ESI-TOF) calcd for $C_{21}H_{25}N_2O^+$ ([M]+H⁺) = 321.1961, found 321.1959. 8 00 15.00 Moutes Peak **Retention Time** Area % Area 1 18.973 6438594 49.59 2 23.473 6545091 50.41 0.2 ⊋ ^{0.1} 19.00 21.00 9.00 10.00 11.00 12.00 16.00 17.00 18.00 20.00 22.0 13.00 14.00 15.00

Peak	Retention Time	Area	% Area
1	18.680	17134946	95.01
2	23.639	900255	4.99

(E)-5-(Prop-1-en-1-yl)-1,3-bis(4-(trifluoromethoxy)phenyl)tetrahydropyrimidin-4(1H)-one (7ka)

OCF3

CF₃ 35.4 mg, 77% yield; yellow oil; $[\alpha]^{24}_{D} = -16.7$ (*c* = 1.67, CH₂Cl₂).

Dissolved in *i*PrOH for HPLC; HPLC (Chiralcel ODH, hexane/*i*PrOH = 90/10, flow rate 1.0 mL/min, λ = 254 nm) retention time: t_{major} = 9.66 min, t_{minor} = 12.01 min, er = 93:7.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.36 – 7.24 (m, 4H), 7.16 (d, *J* = 8.4 Hz, 2H), 6.89 (d, *J* = 8.8 Hz, 2H), 5.78 – 5.54 (m, 2H), 5.11 (s, 1H), 5.01 (d, *J* = 11.6 Hz, 1H), 3.92 (dd, *J* = 13.2, 6.4 Hz, 1H), 3.58 (dd, *J* = 12.8, 10.0 Hz, 1H), 3.45 – 3.35 (m, 1H), 1.74 (d, *J* = 5.6 Hz, 3H).

 $^{13}{\rm C}\,{\rm NMR}$ (101 MHz, Chloroform-d) δ 169.8, 147.6, 145.9, 139.2, 130.0, 127.1, 125.8, 122.6, 121.9, 116.70 , 66.3, 52.4,

43.7, 18.2.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -57.96, -58.33.

IR (neat): ν (cm⁻¹) 2361, 1656, 1614, 1513, 1440, 1265, 966, 736.

HRMS (ESI-TOF) calcd for $C_{21}H_{19}F_6N_2O_3^+$ ([M]+H⁺) = 461.1294, found 461.1295.

Peak	Retention Time	Area	% Area
1	9.655	22238697	93.30
2	12.014	1595874	6.70

(E)-1,3-Bis(4-methoxyphenyl)-5-(prop-1-en-1-yl)tetrahydropyrimidin-4(1H)-one (7la)

17.6 mg, 50% yield; colorless oil; $[\alpha]^{24}_{D}$ = -18.1 (c = 1.11, CH₂Cl₂).

Dissolved in *i*PrOH for HPLC; HPLC (Chiralcel IA, hexane/*i*PrOH = 70/30, flow rate 1.0 mL/min, λ = 254 nm) retention time: t_{major} = 23.30 min, t_{minor} = 16.94 min, er = 90:10.

¹**H NMR** (400 MHz, Chloroform-*d*) δ7.24 – 7.17 (m, 2H), 6.94 (m, 4H), 6.89 – 6.83 (m, 2H), 5.75 – 5.51 (m, 2H), 5.01 (d, *J* = 11.6 Hz, 1H), 4.84 (dd, *J* = 11.6, 1.6 Hz, 1H), 3.88 – 3.75 (m, 7H), 3.51 (dd, *J* = 13.2, 10.0 Hz, 1H), 3.31 (dt, *J* = 10.4, 5.6 Hz, 1H), 1.72 (d, *J* = 4.0 Hz, 3H).

 $^{13}\textbf{C}~\textbf{NMR}~(101~\text{MHz},~\text{Chloroform-}\textit{d})~\delta~169.8,~158.3,~154.5,~141.4,~133.6,~129.1,~127.2,~126.6,~118.7,~114.8,~114.6,~68.5,~114.8,~114.6,~68.5,~114.8,~114.8,~114.6,~68.5,~114.8,~114.8,~114.6,~68.5,~114.8,~114.8,~114.6,~68.5,~114.8,~114.8,~114.6,~68.5,~114.8,~114$

55.5, 53.9, 43.1, 18.2.

IR (neat): ν (cm⁻¹) 2361, 1658, 1590, 1506, 1487, 1262, 1227, 745.

HRMS (ESI-TOF) calcd for $C_{21}H_{25}N_2O_3^+$ ([M]+H⁺) = 353.1860, found 353.1858.

Peak	Retention Time	Area	% Area
1	16.936	528581	9.65
2	23.298	4946728	90.35
Z	23.298	4940720	90.55

(E)-5-(Pent-1-en-1-yl)-1,3-diphenyltetrahydropyrimidin-4(1H)-one (7ab)

11.9 mg, 39% yield; pale yellow oil; $[\alpha]^{24}_{D}$ = -114.6 (*c* = 0.60, CH₂Cl₂).

"Pr

time: $t_{major} = 17.18 \text{ min}, t_{minor} = 13.82 \text{ min}, \text{ er} = 84:16.$ ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.47 – 7.37 (m, 2H), 7.34 – 7.25 (m, 5H), 6.99 – 6.89 (m, 3H), 5.73 – 5.54 (m, 2H), 5.15 (d, *J* = 11.6 Hz, 1H), 5.05 (m, 1H), 3.98 (m, 1H), 3.60 (dd, *J* = 13.2, 10.4 Hz, 1H), 3.40 (m, 1H), 2.05 (q, *J* = 7.6 Hz, 2H), 1.41 m, 2H), 0.91 (t, *J* = 7.6 Hz, 3H).

Dissolved in *i*PrOH for HPLC; HPLC (Chiralcel ODH, hexane/*i*PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm) retention

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 169.9, 147.2, 134.6, 129.6, 129.3, 127.0, 125.8, 125.2, 120.7, 116.0, 66.4, 52.5, 43.5, 34.8, 22.3, 13.7. **IR** (neat): *ν* (cm⁻¹) 2361, 1660, 1266, 749.

HRMS (ESI-TOF) calcd for $C_{21}H_{25}N_2O^+$ ([M]+H⁺) = 321.1961, found 321.1962.

Peak	Retention Time	Area	% Area
1	13.824	1204849	16.45
2	17.181	6117992	83.55

(E)-5-(Hex-1-en-1-yl)-1,3-diphenyltetrahydropyrimidin-4(1H)-one (7ac)

23.7 mg, 71% yield; pale yellow oil; $[\alpha]^{24}_{D}$ = -38.9 (c = 0.28, CH₂Cl₂).

"Bu

 $t_{major} = 20.27 \text{ min}, t_{minor} = 22.23 \text{ min}, er = 85:15.$ ¹H NMR (400 MHz, Chloroform-*d*) δ 7.47 – 7.38 (m, 2H), 7.30 (q, *J* = 7.2 Hz, 5H), 6.95 (d, *J* = 8.8 Hz, 3H), 5.72 – 5.58 (m, 2H), 5.15 (d, *J* = 11.6 Hz, 1H), 5.04 (m, 1H), 3.98 (m, 1H), 3.60 (m, 1H), 3.45 – 3.36 (m, 1H), 2.08 (m, 2H), 1.42 – 1.29 (m, 4H), 0.90 (t, *J* = 7.2 Hz, 3H).

Dissolved in *i*PrOH for HPLC; HPLC (Chiralcel IE, hexane/*i*PrOH = 80/20, flow rate 1.0 mL/min, λ = 254 nm) retention time:

¹³C NMR (101 MHz, Chloroform-*d*) δ169.8, 147.2, 140.9, 134.7, 120.6, 116.0, 66.3, 52.4, 43.4, 32.4, 31.3, 22.2, 14.0.

IR (neat): v (cm⁻¹) 2361, 1659, 1458, 1266, 751.

HRMS (ESI-TOF) calcd fo $C_{22}H_{27}N_2O^+$ ([M]+H⁺) = 335.2118, found 335.2116.

Peak	Retention Time	Area	% Area
1	20.273	59173325	85.40
2	22.225	10117239	14.60

13. References

- 1. Y. H. Wen, X. Huang, J. L. Huang, Y. Xiong, B. Qin, X. M. Feng, *Synlett*, 2005, 2445.
- (a) S. X. Dong, X. H. Liu, X. M. Feng, J. Am. Chem. Soc., 2010, 132, 10650; (b) L. H. Xie, Y. Li, S. X. Dong, X. M. Feng, X. H. Liu, Chem. Commun., 2021, 57, 239; (c) J. Z. Li, Y. H. Mo, L. Q. Yan, X. M. Feng, Z. S. Su, X. H. Liu, CCS Chemistry, 2021, 1.
- 3. N. F. Hu, H. Jung, Y. Zheng, J. Lee, L. L. Zhang, Z. Ullah, X. L. Xie, K. Harms, M.-H. Baik, E. Meggers, Angew. Chem., Int. Ed., 2018, 57, 6242.
- 4. C. H. Zhu, G. Y. Xu, J. T. Sun, Angew. Chem., Int. Ed., 2016, **55**, 11867–11871.
- 5. G. M. Sheldrick, Acta Cryst., 2008, A64, 112–122.
- 6. G. M. Sheldrick, Acta Cryst., 2015, A71, 3–8.
- 7. G. M. Sheldrick, Acta Cryst., 2015, C71, 3–8.
- 8. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. J Puschmann, Appl. Cryst., 2009, 42, 339-341.
- 9. A. L. J. Spek, Appl. Cryst., 2003, **36**, 7–13.

14. Copies of NMR spectra for products

90 80 f1 (ppm)

90 80 fl (ppm)

-102 -103 -104 -105 -106 -107 -108 -109 -110 -111 -112 -113 -114 -115 -116 -117 -118 -119 -120 -121 -122 -123 -124 -125 -12i f1 (ppm)

5	5		5					4	4	4	\sim	2	Ζ	Ζ	-	-	5	\sim	~	Ŋ		_	_			_	00	_	_	-	-		Ζ	5	5	5		\sim	-	5	4	5
		G			4	4	\sim	2	2	2	2	2	2	2	2	=	=					-			B	5				<u> </u>	4	4	\sim									
5	5.	Γ.	5	5	5	5	5	5	7.	5	7.	Γ.	5	5	7.	5	5	7.	5	5	5	5	7	7	7.	5	5	5	5	7.	ف	с,	с,	4	4	4	4	c i	c	c	c i	2

- 171.7 - 167.4 - 167.4 - 167.4 - 167.4 - 167.4 - 167.4 - 148.0 - 148.0 - 148.0 - 140.6 - 140.6 - 140.6 - 140.6 - 140.6 - 140.6 - 12

-- 21.5

10 -100 -110 f1 (ppm) 0 -10 -20 -90 -130 -200 -30 -40 -50 -60 -70 -80 -120 -140 -150 -160 -170 -180 -190 -210

110 100 fl (ppm) 130 120 -10 . 160 . 150

110 100 f1 (ppm) -10 . 180 . 90

-56.6 -56.7 -56.8 -56.9 -57.0 -57.1 -57.2 -57.3 -57.4 -57.5 -57.6 -57.7 -57.8 -57.9 -58.0 -58.1 -58.2 -58.3 -58.4 -58.5 -58.6 -58.7 -58.8 -58.9 -59.0 -59.1 -59.2 -59.3 -59.4 -59.5 -59.6 -59.7 fl (ppm)

170.8 187.7 187.7 187.7 187.7 187.7 187.3 182.4 182.4 182.4 182.4 182.4 182.4 182.4 182.4 182.4 183.7 183.7 184.5 185.8 186.8

7,168 7,167 7,167 7,167 7,168 7,166 7,168 7,168 7,168 7,148 7,173

