Direct Asymmetric Reductive Amination of α-Keto Acetals: A Platform for Synthesizing Diverse α-Functionalized Amines

Yongjie Shi,^{a,b} Jingxin Wang,^a Feifan Yang,^a Chenhan Wang, ^a Xumu Zhang,^{* a,d}, Pauline Chiu, ^b Qin Yin^{* c,d}

a Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Southern University of Science and

Technology, Shenzhen 518055, China

b Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong

Kong, China

c Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

E-mail: qin.yin@siat.ac.cn

d Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen

518055, China

Supporting Information

Contents

I. General Information	2
II. General Procedure for the Synthesis of Substrates	3
III. General Procedures for Direct Asymmetric Reductive Amination of α-Keto Acetals	14
IV. Product Transformations	28
V. Proposed enantioinduction models	36
VI. NMR spectra	37
VII. HPLC spectra	82
VIII. HRMS spectra	105
IX. References	113

I. General Information

Unless otherwise mentioned, all experiments were carried out under an atmosphere of argon in a glovebox or using standard Schlenk techniques. Solvents were dried with standard procedures and degassed with N2. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 300-400 mesh). NMR spectra were recorded on a Bruker DPX 400 spectrometer at 400 MHz for ¹H NMR, 101 MHz for ¹³C NMR or 126 MHz for ¹³C NMR in CDCl₃ or CD₃OD with tetramethylsilane (TMS) as internal standard. Chemical shifts are reported in ppm and coupling constants are given in Hz. Chemical shifts were reported relative to TMS (0.00 ppm) for ¹H NMR and relative to CDCl₃ (77.16 ppm) or CD₃OD (49.00 ppm) for ¹³C NMR. Enantiomeric excesses were determined by chiral HPLC analysis on Agilent Technologies 1260 Infinity II instrument or UPLC analysis on Agilent Technologies 1290 Infinity II instrument using a chiral stationary phase in comparison with the authentic racemates. High resolution mass spectra (HRMS) were obtained on Thermo Scientific Q Exactive hybrid quadrupole-Orbitrap mass spectrometer at the Department of Chemistry, Southern University of Science and Technology. PE refers to petroleum ether, HEX refers to hexane, EA refers to ethyl acetate, TFE refers to 2,2,2-trifluoroethanol, and MTBE refers to methyl *tert*-butyl ether.

II. General Procedures for the Synthesis of Substrates

To a suspension of arylglyoxal or its monohydrate^[1] (10.0 mmol) and PTS (*p*-toluenesulfonic acid, 0.1 equiv) in CH₂Cl₂ (40 mL) at room temperature was added HC(OEt)₃ (4.44 g, 30.0 mmol). The mixture was stirred for 2 h at 35 °C. The reaction was quenched by 30 mL saturated NaHCO₃ solution and extracted by CH₂Cl₂ (3 x 30 mL). The combined organic phase was dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. The residue was subjected to column chromatography on silica gel (eluent: HEX/EA = 100/2) to afford desired keto acetals.

Characterization data of substrate

Chemical Formula: C₁₂H₁₆O₃ Exact Mass: 208.1099

2,2-Diethoxy-1-phenylethan-1-one (1aa)

Substrate **1aa** is commercially available. ¹H NMR (600 MHz, Chloroform-*d*) δ 8.18 – 8.14 (m, 2H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.45 (t, *J* = 7.8 Hz, 2H), 5.28 (s, 1H), 3.76 (dq, *J* = 9.6, 7.1 Hz, 2H), 3.66 (dq, *J* = 9.6, 7.0 Hz, 2H), 1.25 (t, *J* = 7.0 Hz, 6H). ¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 194.2, 133.9, 133.6, 129.8, 128.5, 102.5, 63.3, 15.3.

2,2-Dimethoxy-1-phenylethan-1-one (1ab)

Substrate **1ab** was synthesized according to a reported procedure.^[1]

¹H NMR (400 MHz, Chloroform-*d*) δ 8.15 – 8.08 (m, 2H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.7 Hz, 2H), 5.23 (s, 1H), 3.48 (s, 6H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 193.5, 133.9, 133.8, 129.6, 128.6, 103.4, 54.7.

Chemical Formula: C₁₆H₁₈O₃ Exact Mass: 258.1256

2,2-Diethoxy-1-(naphthalen-2-yl)ethan-1-one (1b)

Substrate **1b** was synthesized according to **General procedure**. Light yellow oil, 5.0 mmol scale, 0.57 g, 2.2 mmol, 44% yield, $R_f = 0.5$ (Hex/EA = 95/5), obtained by purification with flash column chromatography on silica gel (eluent: Hex/EA = 1/0.02). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.78 (s, 1H), 8.15 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.99 (d, *J* = 8.1 Hz, 1H), 7.90 – 7.85 (m, 2H), 7.62 – 7.58 (m, 1H), 7.56 – 7.52 (m, 1H), 5.41 (s, 1H), 3.81 (dq, *J* = 9.6, 7.1 Hz, 2H), 3.71 (dq, *J* = 9.6, 7.0 Hz, 2H), 1.27 (t, *J* = 7.1 Hz, 6H). ¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 194.2, 136.0, 132.6, 132.2, 131.2, 130.1, 128.8, 128.2, 127.9, 126.7, 125.1, 102.7, 63.4, 15.4. The NMR data is consistent with that reported.^[2]

Chemical Formula: C₁₃H₁₈O₃ Exact Mass: 222.1256

2,2-Diethoxy-1-(o-tolyl)ethan-1-one (1c)

Substrate 1c was synthesized according to General procedure. Colorless oil, 10 mmol scale, 1.4 g, 6.3 mmol, 63% yield, $R_f = 0.5$ (Hex/EA = 95/5), obtained by purification with flash column chromatography on silica gel (eluent: Hex/EA = 1/0.02). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.02 – 7.95 (m, 1H), 7.42 – 7.35 (m, 1H), 7.29 – 7.21 (m, 2H), 5.21 (s, 1H), 3.81 – 3.60 (m, 4H), 2.52 (s, 3H), 1.23 (t, *J* = 7.1 Hz, 6H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 197.5, 139.9, 134.4, 132.0, 131.9, 130.2, 125.4, 102.5, 63.2, 21.5, 15.3. The NMR data is consistent with that reported.^[3]

Chemical Formula: C₁₃H₁₈O₃ Exact Mass: 222.1256

2,2-Diethoxy-1-(m-tolyl)ethan-1-one (1d)

Substrate **1d** was synthesized according to **General procedure**. Light yellow oil, 10 mmol scale, 1.34 g, 6.04 mmol, 60% yield, $R_f = 0.5$ (Hex/EA = 95/5), obtained by purification with flash column chromatography on silica gel (eluent: Hex/EA = 1/0.02). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.04 – 7.91 (m, 2H), 7.40 – 7.31 (m, 2H), 5.30 (s, 1H), 3.75 (p, *J* = 7.4 Hz, 2H), 3.66 (p, *J* = 7.5 Hz, 2H), 2.41 (s, 3H), 1.25 (t, *J* = 7.0 Hz, 6H). ¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 194.3, 138.3, 134.4, 134.0, 130.2, 128.4, 127.1, 102.2, 63.2, 21.5, 15.4. The NMR data is consistent with that reported.^[3]

Chemical Formula: C₁₃H₁₈O₃ Exact Mass: 222.1256

2,2-Diethoxy-1-(*p*-tolyl)ethan-1-one (1e)

Substrate 1e was synthesized according to General procedure. Colorless oil, 1.4 mmol scale, 0.24 g, 1.1 mmol, 76% yield, $R_f = 0.5$ (Hex/EA = 95/5), obtained by purification

with flash column chromatography on silica gel (eluent: Hex/EA = 1/0.02). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.06 (d, *J* = 8.3 Hz, 2H), 7.25 (d, *J* = 8.1 Hz, 2H), 5.26 (s, 1H), 3.80 – 3.60 (m, 4H), 2.41 (s, 3H), 1.24 (t, *J* = 7.1 Hz, 6H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 193.8, 144.5, 131.4, 130.0, 129.2, 102.5, 63.2, 21.9, 15.3. The NMR data is consistent with that reported.^[2]

Chemical Formula: C₁₈H₂₀O₃ Exact Mass: 284.1412

1-([1,1'-Biphenyl]-4-yl)-2,2-diethoxyethan-1-one (1f)

Substrate **1f** was synthesized according to **General procedure**. Colorless oil, 18.5 mmol scale, 4.10 g, 14.4 mmol, 78% yield, $R_f = 0.5$ (Hex/EA = 95/5), obtained by purification with flash column chromatography on silica gel (eluent: Hex/EA = 1/0.02). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.25 (d, J = 8.5 Hz, 2H), 7.70 – 7.60 (m, 4H), 7.51 – 7.43 (m, 2H), 7.43 – 7.37 (m, 1H), 5.29 (s, 1H), 3.79 (dq, J = 9.5, 7.1 Hz, 2H), 3.68 (dq, J = 9.6, 7.0 Hz, 2H), 1.27 (t, J = 7.1 Hz, 6H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 193.8, 146.2, 140.1, 132.6, 130.5, 129.0, 128.4, 127.4, 127.1, 102.8, 63.40, 15.4. HRMS (ESI), m/z: [M+Na]⁺ Calcd for C₁₈H₂₀O₃Na⁺: 307.1305; Found: 307.1304.

Chemical Formula: C₁₃H₁₈O₄ Exact Mass: 238.1205

2,2-Diethoxy-1-(3-methoxyphenyl)ethan-1-one (1g)

Substrate **1g** was synthesized according to **General procedure**. Light yellow oil, 9.1 mmol scale, 1.94 g, 8.15 mmol, 90% yield, $R_f = 0.5$ (Hex/EA = 95/5), obtained by purification with flash column chromatography on silica gel (eluent: Hex/EA = 1/0.02).

¹H NMR (600 MHz, Chloroform-*d*) δ 7.78 (d, *J* = 7.7 Hz, 1H), 7.66 (s, 1H), 7.35-7.37 (t, *J* = 7.9 Hz, 1H), 7.12 (dd, *J* = 8.2, 2.0 Hz, 1H), 5.28 (s, 1H), 3.85 (s, 3H), 3.79 – 3.72 (m, 2H), 3.71 – 3.62 (m, 2H), 1.25 (t, *J* = 7.1 Hz, 6H). ¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 193.9, 159.7, 135.2, 129.5, 122.6, 120.3, 113.8, 102.3, 63.2, 55.5, 15.3. The NMR data is consistent with that reported.^[3]

2,2-Diethoxy-1-(4-methoxyphenyl)ethan-1-one (1h)

Substrate **1h** was synthesized according to **General procedure**. Light yellow oil, 9.1 mmol scale, 1.99 g, 8.36 mmol, 92% yield, $R_f = 0.5$ (Hex/EA = 95/5), obtained by purification with flash column chromatography on silica gel (eluent: Hex/EA = 1/0.02). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.16 (d, *J* = 8.9 Hz, 2H), 6.93 (d, *J* = 8.9 Hz, 2H), 5.23 (s, 1H), 3.87 (s, 3H), 3.75 (dq, *J* = 9.6, 7.1 Hz, 2H), 3.64 (dq, *J* = 9.6, 7.0 Hz, 2H), 1.24 (t, *J* = 7.0 Hz, 6H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 192.8, 163.9, 132.3, 126.9, 113.7, 102.8, 63.2, 55.6, 15.3. The NMR data is consistent with that reported.^[2]

Exact Mass: 268.1311

1-(3,4-Dimethoxyphenyl)-2,2-diethoxyethan-1-one (1i)

Substrate **1i** was synthesized according to **General procedure**. Light yellow oil, 5 mmol scale, 1.1 g, 4.1 mmol, 82% yield, $R_f = 0.5$ (Hex/EA = 95/5), obtained by purification with flash column chromatography on silica gel (eluent: Hex/EA = 1/0.02). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.92 (dd, J = 8.5, 2.0 Hz, 1H), 7.67 (d, J = 2.0 Hz, 1H), 6.90 (d, J = 8.5 Hz, 1H), 5.25 (s, 1H), 3.95 (s, 3H), 3.94 (s, 3H), 3.79 – 3.73

(m, 2H), 3.69 - 3.63 (m, 2H), 1.25 (t, J = 7.1 Hz, 6H). ${}^{13}C{}^{1}H$ NMR (151 MHz, Chloroform-*d*) δ 192.8, 153.8, 148.9, 126.9, 125.0, 111.7, 110.1, 102.7, 63.3, 56.2, 56.1, 15.4. The NMR data is consistent with that reported.^[2]

Chemical Formula: C₁₂H₁₅FO₃ Exact Mass: 226.1005

2,2-Diethoxy-1-(2-fluorophenyl)ethan-1-one (1j)

Substrate **1j** was synthesized according to **General procedure**. Colorless oil, 15.5 mmol scale, 2.91 g, 12.9 mmol, 83% yield, $R_f = 0.5$ (Hex/EA = 95/5), obtained by purification with flash column chromatography on silica gel (eluent: Hex/EA = 1/0.02). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.93 – 7.84 (m, 1H), 7.57 – 7.48 (m, 1H), 7.26 – 7.20 (m, 1H), 7.16 – 7.09 (m, 1H), 5.39 (d, *J* = 2.3 Hz, 1H), 3.80 – 3.63 (m, 4H), 1.24 (t, *J* = 7.1 Hz, 6H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 193.5 (d, *J* = 4.3 Hz), 161.7 (d, *J* = 255.4 Hz), 134.8 (d, *J* = 9.1 Hz), 131.4 (d, *J* = 2.9 Hz), 124.5 (d, *J* = 3.3 Hz), 124.2 (d, *J* = 13.7 Hz), 116.5 (d, *J* = 23.3 Hz), 101.8 (d, *J* = 5.8 Hz), 63.2, 15.3. HRMS (ESI), m/z: [M+Na]⁺ Calcd for C₁₂H₁₅FO₃Na⁺: 249.0897; Found: 249.0897.

Chemical Formula: C₁₂H₁₅FO₃ Exact Mass: 226.1005

2,2-Diethoxy-1-(4-fluorophenyl)ethan-1-one (1k)

Substrate **1k** was synthesized according to **General procedure**. Light yellow oil, 3.8 mmol scale, 0.66 g, 2.9 mmol, 77% yield, $R_f = 0.5$ (Hex/EA = 95/5), obtained by purification with flash column chromatography on silica gel (eluent: Hex/EA = 1/0.02).¹H NMR (600 MHz, Chloroform-*d*) δ 8.22 (dd, J = 8.7, 5.6 Hz, 2H), 7.12 (t, J = 8.6 Hz, 2H), 5.18 (s, 1H), 3.82 – 3.74 (m, 2H), 3.69 – 3.60 (m, 2H), 1.25 (t, J = 7.1

Hz, 6H). ¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 192.8, 166.1 (d, J = 255.5 Hz), 132.8 (d, J = 9.3 Hz), 130.1 (d, J = 3.1 Hz), 115.6 (d, J = 21.7 Hz), 103.3, 63.7, 15.3. The NMR data is consistent with that reported.^[4]

Chemical Formula: C₁₂H₁₄F₂O₃ Exact Mass: 244.0911

1-(3,4-Difluorophenyl)-2,2-diethoxyethan-1-one (11)

Substrate **11** was synthesized according to **General procedure**. Colorless oil, 16.6 mmol scale, 2.55 g, 10.4 mmol, 63% yield, $R_f = 0.5$ (Hex/EA = 95/5), obtained by purification with flash column chromatography on silica gel (eluent: Hex/EA = 1/0.02). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.04 (ddd, J = 11.1, 7.9, 2.1 Hz, 1H), 8.01 – 7.96 (m, 1H), 7.23 (ddd, J = 9.8, 8.6, 7.6 Hz, 1H), 5.11 (s, 1H), 3.79 (dq, J = 9.6, 7.1 Hz, 2H), 3.63 (dq, J = 9.6, 7.0 Hz, 2H), 1.25 (t, J = 7.1 Hz, 6H). ¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 191.9, 154.0 (dd, J = 257.6, 13.0 Hz), 150.2 (dd, J = 249.6, 13.0 Hz), 130.6 (t, J = 4.3 Hz), 127.3 (dd, J = 7.4, 3.6 Hz), 119.5 (d, J = 19.2 Hz), 117.4 (d, J = 17.6 Hz), 103.8, 64.0, 15.3. HRMS (ESI), m/z: [M+H]⁺ Calcd for C₁₂H₁₄F₂O₃Na⁺: 267.0803; Found: 267.0802.

Chemical Formula: C₁₂H₁₅ClO₃ Exact Mass: 242.0710

1-(4-Chlorophenyl)-2,2-diethoxyethan-1-one (1m)

Substrate **1m** was synthesized according to **General procedure**. Colorless oil, 12 mmol scale, 1.68 g, 6.94 mmol, 58% yield, $R_f = 0.5$ (Hex/EA = 95/5), obtained by purification with flash column chromatography on silica gel (eluent: Hex/EA = 1/0.02). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.12 (d, *J* = 8.7 Hz, 2H), 7.42 (d, *J* = 8.7 Hz, 2H), 5.17 (s,

1H), 3.77 (dq, J = 9.5, 7.1 Hz, 2H), 3.64 (dq, J = 9.5, 7.0 Hz, 2H), 1.24 (t, J = 7.1 Hz, 6H). ¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 193.2, 140.0, 132.0, 131.5, 128.8, 103.3, 63.7, 15.3. The NMR data is consistent with that reported.^[2]

Chemical Formula: C₁₂H₁₅BrO₃ Exact Mass: 286.0205

1-(4-Bromophenyl)-2,2-diethoxyethan-1-one (1n)

Substrate **1n** was synthesized according to **General procedure**. Colorless oil, 5 mmol scale, 1.20 g, 4.20 mmol, 84% yield, $R_f = 0.5$ (Hex/EA = 95/5), obtained by purification with flash column chromatography on silica gel (eluent: Hex/EA = 1/0.02). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.04 (d, J = 8.4 Hz, 2H), 7.59 (d, J = 8.5 Hz, 2H), 5.17 (s, 1H), 3.77 (dq, J = 9.4, 7.1 Hz, 2H), 3.64 (dq, J = 9.4, 7.0 Hz, 2H), 1.24 (t, J = 7.1 Hz, 6H). ¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 193.4, 132.4, 131.8, 131.5, 128.9, 103.2, 63.7, 15.3. The NMR data is consistent with that reported.^[2]

Methyl 4-(2,2-diethoxyacetyl)benzoate (10)

Substrate **10** was synthesized according to **General procedure**. Light yellow oil, 8.3 mmol scale, 1.34 g, 5.04 mmol, 61% yield, $R_f = 0.5$ (Hex/EA = 95/5), obtained by purification with flash column chromatography on silica gel (eluent: Hex/EA = 1/0.02). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 (d, *J* = 8.5 Hz, 2H), 8.10 (d, *J* = 8.5 Hz, 2H), 5.23 (s, 1H), 3.95 (s, 3H), 3.78 (dq, *J* = 9.5, 7.1 Hz, 2H), 3.66 (dq, *J* = 9.6, 7.1 Hz, 2H), 1.25 (t, *J* = 7.1 Hz, 6H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 193.8, 166.4, 137.1,

134.1, 129.9, 129.6, 103.0, 63.7, 52.5, 15.3. The NMR data is consistent with that reported.^[4]

Chemical Formula: C₁₀H₁₄O₃S Exact Mass: 214.0664

2,2-Diethoxy-1-(thiophen-2-yl)ethan-1-one (1p)

Substrate **1p** was synthesized according to **General procedure**. Light yellow oil, 6.7 mmol scale, 0.97 g, 4.5 mmol, 68% yield, $R_f = 0.6$ (Hex/EA = 95/5), obtained by purification with flash column chromatography on silica gel (eluent: Hex/EA = 1/0.02). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.07 (dd, J = 3.9, 1.2 Hz, 1H), 7.67 (dd, J = 4.9, 1.2 Hz, 1H), 7.14 (dd, J = 4.9, 3.8 Hz, 1H), 5.13 (s, 1H), 3.78 (dq, J = 9.5, 7.0 Hz, 2H), 3.67 (dq, J = 9.5, 7.0 Hz, 2H), 1.28 (t, J = 7.1 Hz, 6H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 187.9, 139.8, 134.9, 134.7, 128.1, 102.4, 63.3, 15.3. HRMS (ESI), m/z: [M+Na]⁺ Calcd for C₁₀H₁₄O₃SNa⁺: 237.0556; Found: 237.0555.

Methyl 4,4-dimethoxy-3-oxobutanoate (1q)

Substrate **1q** is commercially available. ¹H NMR (600 MHz, Chloroform-*d*) δ 11.8 (s, 0.19 H), 5.44 (s, 0.18 H), 5.84 (s, 0.18 H), 4.58 (s, 1H), 3.77 (s, 0.55H), 3.74 (s, 3H), 3.60 (s, 2H), 3.43 (s, 6H), 3.38 (s, 1.17H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 198.2, 167.6, 103.7, 99.6, 90.6, 55.1, 53.5, 52.5, 51.6, 44.3.

1,1-Diethoxy-3-phenylpropan-2-one (1r)

Substrate 1r was synthesized according to a reported procedure.^[5]

¹H NMR (400 MHz, Chloroform-*d*) δ 7.35 – 7.18 (m, 6H), 4.63 (s, 1H), 3.89 (s, 2H), 3.70 (dq, J = 9.5, 7.1 Hz, 2H), 3.55 (dq, J = 9.5, 7.1 Hz, 2H), 1.25 (t, J = 7.1 Hz, 6H). The NMR data is consistent with that reported.^[5]

Chemical Formula: C₁₆H₁₆O₃ Exact Mass: 256.1099

2,2-Dimethoxy-1,2-diphenylethan-1-one (1s)

Substrate **1s** is commercially available. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 – 8.01 (m, 2H), 7.64 – 7.59 (m, 2H), 7.46 – 7.40 (m, 1H), 7.37 – 7.27 (m, 5H), 3.22 (s, 6H).¹³C{H¹} NMR (101 MHz, Chloroform-*d*) δ 195.3, 137.0, 134.4, 133.0, 130.1, 129.1, 128.7, 128.27, 127.1, 103.7, 50.2.

Chemical Formula: C₁₂H₁₅NO₅ Exact Mass: 253.0950

2,2-Diethoxy-1-(4-nitrophenyl)ethan-1-one (1t)

Substrate **1t** was synthesized according to **General procedure**. Light yellow oil, 19.7 mmol scale, 1.04 g, 4.11 mmol, 22% yield, $R_f = 0.5$ (Hex/EA = 95/5), obtained by purification with flash column chromatography on silica gel (eluent: Hex/EA = 1/0.02). ¹H NMR (400 MHz, Chloroform-*d*) δ 8.40 – 8.24 (m, 4H), 5.15 (s, 1H), 3.89 – 3.77 (m,

2H), 3.72 - 3.60 (m, 2H), 1.26 (t, J = 7.0 Hz, 6H). ${}^{13}C{}^{1}H$ NMR (101 MHz, Chloroform-*d*) δ 192.9, 150.5, 138.2, 131.2, 123.5, 104.0, 64.3, 15.3. The NMR data is consistent with that reported.^[4]

III. General Procedures for Direct Asymmetric Reductive Amination of α-Keto Acetals

3.1 General Procedure for direct asymmetric reductive amination of α-keto acetals

The catalyst Ru(OAc)₂(L) was synthesized according to reported procedures.^[6]

In a glovebox, Ru(OAc)₂(L) (0.002 mmol), substrate (0.2 mmol), ammonium salt (30.8 mg, 0.4 mmol) and TFE (1.0 ml) were successively added to a 5 mL vial equipped with a magnetic stirring bar. The mixture was then transferred to a stain-less autoclave and purged by three cycles of pressurization/venting with H₂. The required H₂ pressure (50 atm) was then installed, and the autoclave was placed in an oil bath preheated to 90 °C. The autoclave was cooled down to room temperature after 20 h and the pressure was slowly released in the hood. The reaction was quenched by saturated NaHCO₃ solution (2 mL) and extracted with DCM (3 mL x 3). The combined organic phase was dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. The residue was subjected to column chromatography on silica gel (eluent: DCM/MeOH/Et₃N = 1/0.01/0.002) to afford desired products.

To facilitate the measurement of enantiomeric excess, the chiral primary amines obtained were all derived into their acylamides or benzylamides. Procedure: primary amine (0.2 mmol) was dissolved in dichloromethane (1 mL), followed by addition of triethylamine (80 μ L) and acetic anhydride (40 μ L) or BzCl (40 μ L) at 0 °C. After stirred at room temperature for 2 h, saturated NaHCO₃ solution (1 mL) was added to quench the reaction. The organic phase was separated, dried, and evaporated under reduced pressure. The corresponding acetamides obtained were used for HPLC test to evaluate the ee value. For primary amine products **2ab**, **2c**, **2j** and **2q**, the yields and characterizations were determined after acetylation or benzoylation due to difficulty of purification.

3.2 Determination of products' absolute configuration

The absolute configuration of **2aa** was established by converting it to a known amino alcohol. For the details, please see **4.4 Reduction to amino alcohol**.

O O	Ru(C	0Ac) ₂ (<i>S</i>)- L1b (1 r NH₄OAc	nol%)	NH ₂ • OEt
	DEt TF	E, H ₂ , 90 °C, 20	h	OEt
1aa				2aa
entry	solvent	P/bar	yield	ee
1	TFE	50	87%	97%
2	TFE	40	85%	95%
3	TFE	30	88%	95%
4	TFE	2	0	-

3.3 Evaluation of hydrogen pressure

Reaction conditions: **1** (0.1 mmol), Ru(OAc)₂(*S*)-**L1b** (0.001 mmol), NH₄OAc (0.2 mmol), TFE (0.5 mL), H₂, 90 °C, 20 h.

3.44Characterization data of products

Chemical Formula: C₁₂H₁₉NO₂ Exact Mass: 209.1416

(S)-2-Bromo-5,6-dihydro-[1,1'-biphenyl]-3(4H)-ol (2aa)

Light yellow oil, 36.4 mg, 0.174 mmol, 87% yield (41.8 mg **1aa** used), 97% ee, $[\alpha]^{27}D$ = +9.6 (c=0.5, CHCl₃), $R_f = 0.3$ (DCM/MeOH = 95/5), obtained by purification with flash column chromatography on silica gel (eluent: DCM/MeOH/Et₃N = 1/0.01/0.002).

¹H NMR (600 MHz, Chloroform-*d*) δ 7.41 (d, *J* = 7.3 Hz, 2H), 7.32 (t, *J* = 7.5 Hz, 2H), 7.27 – 7.24 (m, 1H), 4.38 (d, *J* = 6.1 Hz, 1H), 4.00 (d, *J* = 6.1 Hz, 1H), 3.80 – 3.73 (m, 1H), 3.58 – 3.52 (m, 1H), 3.52 – 3.45 (m, 1H), 3.26 – 3.18 (m, 1H), 1.22 (t, *J* = 7.0 Hz, 3H), 1.02 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 141.6, 128.2, 127.9, 127.4, 107.1, 64.2, 63.9, 58.9, 15.4, 15.2. The ee value were determined after acylation. HPLC: Chiracel OD-3 Column (250 mm); detected at 210 nm; *n*-hexane / *i*propanol = 90/10; flow = 0.8 mL/min; Retention time: 6.9 min (major), 8.5 min (minor). HRMS (ESI), m/z: [M+H]⁺ Calcd for C₁₂H₂₀NO₂⁺: 210.1489; Found: 210.1493.

Chemical Formula: C₁₀H₁₅NO₂ Exact Mass: 181.1103

(S)-2,2-Dimethoxy-1-phenylethan-1-amine (2ab)

Because of difficulty of purification, the yield and characterization of **2c** is determined after acetylation to **2ab-Ac**.

(S)-N-(2,2-Dimethoxy-1-phenylethyl)acetamide (2ab-Ac)

White solid, 40.6 mg, 0.182 mmol, 91% overall yield after acetylation (36.2 mg **1ab** used), 94% ee, $[\alpha]^{27}_{D}$ = +38.6 (c=0.5, CHCl₃), R_f = 0.4 (Hex/EA = 65/35), obtained by purification with flash column chromatography on silica gel (eluent: Hex/EA = 1/0.2). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.34 – 7.30 (m, 4H), 7.28 – 7.24 (m, 1H), 6.44 – 6.27 (m, 1H), 5.18 (dd, *J* = 8.4, 3.2 Hz, 1H), 4.42 (d, *J* = 3.2 Hz, 1H), 3.43 (s, 3H), 3.37 (s, 3H), 2.03 (s, 3H). ¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 169.8, 138.6, 128.5, 127.7, 127.5, 106.5, 56.2, 55.8, 54.7, 23.5. HPLC: Chiracel OD-H Column (250 mm);

detected at 210 nm; *n*-hexane / *i*-propanol = 95/5; flow = 0.8 mL/min; Retention time: 20.0 min (major), 25.1 min (minor). HRMS (ESI), m/z: $[M+Na]^+$ Calcd for C₁₂H₁₇NO₃Na⁺: 246.1101; Found: 246.1100.

Chemical Formula: C₁₆H₂₁NO₂ Exact Mass: 259.1572

(S)-2,2-Diethoxy-1-(naphthalen-2-yl)ethan-1-amine (2b)

Light yellow oil, 47.1 mg, 0.182 mmol, 91% yield (51.8 mg **1b** used), 98% ee, $[\alpha]^{24}$ D = +7.6 (c=0.5, CHCl₃), R_f = 0.3 (DCM/MeOH = 95/5), obtained by purification with flash column chromatography on silica gel (eluent: DCM/MeOH/Et₃N = 1/0.01/0.002). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.89 – 7.87 (m, 1H), 7.84 – 7.81 (m, 2H), 7.80 (d, *J* = 8.7 Hz, 1H), 7.56 (dd, *J* = 8.4, 1.7 Hz, 1H), 7.47 – 7.43 (m, 2H), 4.48 (d, *J* = 6.2 Hz, 1H), 4.18 (d, *J* = 6.1 Hz, 1H), 3.84 – 3.73 (m, 1H), 3.59 – 3.48 (m, 2H), 3.26 – 3.18 (m, 1H), 1.23 (t, *J* = 7.0 Hz, 3H), 1.00 (t, *J* = 7.0 Hz, 3H). ¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 139.2, 133.4, 133.1, 128.1, 127.8, 127.7, 126.6, 126.3, 126.0, 125.8, 107.1, 64.3, 64.0, 59.0, 15.5, 15.3. The ee value were determined after acylation. HPLC: Chiracel ODH Column (250 mm); detected at 210 nm; *n*-hexane / *i*-propanol = 95/5; flow = 0.8 mL/min; Retention time: 16.8 min (minor), 25.8 min (major). HRMS (ESI), m/z: [M+Na]⁺ Calcd for C₁₆H₂₂NO₂⁺: 260.1645; Found: 260.1644.

Chemical Formula: C₁₃H₂₁NO₂ Exact Mass: 223.1572

(S)-2,2-Diethoxy-1-(*o*-tolyl)ethan-1-amine (2c)

Because of difficulty of purification, the yield and characterization of **2c** is determined after acetylation to **2c-Ac**.

Chemical Formula: C₁₅H₂₃NO₃ Exact Mass: 265.1678

(S)-N-(2,2-Diethoxy-1-(o-tolyl)ethyl)acetamide (2c-Ac)

White solid, 27.0 mg, 0.102 mmol, 52% overall yield after acetylation (44.4 mg **1c** used), 78 % ee, $[\alpha]^{27}_{D}$ = +6.1 (c=0.5, CHCl₃), R_f = 0.3 (Hex/EA = 65/35), obtained by purification with flash column chromatography on silica gel (eluent: Hex/EA = 1/0.2). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.34 – 7.27 (m, 1H), 7.23 – 7.11 (m, 3H), 6.39 (d, *J* = 8.1 Hz, 1H), 5.39 (dd, *J* = 8.1, 2.7 Hz, 1H), 4.47 (d, *J* = 2.8 Hz, 1H), 3.73 (dq, *J* = 9.0, 7.1 Hz, 1H), 3.66 (dq, *J* = 8.8, 7.1 Hz, 1H), 3.58 (dq, *J* = 9.0, 7.1 Hz, 1H), 3.37 (dq, *J* = 9.2, 7.1 Hz, 1H), 2.45 (s, 3H), 2.02 (s, 3H), 1.21 (t, *J* = 7.0 Hz, 3H), 1.14 (t, *J* = 7.1 Hz, 3H). ¹³C{H¹} NMR (151 MHz, Chloroform-*d*) δ 169.6, 137.4, 136.1, 130.4, 127.4, 126.9, 126.0, 103.6, 64.5, 63.7, 51.6, 23.6, 19.7, 15.3, 15.2. HPLC: Chiracel OD-3 Column (250 mm); detected at 210 nm; *n*-hexane / *i*-propanol = 95/5; flow = 0.8 mL/min; Retention time: 9.4 min (major), 10.9 min (minor). HRMS (ESI), m/z: [M+Na]⁺ Calcd for C1₅H₂₃NO₃Na⁺: 288.1570; Found: 288.1568.

Chemical Formula: C₁₃H₂₁NO₂ Exact Mass: 223.1572

(S)-2,2-Diethoxy-1-(*m*-tolyl)ethan-1-amine (2d)

Light yellow oil, 27.1 mg, 0.122 mmol, 61% yield (44.5 mg **1d** used), >99% ee, $[\alpha]^{22}D$ = +6.4 (c=0.5, CHCl₃), $R_f = 0.3$ (DCM/MeOH = 95/5), obtained by purification with flash column chromatography on silica gel (eluent: DCM/MeOH/Et₃N = 1/0.01/0.002). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.25 – 7.17 (m, 3H), 7.10 – 7.04 (m, 1H), 4.39 (d, *J* = 6.1 Hz, 1H), 3.96 (d, *J* = 6.1 Hz, 1H), 3.84 – 3.71 (m, 1H), 3.61 – 3.44 (m, 2H),

3.29 - 3.18 (m, 1H), 2.35 (s, 3H), 1.22 (t, J = 7.0 Hz, 3H), 1.03 (t, J = 7.0 Hz, 3H). ${}^{13}C{}^{1}H}$ NMR (101 MHz, Chloroform-*d*) δ 141.5, 137.8, 128.6, 128.2, 128.1, 125.0, 107.1, 64.1, 63.9, 58.8, 21.6, 15.4, 15.2. The ee value were determined after acylation. HPLC: Chiracel ODH Column (250 mm); detected at 210 nm; *n*-hexane / *i*-propanol = 95/5; flow = 0.8 mL/min; Retention time: 9.8 min (minor), 11.5 min (major). HRMS (ESI), m/z: [M+H]⁺ Calcd for C₁₃H₂₂NO₂⁺: 224.1645; Found: 224.1643.

Chemical Formula: C₁₃H₂₁NO₂ Exact Mass: 223.1572

(S)-2,2-Diethoxy-1-(p-tolyl)ethan-1-amine (2e)

Light yellow oil, 34.3 mg, 0.154 mmol, 77% yield (44.6 mg **1e** used), 97% ee, $[\alpha]^{21}D$ = +11.8 (c=0.5, CHCl₃), $R_f = 0.3$ (DCM/MeOH = 95/5), obtained by purification with flash column chromatography on silica gel (eluent: DCM/MeOH/Et₃N = 1/0.01/0.002). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.28 (d, *J* = 8.0 Hz, 2H), 7.13 (d, *J* = 7.9 Hz, 2H), 4.37 (d, *J* = 6.1 Hz, 1H), 3.96 (d, *J* = 6.1 Hz, 1H), 3.81 – 3.71 (m, 1H), 3.59 – 3.44 (m, 2H), 3.28 – 3.18 (m, 1H), 2.33 (s, 3H), 1.22 (t, *J* = 7.0 Hz, 3H), 1.03 (t, *J* = 7.0 Hz, 3H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 138.5, 137.0, 128.9, 127.7, 107.1, 64.1, 63.9, 58.6, 21.2, 15.4, 15.3. The ee value were determined after acylation. HPLC: Chiracel OD-3 Column (250 mm); detected at 210 nm; *n*-hexane / *i*-propanol = 95/5; flow = 1.0 mL/min; Retention time: 8.9 min (major), 10.6 min (minor). HRMS (ESI), m/z: [M+H]⁺ Calcd for C₁₃H₂₂NO₂⁺: 224.1645; Found: 224.1642.

Chemical Formula: C₁₈H₂₃NO₂ Exact Mass: 285.1729

(S)-1-([1,1'-Biphenyl]-4-yl)-2,2-diethoxyethan-1-amine (2f)

Light yellow oil, 49.6 mg, 0.174 mmol, 87% yield (57.0 mg **1f** used), 94% ee, $[\alpha]^{26}$ D = +21.3 (c=0.5, CHCl₃), $R_f = 0.3$ (DCM/MeOH = 95/5), obtained by purification with flash column chromatography on silica gel (eluent: DCM/MeOH/Et₃N = 1/0.01/0.002). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.59 (d, *J* = 8.0 Hz, 2H), 7.56 (d, *J* = 7.9 Hz, 2H), 7.48 (d, *J* = 7.9 Hz, 2H), 7.42 (t, *J* = 7.5 Hz, 2H), 7.33 (t, *J* = 7.1 Hz, 1H), 4.45 (d, *J* = 6.0 Hz, 1H), 4.05 (d, *J* = 6.0 Hz, 1H), 3.83 – 3.74 (m, 1H), 3.63 – 3.48 (m, 2H), 3.33 – 3.23 (m, 1H), 1.23 (t, *J* = 7.0 Hz, 3H), 1.05 (t, *J* = 7.0 Hz, 3H). ¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 141.0, 140.4, 140.3, 128.9, 128.3, 127.3, 127.1, 127.0, 106.8, 64.2, 64.0, 58.5, 15.4, 15.3. The ee value were determined after acylation. HPLC: Chiracel OD-3 Column (250 mm); detected at 210 nm; *n*-hexane / *i*-propanol = 95/5; flow = 1.0 mL/min; Retention time: 11.4 min (major), 12.8 min (minor). HRMS (ESI), m/z: [M+H]⁺ Calcd for C₁₈H₂₄NO₂⁺: 286.1802; Found: 286.1806.

Chemical Formula: C₁₃H₂₁NO₃ Exact Mass: 239.1521

(S)-2,2-Diethoxy-1-(3-methoxyphenyl)ethan-1-amine (2g)

Light yellow oil, 42.6 mg, 0.178 mmol, 89% yield (47.8 mg **1g** used), 95% ee, $[\alpha]^{26}_{D}$ = +5.1 (c=0.5, CHCl₃), R_f = 0.3 (DCM/MeOH = 95/5), obtained by purification with flash column chromatography on silica gel (eluent: DCM/MeOH/Et₃N = 1/0.01/0.002). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.23 (t, *J* = 8.1 Hz, 1H), 7.02 – 6.96 (m, 2H), 6.84 – 6.79 (m, 1H), 4.38 (d, *J* = 6.0 Hz, 1H), 3.98 (d, *J* = 6.1 Hz, 1H), 3.83 – 3.72 (m, 4H), 3.61 – 3.44 (m, 2H), 3.29 – 3.19 (m, 1H), 1.22 (t, *J* = 7.1 Hz, 3H), 1.04 (t, *J* = 7.0 Hz, 3H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 159.6, 143.3, 129.2, 120.3, 113.3, 113.1, 107.0, 64.3, 64.0, 58.9, 55.3, 15.4, 15.3. The ee value were determined after acylation. HPLC: Chiracel AD-3 Column (250 mm); detected at 210 nm; *n*-hexane / *i*-propanol = 95/5; flow = 0.8 mL/min; Retention time: 16.2 min (minor), 20.2 min

(major). HRMS (ESI), m/z: [M+H]⁺ Calcd for C₁₃H₂₂NO₃⁺: 240.1594; Found: 240.1592.

Chemical Formula: C₁₃H₂₁NO₃ Exact Mass: 239.1521

(S)-2,2-Diethoxy-1-(4-methoxyphenyl)ethan-1-amine (2h)

Light yellow oil, 34.9 mg, 0.146 mmol, 73% yield (47.8 mg **1h** used), 92% ee, $[\alpha]^{22}_{D}$ = +12.0 (c=0.5, CH₂Cl₂), R_f = 0.3 (DCM/MeOH = 95/5), obtained by purification with flash column chromatography on silica gel (eluent: DCM/MeOH/Et₃N = 1/0.01/0.002). ¹H NMR (600 MHz, Chloroform-d) δ 7.32 (d, *J* = 8.7 Hz, 2H), 6.86 (d, *J* = 8.7 Hz, 2H), 4.34 (d, *J* = 6.2 Hz, 1H), 3.95 (d, *J* = 6.1 Hz, 1H), 3.80 (s, 3H), 3.78 – 3.73 (m, 1H), 3.58 – 3.44 (m, 2H), 3.27 – 3.18 (m, 1H), 1.22 (t, *J* = 7.0 Hz, 3H), 1.03 (t, *J* = 7.0 Hz, 3H). ¹³C {¹H} NMR (151 MHz, Chloroform-d) δ 158.9, 133.7, 128.9, 113.6, 107.2, 64.2, 63.9, 58.2, 55.3, 15.4, 15.3. The ee value were determined after acylation. HPLC: Chiracel ODH Column (250 mm); detected at 210 nm; *n*-hexane / *i*-propanol = 95/5; flow = 0.8 mL/min; Retention time: 9.6 min (major). HRMS (ESI), m/z: [M+H]⁺ Calcd for C₁₃H₂₂NO₃⁺: 240.1594; Found: 240.1590.

(S)-1-(3,4-Dimethoxyphenyl)-2,2-diethoxyethan-1-amine (2i)

Light yellow oil, 42.0 mg, 0.156 mmol, 78% yield (53.8 mg 1i used), 85% ee, $[\alpha]^{23}_{D}$ = +4.3 (c=0.5, CHCl₃), R_f = 0.3 (DCM/MeOH = 95/5), obtained by purification with flash column chromatography on silica gel (eluent: DCM/MeOH/Et₃N = 1/0.01/0.002). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.00 (d, *J* = 1.9 Hz, 1H), 6.95 (dd, *J* = 8.2, 1.9 Hz,

1H), 6.83 (d, J = 8.2 Hz, 1H), 4.35 (d, J = 6.2 Hz, 1H), 3.95 (d, J = 6.2 Hz, 1H), 3.89 (s, 3H), 3.87 (s, 3H), 3.80 – 3.74 (m, 1H), 3.57 – 3.46 (m, 2H), 3.26 – 3.17 (m, 1H), 1.23 (t, J = 7.1 Hz, 3H), 1.04 (t, J = 7.0 Hz, 3H). ¹³C {¹H} NMR (151 MHz, Chloroformd) δ 148.8, 148.4, 134.0, 120.0, 111.0, 110.9, 107.1, 64.4, 64.3, 63.9, 58.6, 56.0, 15.4, 15.3. The ee value were determined after acylation. HPLC: Chiracel OJ-3 Column (250 mm); detected at 210 nm; *n*-hexane / *i*-propanol = 90/10; flow = 0.8 mL/min; Retention time: 10.6 min (minor), 13.9 min (major). HRMS (ESI), m/z: [M+H]⁺ Calcd for C₁₄H₂₄NO₄⁺: 270.1700; Found: 270.1969.

Chemical Formula: C₁₂H₁₈FNO₂ Exact Mass: 227.1322

(S)-2,2-Diethoxy-1-(2-fluorophenyl)ethan-1-amine (2j)

Because of difficulty of purification, the yield and characterization of **2j** is determined after acetylation to **2j**-**Ac**.

Chemical Formula: C₁₄H₂₀FNO₃ Exact Mass: 269.1427

(S)-N-(2,2-Diethoxy-1-(2-fluorophenyl)ethyl)acetamide (2j-Ac)

Light yellow oil, 41.2 mg, 0.153 mmol, 77% overall yield after acetylation (45.3 mg **1**j used), 99% ee, $[\alpha]^{27}_{D}$ = +9.6 (c=0.5, CHCl₃), R_f = 0.2 (Hex/EA = 1/0.2), obtained by purification with flash column chromatography on silica gel (eluent: Hex/EA = 80/20). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.30-7.28 (td, *J* = 7.6, 1.7 Hz, 1H), 7.26 – 7.21 (m, 1H), 7.13 – 7.07 (m, 1H), 7.06 – 6.98 (m, 1H), 6.39 (d, 1H), 5.46 (dd, *J* = 8.4, 2.9 Hz, 1H), 4.59 (d, *J* = 3.0 Hz, 1H), 3.74 – 3.64 (m, 2H), 3.64 – 3.57 (m, 1H), 3.42 – 3.35 (m, 1H), 2.06 (s, 3H), 1.21 (t, *J* = 7.0 Hz, 3H), 1.09 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR

(151 MHz, Chloroform-*d*) δ 169.8, 160.6 (d, J = 245.6 Hz), 129.1, 129.1 (d, J = 3.4 Hz), 125.8 (d, J = 13.4 Hz), 124.1 (d, J = 3.6 Hz), 115.4 (d, J = 21.9 Hz), 102.8 (d, J = 1.8 Hz), 64.2, 63.7, 50.4, 23.5, 15.2, 15.1. HPLC: Chiracel OD-3 Column (250 mm); detected at 210 nm; *n*-hexane / *i*-propanol = 95/5; flow = 0.8 mL/min; Retention time: 10.3 min (minor), 10.6 min (major). HRMS (ESI), m/z: [M+Na]⁺ Calcd for C₁₄H₂₀FNO₃Na⁺: 292.1319; Found: 292.1318.

Chemical Formula: C₁₂H₁₈FNO₂ Exact Mass: 227.1322

(S)-2,2-Diethoxy-1-(4-fluorophenyl)ethan-1-amine (2k)

Light yellow oil, 28.6 mg, 0.126 mmol, 63% yield (45.4 mg **1k** used), 98% ee, $[\alpha]^{23}_{D}$ = +7.0 (c=0.5, CHCl₃), R_f = 0.3 (DCM/MeOH = 95/5), obtained by purification with flash column chromatography on silica gel (eluent: DCM/MeOH/Et₃N = 1/0.01/0.002). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.42 – 7.35 (m, 2H), 7.03 – 6.98 (m, 2H), 4.34 (d, *J* = 6.1 Hz, 1H), 3.99 (d, *J* = 6.1 Hz, 1H), 3.81 – 3.70 (m, 1H), 3.62 – 3.44 (m, 2H), 3.28 – 3.16 (m, 1H), 1.22 (t, *J* = 7.0 Hz, 3H), 1.03 (t, *J* = 7.0 Hz, 3H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 162.3 (d, *J* = 245.0 Hz), 137.2 (d, *J* = 3.0), 129.4 (d, *J* = 7.9 Hz), 115.0 (d, *J* = 21.2 Hz), 107.0, 64.4, 64.0, 58.2, 15.4, 15.2. The ee value were determined after acylation. HPLC: Chiracel AD-3 Column (250 mm); detected at 210 nm; *n*-hexane / *i*-propanol = 95/5; flow = 0.8 mL/min; Retention time: 14.4 min (minor), 16.3 min (major). HRMS (ESI), m/z: [M+H]⁺ Calcd for C₁₂H₁₉FNO₂⁺: 228.1394; Found: 228.1392.

Chemical Formula: C₁₂H₁₇F₂NO₂ Exact Mass: 245.1227

(S)-1-(3,4-Difluorophenyl)-2,2-diethoxyethan-1-amine (2l)

Light yellow oil, 29.9 mg, 0.122 mmol, 61% yield (49.0 mg **11** used), 98% ee, $[\alpha]^{25}_{D} =$ +3.2 (c=0.5, CHCl₃), $R_f = 0.3$ (DCM/MeOH = 95/5), obtained by purification with flash column chromatography on silica gel (eluent: DCM/MeOH/Et₃N = 1/0.01/0.002). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.31 (ddd, J = 11.5, 7.7, 2.1 Hz, 1H), 7.17 – 7.14 (m, 1H), 7.13 – 7.07 (m, 1H), 4.40 (d, J = 5.9 Hz, 1H), 4.01 (d, J = 5.9 Hz, 1H), 3.79 – 3.72 (m, 1H), 3.64 – 3.57 (m, 1H), 3.52 (dq, J = 9.3, 7.0 Hz, 1H), 3.33 – 3.25 (m, 1H), 1.22 (t, J = 7.0 Hz, 3H), 1.06 (t, J = 7.0 Hz, 3H). ¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 150.2 (dd, J = 247.6, 13.8 Hz), 149.9 (dd, J = 247.6 12.8 Hz)137.2, 124.2 (dd, J = 6.2, 3.5 Hz), 117.0 (d, J = 10.7), 116.9 (d, J = 9.9), 105.8, 64.6, 64.2, 57.9, 15.4, 15.2. The ee value were determined after acylation. HPLC: Chiracel OD-3 Column (250 mm); detected at 210 nm; *n*-hexane / *i*-propanol = 95/5; flow = 0.8 mL/min; Retention time: 10.1 min (minor), 10.7 min (major). HRMS (ESI), m/z: [M+H]⁺ Calcd for C₁₂H₁₈F₂NO₂⁺: 246.1300; Found: 246.1296.

Chemical Formula: C₁₂H₁₈CINO₂ Exact Mass: 243.1026

(S)-1-(4-Chlorophenyl)-2,2-diethoxyethan-1-amine (2m)

Light yellow oil, 39.8 mg, 0.164 mmol, 79% yield (50.2 mg **1m** used), >99% ee, $[\alpha]^{26}D$ = +8.2 (c=0.5, CHCl₃), $R_f = 0.3$ (DCM/MeOH = 95/5), obtained by purification with flash column chromatography on silica gel (eluent: DCM/MeOH/Et₃N = 1/0.01/0.002). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.36 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.5 Hz, 2H), 4.37 (d, *J* = 6.0 Hz, 1H), 4.00 (d, *J* = 6.0 Hz, 1H), 3.79 – 3.73 (m, 1H), 3.60 – 3.54 (m, 1H), 3.53 – 3.47 (m, 1H), 3.28 – 3.22 (m, 1H), 1.21 (t, *J* = 7.0 Hz, 3H), 1.04 (t, *J* = 7.0 Hz, 3H). ¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 139.6, 133.3, 129.4, 128.4, 106.5, 64.5, 64.1, 58.3, 15.4, 15.2. The ee value were determined after acylation. HPLC: Chiracel OJ-3 Column (250 mm); detected at 210 nm; *n*-hexane / *i*-propanol = 95/5;

flow = 0.8 mL/min; Retention time: 15.7 min (major). HRMS (ESI), m/z: $[M+H]^+$ Calcd for C₁₂H₁₉ClNO₂⁺: 244.1099; Found: 244.1096.

Chemical Formula: C₁₂H₁₈BrNO₂ Exact Mass: 287.0521

(S)-1-(4-Bromophenyl)-2,2-diethoxyethan-1-amine (2n)

Light yellow oil, 43.2mg, 0.150 mmol, 74% yield (58.4 mg **1n** used), 95% ee, $[\alpha]^{21}_{D}$ = +9.4 (c=0.5, CHCl₃), R_f = 0.3 (DCM/MeOH = 95/5), obtained by purification with flash column chromatography on silica gel (eluent: DCM/MeOH/Et₃N = 1/0.01/0.002). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.57 (d, *J* = 8.5 Hz, 2H), 7.42 (d, *J* = 8.4 Hz, 2H), 4.46 (d, *J* = 6.0 Hz, 1H), 4.09 (d, *J* = 6.1 Hz, 1H), 3.93 – 3.84 (m, 1H), 3.74 – 3.57 (m, 2H), 3.41 – 3.31 (m, 1H), 1.34 (t, *J* = 7.0 Hz, 3H), 1.17 (t, *J* = 7.0 Hz, 3H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 140.7, 131.3, 129.7, 121.3, 106.8, 64.4, 64.0, 58.4, 15.4, 15.2. The ee value were determined after acylation. HPLC: Chiracel AD-3 Column (250 mm); detected at 210 nm; *n*-hexane / *i*-propanol = 95/5; flow = 0.8 mL/min; Retention time: 14.8 min (minor), 16.7 min (major). HRMS (ESI), m/z: [M+H]⁺ Calcd for C₁₂H₁₉BrNO₂⁺: 288.0594; Found: 288.0598.

(S)-Methyl-4-(1-amino-2,2-diethoxyethyl)benzoate (20)

Light yellow oil, 37.4 mg, 0.140 mmol, 70% yield (53.4 mg **10** used), 96% ee, $[\alpha]^{22}_{D}$ = +2.6 (c=0.5, CHCl₃), R_f = 0.3 (DCM/MeOH = 95/5), obtained by purification with flash column chromatography on silica gel (eluent: DCM/MeOH/Et₃N = 1/0.01/0.002). ¹H NMR (600 MHz, Chloroform-*d*) δ 8.00 (d, *J* = 8.4 Hz, 2H), 7.49 (d, *J* = 8.1 Hz, 2H),

4.38 (d, J = 6.0 Hz, 1H), 4.07 (d, J = 5.9 Hz, 1H), 3.91 (s, 3H), 3.79 – 3.71 (m, 1H), 3.60 – 3.54 (m, 1H), 3.52 – 3.45 (m, 1H), 3.26 – 3.19 (m, 1H), 1.21 (t, J = 7.0 Hz, 3H), 1.02 (t, J = 7.0 Hz, 3H). ¹³C{¹H} NMR (151 MHz, Chloroform-*d*) δ 167.2, 146.9, 129.5, 129.3, 128.0, 106.7, 64.5, 64.0, 58.8, 52.2, 15.4, 15.2. The ee value were determined after acylation. HPLC: Chiracel AD-3 Column (250 mm); detected at 210 nm; *n*-hexane / *i*-propanol = 90/10; flow = 0.8 mL/min; Retention time: 12.0 min (major), 14.9 min (minor). HRMS (ESI), m/z: [M+H]⁺ Calcd for C₁₄H₂₂NO₄⁺: 268.1543; Found: 268.1539.

Chemical Formula: C₁₀H₁₇NO₂S Exact Mass: 215.0980

(R)-2,2-Diethoxy-1-(thiophen-2-yl)ethan-1-amine (2p)

Light yellow oil, 36.3 mg, 0.169 mmol, 85% yield (42.8 mg **1p** used), 62% ee, $[\alpha]^{22}_{D}$ = +2.6 (c=0.5, CHCl₃), R_f = 0.3 (DCM/MeOH = 95/5), obtained by purification with flash column chromatography on silica gel (eluent: DCM/MeOH/Et₃N = 1/0.01/0.002). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.22 (dd, J = 5.1, 1.2 Hz, 1H), 7.04 (d, J = 3.4 Hz, 1H), 6.97 (dd, J = 5.1, 3.5 Hz, 1H), 4.39 (d, J = 5.9 Hz, 1H), 4.33 – 4.25 (m, 1H), 3.84 – 3.74 (m, 1H), 3.69 – 3.50 (m, 2H), 3.41 – 3.29 (m, 1H), 1.24 (t, J = 7.0 Hz, 3H), 1.12 (t, J = 7.0 Hz, 3H). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 145.4, 126.6, 124.9, 124.5, 106.6, 64.4, 64.0, 55.1, 15.4, 15.3. The ee value were determined after acylation. UPLC: Chiracel OD-3 Column (250 mm); detected at 210 nm; *n*-hexane / *i*-propanol = 95/5; flow = 0.5 mL/min; Retention time: 3.9 min (major), 4.4 min (minor). HRMS (ESI), m/z: [M+H]⁺ Calcd for C₁₀H₁₈NO₂S⁺: 216.1053; Found: 216.1056.

OMe Chemical Formula: C7H15NO4 Exact Mass: 177.1001

Methyl 3-amino-4,4-dimethoxybutanoate (2q)

For direct asymmetric reductive amination of **2q**, MeOH was used as solvent instead of TFE. Because of difficulty of purification, the yield and characterization of **2q** is determined after benzoylation to **2q-Bz**.

Methyl 3-benzamido-4,4-dimethoxybutanoate (2q-Bz)

White solid, 46.6 mg, 0.166 mmol, 83% yield (35.4 mg **1q** used), 98% ee, $[\alpha]^{24}_{D} = -2.3$ (c=1.0, CHCl₃), $R_f = 0.5$ (Hex/EA = 80/20), obtained by purification with flash column chromatography on silica gel (eluent: Hex/EA = 1/0.1). ¹H NMR (600 MHz, Chloroform-*d*) δ 7.82 – 7.78 (m, 2H), 7.51 (t, *J* = 7.4 Hz, 1H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.04 – 6.92 (m, 1H), 4.71 – 4.64 (m, 1H), 4.50 (d, *J* = 3.9 Hz, 1H), 3.70 (s, 3H), 3.46 (s, 3H), 3.43 (s, 3H), 2.70 (qd, *J* = 15.7, 5.8 Hz, 2H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 172.7, 167.1, 134.4, 131.8, 128.7, 127.2, 104.8, 56.2, 55.6, 52.0, 48.2, 33.6. HPLC: Chiracel AD-3 Column (250 mm); detected at 230 nm; *n*-hexane / *i*-propanol = 90/10; flow = 0.8 mL/min; Retention time: 17.2 min (minor), 19.9 min (major). HRMS (ESI), m/z: [M+Na]⁺ Calcd for C₁₄H₁₉NO₅Na⁺: 304.1155; Found: 304.1153.

IV. Product Transformations

4.1 Gram-scale reaction:

In a glovebox, Ru(OAc)₂(*S*-L1b) (70 mg, 0.050 mmol), **1aa** (1.01 g, 4.9 mmol), ammonium salt (0.77 g, 10 mmol) and TFE (20 ml) were successively added to a 50 mL reaction tube equipped with a magnetic stirring bar. The mixture was then transferred to a stain-less autoclave and purged by three cycles of pressurization/venting with H₂. The required H₂ pressure (50 atm) was then installed, and the autoclave was placed in an oil bath preheated to 90 °C. The autoclave was cooled down to room temperature after 48 h and the pressure was slowly released in the hood. The reaction was quenched by saturated NaHCO₃ solution (20 mL) and extracted with DCM (30 mL x 3). The combined organic phase was dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. The residue was subjected to column chromatography on silica gel (eluent: DCM/MeOH/Et₃N = 1/0.01/0.002) to afford desired products 0.81 g, 80% yield, 96% ee.

4.2 N-Alkylation:

AcOH (0.3 mmol, 18 μ L) was added to the solution of **2aa** (0.2 mmol, 40.8 mg) and PhCHO (0.3 mmol, 31.8 mg) in 3 mL MeOH, and the mixture was stirred for 3 h at room temperature. Then, NaBH₃CN (0.6 mmol, 38 mg) was added, and the reaction was stirred at 40 °C for 15 h. Upon completion of reaction, the reaction was quenched by 3 mL of saturated NH₄Cl/H₂O solution, followed by extraction with EA (10 mL x 3 times). The organic layer was combined, dried over anhydrous Na₂SO₄, filtered and

then evaporated under reduced pressure. The residue was subjected to flash column chromatography on silica gel (eluent: Hex/EA = 1/0.1) to afford **3** as a yellow solid.

Chemical Formula: C₁₉H₂₅NO₂ Exact Mass: 299.1885

(S)-N-Benzyl-2,2-diethoxy-1-phenylethan-1-amine (3)

Yellow solid, 46.6 mg, 0.156 mmol, 78% yield, 95% ee, $[\alpha]^{22}_{D} = +35.0$ (c=0.5, CHCl₃), $R_f = 0.3$ (Hex/EA = 95/5). ¹H NMR (400 MHz, Chloroform-*d*) δ 7.48 – 7.41 (m, 2H), 7.36 – 7.20 (m, 8H), 4.42 (d, J = 7.0 Hz, 1H), 3.79 – 3.60 (m, 3H), 3.53 – 3.42 (m, 3H), 3.12 – 3.03 (m, 1H), 1.21 (t, J = 7.1 Hz, 3H), 0.93 (t, J = 7.0 Hz, 3H). HPLC: Chiracel AD-3 Column (250 mm); detected at 210 nm; *n*-hexane / *i*-propanol = 95/5; flow = 0.8 mL/min; Retention time: 5.5 min (major), 6.6 min (minor). ¹³C{¹H} NMR (101 MHz, Chloroform-*d*) δ 140.7, 139.8, 129.0, 128.4, 128.3, 128.2, 127.5, 126.9, 106.5, 65.3, 64.5, 63.0, 51.1, 15.4, 15.1. HRMS (ESI), m/z: [M+H]⁺ Calcd for C₁₉H₂₆NO₂⁺: 300.1958, Found: 300.1957.

4.3 N-Benzoylation:

Primary amine **2aa** (41.8 mg, 0.2 mmol) was dissolved in dichloromethane (1 mL), followed by addition of triethylamine (80 μ L) and BzCl (40 μ L) at 0 °C. After stirred at room temperature for 2 h, saturated NaHCO₃ solution (3 mL) was added to quench the reaction, followed by extraction with DCM (5 mL x 3 times). The organic phase was combined, dried over anhydrous Na₂SO₄, filtered, and then evaporated under

reduced pressure. The residue was subjected to flash column chromatography on silica gel (eluent: Hex/EA = 1/0.1 to afford **4** as a white solid.

Chemical Formula: C₁₉H₂₃NO₃ Exact Mass: 313.1678

(S)-N-(2,2-Diethoxy-1-phenylethyl)benzamide (4)

White solid, 58.8 mg, 0.188 mmol, 94% yield, 97% ee, $[\alpha]^{22}_{D} = -34.1$ (c=0.5, CHCl₃), $R_f = 0.5$ (Hex/EA = 80/20). ¹H NMR (400 MHz, Methanol- d_4) δ 7.84 – 7.79 (m, 2H), 7.54 – 7.50 (m, 1H), 7.48 – 7.42 (m, 4H), 7.35 – 7.29 (m, 2H), 7.28 – 7.22 (m, 1H), 5.24 (d, J = 6.2 Hz, 1H), 4.80 (d, J = 6.2 Hz, 1H), 3.76 – 3.61 (m, 2H), 3.56 (dq, J =9.4, 7.0 Hz, 1H), 3.41 (dq, J = 9.4, 7.0 Hz, 1H), 3.31 (p, J = 1.7 Hz, 1H), 1.15 (t, J =7.1 Hz, 3H), 1.06 (t, J = 7.1 Hz, 3H). ¹³C{¹H} NMR (101 MHz, Methanol- d_4) δ 169.9, 140.5, 135.9, 132.7, 129.6, 129.2, 129.0, 128.4, 128.4, 105.0, 64.8, 63.5, 57.6, 15.6, 15.4. HPLC: Chiracel AS-3 Column (250 mm); detected at 230 nm; *n*-hexane / *i*propanol = 90/10; flow = 0.8 mL/min; Retention time: 9.2 min (major), 14.2 min (minor). HRMS (ESI), m/z: [M+Na]⁺ Calcd for C₁₉H₂₃NO₃Na⁺: 336.1570, Found: 336.1568.

4.4 Reduction to amino alcohol:

Compound 4 (31.3 mg, 0.1 mmol) was dissolved in 0.5 mL acetone at room temperature, then 0.5 mL of 6 mol/L HCl was added. The reaction was stirred at room temperature for 20 min and monitored by TLC. Upon completion of reaction, 3 mL H₂O was added, followed by extraction with EA (3 x 5 mL). The organic phase was combined, dried over anhydrous Na₂SO₄, filtered, and then evaporated under reduced

pressure to obtained crude aldehyde S2, which could be used in the next step without further purification.

The crude **S2** (*ca*. 0.1 mmol) obtained in the last step was dissolve in 1 mL MeOH, then NaBH₄ (5.5 mg) was added at 0 °C and stirred for 30 min. Upon completion of reaction, 3 mL saturated NH₄Cl solution was added to quench the reaction, followed by extraction with EA (3 x 5 mL). The residue was subjected to flash column chromatography on silica gel (eluent: Hex/EA = 1/0.1) to afford **5** as white solid.

Chemical Formula: C₁₅H₁₅NO₂ Exact Mass: 241.1103

(S)-N-(2-Hydroxy-1-phenylethyl)benzamide (5)

White solid, 23.5 mg, 0.0975 mmol, 98% yield over two steps, 97% ee, $[\alpha]^{23}_{D} = -16.6$ (c=0.5, MeOH), $R_f = 0.5$ (Hex/EA = 90/10). ¹H NMR (600 MHz, Methanol-*d*4) δ 7.88 – 7.84 (m, 2H), 7.53 (t, J = 7.4 Hz, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.41 (d, J = 7.6 Hz, 2H), 7.33 (t, J = 7.5 Hz, 2H), 7.25 (t, J = 7.4 Hz, 1H), 5.20 (t, J = 6.6 Hz, 1H), 3.86 (d, J = 6.6 Hz, 2H). ¹³C{¹H} NMR (151 MHz, Methanol-*d*4) δ 170.4, 141.4, 135.9, 132.7, 129.5, 129.5, 128.4, 128.4, 128.0, 66.1, 57.8. HRMS (ESI), m/z: [M+H]⁺ Calcd for C₁₅H₁₆NO₂⁺: 242.1176, Found: 242.1174. HPLC: Chiracel OJ-3 Column (250 mm); detected at 210 nm; *n*-hexane / *i*-propanol = 90/10; flow = 0.8 mL/min; Retention time: 14.9 min (major), 16.8 min (minor). The absolute configuration of **5** was determined by comparing its sign of the optical rotation with that reported in the literature.^[7] The absolute configuration of **2aa**, **2ab**, **2c-2p** was thus determined by similarity with **5**.

4.5 Oxidation to amino acid:

Jones's reagent was added to crude **S2** (0.2 mmol, see **4.4** for preparation) in 1.5 mL acetone over 0.5 h at 0 °C. The reaction was then stirred for 3 h at this temperature. Several drops of *i*-PrOH were added to quench the reaction and then concentrated. Water (4 mL) was then added, and the organic layers were extracted by DCM (3x 4 mL). The organic phase was combined, dried over anhydrous Na₂SO₄, filtered, and then evaporated under reduced pressure. The residue was subjected to flash column chromatography on silica gel (eluent: DCM/MeOH = 1/0.03) to afford **6** as white solid.

Chemical Formula: C₁₅H₁₃NO₃ Exact Mass: 255.0895

(S)-2-Benzamido-2-phenylacetic acid (6)

White solid, 37.7 mg, 0.148 mmol, 74% yield over 2 steps, 91% ee, $[\alpha]^{23}_{D} = +48.0$ (c=0.5, MeOH) $R_f = 0.2$ (DCM/MeOH = 95/5). ¹H NMR (400 MHz, Methanol-*d*₄) δ 7.92 – 7.82 (m, 2H), 7.56 – 7.43 (m, 5H), 7.33 – 7.19 (m, 3H), 5.44 (s, 1H). ¹³C NMR (151 MHz, Methanol-*d*₄) δ 176.0, 168.9, 140.7, 135.5, 132.8, 129.6, 129.4, 128.5, 128.3, 60.4. HPLC: Chiral-NZ(2) Column (250 mm); detected at 230 nm; *n*-hexane / (EtOH+0.1% TEA) = 50/50; flow = 0.5 mL/min; Retention time: 7.8 min (minor), 8.7 min (major). HRMS (ESI), m/z: [M-H]⁻ Calcd for C₁₅H₁₂NO₃⁻: 254.0823, Found: 254.0819. The absolute configuration of **6** was established by comparison of its sign of the optical rotation with that reported in the literature.^[8]

4.6 Formal synthesis of (-)-Cytoxazone

In a glovebox, Ru(OAc)₂(*R*-L1b) (54 mg, 0.040 mmol), 2g (0. 87 g, 3.7 mmol), ammonium salt (0.62 g, 8.1 mmol) and TFE (15 ml) were successively added to a 50 mL reaction tube equipped with a magnetic stirring bar. The mixture was then transferred to a stain-less autoclave and purged by three cycles of pressurization/venting with H₂. The required H₂ pressure (50 atm) was then installed, and the autoclave was placed in an oil bath preheated to 90 °C. The autoclave was cooled down to room temperature after 48 h and the pressure was slowly released in the hood. The reaction was quenched by saturated NaHCO₃ solution (20 mL) and extracted with DCM (30 mL x 3). The combined organic phase was dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. The residue was subjected to the next step without purification.

Primary amine obtained in the last step was dissolved in dichloromethane (20 mL) followed by addition of triethylamine (1.6 mL) and BzCl (3.2 mL) at 0 °C. After stirred at room temperature for 2 h, saturated NaHCO₃ solution (20 mL) was added to quench the reaction. The organic phase was separated, dried over anhydrous Na₂SO₄, filtered and evaporated under reduced pressure. The residue was subjected to flash column chromatography on silica gel (eluent: Hex/EA = 1/0.2) to afford 7 as white solid (0.76 g, 61% yield over 2 steps).

Compound 7 (34.3 mg, 0.1 mmol) was dissolved in 0.5 mL acetone at room temperature, then 6 mol/L HCl (0.5 mL) was added. The reaction was stirred at room temperature for 20 min and monitored by TLC. Upon completion of reaction, H₂O (3

mL) was added and the organic layers were extracted with EA (3 x 5 mL). The organic phase was combined, dried over anhydrous Na₂SO₄, filtered and then evaporated under reduced pressure. The residue was subjected to flash column chromatography on silica gel (eluent: Hex/EA = 1/0.15) to afford 7 as a white solid (25.7 mg, 95% yield).

Exact Mass: 343.1784

(R)-N-(2,2-Diethoxy-1-(4-methoxyphenyl)ethyl)benzamide (7)

White solid, 0.76 g, 2.2 mmol, 61% yield over 2 steps, 92% ee, $[\alpha]^{23}_{D} = +39.7$ (c=0.5, CHCl₃), $R_f = 0.6$ (Hex/EA = 80/20). ¹H NMR (600 MHz, Methanol- d_4) δ 7.84 – 7.78 (m, 2H), 7.55 – 7.51 (m, 1H), 7.48 – 7.44 (m, 2H), 7.37 – 7.34 (m, 2H), 6.92 – 6.85 (m, 2H), 5.19 (d, J = 6.2 Hz, 1H), 4.76 (d, J = 6.2 Hz, 1H), 3.77 (s, 3H), 3.74 – 3.63 (m, 2H), 3.56 (dq, J = 9.4, 7.0 Hz, 1H), 3.42 (dq, J = 9.5, 7.0 Hz, 1H), 3.31 (p, J = 1.6 Hz, 2H), 1.16 (t, J = 7.0 Hz, 3H), 1.07 (t, J = 7.0 Hz, 3H). ¹³C{¹H} NMR (151 MHz, Methanol- d_4) δ 169.8, 160.5, 136.0, 132.7, 132.5, 130.1, 129.6, 128.4, 114.6, 105.1, 64.8 63.6, 57.0, 55.7, 15.6, 15.4. HRMS (ESI), m/z: [M+Na]⁺ Calcd for C₂₀H₂₅NO4Na⁺: 366.1676, Found: 366.1675. HPLC: Chiracel OJ-3 Column (250 mm); detected at 210 nm; *n*-hexane / *i*-propanol = 95/5; flow = 0.8 mL/min; Retention time: 20.4 min (major), 29.3 min (minor).

Chemical Formula: C₁₆H₁₅NO₃ Exact Mass: 269.1052

(R)-N-(1-(4-Methoxyphenyl)-2-oxoethyl)benzamide (8)

Pale yellow solid, 25.7 mg, 0.0956 mmol, 95% yield. $[\alpha]^{27}_{D} = -1.8$ (c=0.5, CHCl₃), $R_f = 0.4$ (Hex/EA = 80/20). ¹H NMR (400 MHz, Chloroform-*d*) δ 9.62 (s, 1H), 7.87 – 7.81

(m, 2H), 7.55 - 7.40 (m, 4H), 7.29 (d, J = 8.7 Hz, 2H), 6.94 (d, J = 8.8 Hz, 2H), 5.71 (d, J = 5.8 Hz, 1H), 3.80 (s, 3H). ${}^{13}C{}^{1}H$ NMR (101 MHz, Chloroform-*d*) δ 195.0, 166.9, 160.2, 133.7, 132.1, 129.7, 128.8, 127.3, 125.1, 115.0, 63.4, 55.5. HRMS (ESI), m/z: [M+H]⁺ Calcd for C₁₆H₁₆NO₃⁺: 270.1125, Found: 270.1124. The NMR data is consistent with that reported.^[9]

V. Proposed enantioinduction models

A pair of enantioinduction models for this reaction are tentatively proposed to explain the observed high enantiocontrol. As depicted in the figure, (S)-product favored transition state can avoid the steric repulsion between the aryl group on substrate and the DTBM group on P atom, while this steric hindrance repulsion is envisaged in the case of (R)-product favored transition state. The energy difference between two transition states led to S product as the major product.
VI. NMR spectra

¹H NMR (400 MHz, Chloroform-d) of compound **1ab**

¹H NMR (600 MHz, Chloroform-d) of compound **1b**

$^1\mathrm{H}$ NMR (400 MHz, Chloroform-d) of compound 1c

42

90 80 70 60

50 40

20 10 0 -10

30

110 100 f1 (ppm)

210 200 190 180 170 160 150 140 130 120

-50000

¹H NMR (400 MHz, Chloroform-d) of compound 1f

$^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (101 MHz, Chloroform-d) of compound 1f

¹H NMR (400 MHz, Chloroform-d) of compound **1h**

$^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (101 MHz, Chloroform-d) of compound 1h

¹H NMR (600 MHz, Chloroform-d) of compound 1i

¹H NMR (600 MHz, Chloroform-d) of compound **11**

210 200 190 180 170 180 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

-100000

¹H NMR (600 MHz, Chloroform-d) of compound **1m**

¹H NMR (600 MHz, Chloroform-d) of compound **1n**

¹H NMR (400 MHz, Chloroform-d) of compound **10**

52

¹H NMR (400 MHz, Chloroform-d) of compound **1p**

-50000 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

$^1\mathrm{H}$ NMR (400 MHz, Chloroform-d) of compound 1r

¹H NMR (400 MHz, Chloroform-d) of compound 1s

$^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (101 MHz, Chloroform-d) of compound 1s

 $^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (101 MHz, Chloroform-d) of compound 1t

$^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (151 MHz, Chloroform-d) of compound **2ab-Ac**

¹H NMR (600 MHz, Chloroform-d) of compound **2b**

¹H NMR (600 MHz, Chloroform-d) of compound **2c-Ac**

$^{13}\mathrm{C}\{^{1}\mathrm{H}\}$ NMR (151 MHz, Chloroform-d) of compound 2c-Ac

¹H NMR (400 MHz, Chloroform-d) of compound 2d

¹³C{¹H} NMR (101 MHz, Chloroform-d) of compound 2d

¹H NMR (400 MHz, Chloroform-d) of compound 2e

¹H NMR (600 MHz, Chloroform-d) of compound **2f**

¹H NMR (400 MHz, Chloroform-d) of compound **2g**

¹H NMR (600 MHz, Chloroform-d) of compound **2h**

¹H NMR (600 MHz, Chloroform-d) of compound 2i

¹H NMR (400 MHz, Chloroform-d) of compound **2j-Ac**

¹H NMR (400 MHz, Chloroform-d) of compound 2k

¹H NMR (600 MHz, Chloroform-d) of compound **2**l

¹H NMR (600 MHz, Chloroform-d) of compound **2m**

¹H NMR (400 MHz, Chloroform-d) of compound **2n**

¹H NMR (600 MHz, Chloroform-d) of compound **20**

¹H NMR (400 MHz, Chloroform-d) of compound $\mathbf{2p}$

¹H NMR (600 MHz, Chloroform-d) of compound **2q-Bz**

¹H NMR (400 MHz, Chloroform-d) of compound **3**

$^1\mathrm{H}$ NMR (400 MHz, Chloroform-d) of compound 4

¹H NMR (600 MHz, Chloroform-d) of compound 5

¹H NMR (400 MHz, Chloroform-d) of compound 6

¹H NMR (600 MHz, Chloroform-d) of compound 7

$^1\mathrm{H}$ NMR (400 MHz, Chloroform-d) of compound $\boldsymbol{8}$

VII. HPLC spectra

Signal 1: DAD1 A, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.131	BV R	0.1702	1.23824e4	1090.31726	49.9410
2	8.811	BB	0.2681	1.24117e4	682.86652	50.0590

Signal 1: DAD1 A, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	6.864	MM	0.1634	5296.10010	540.15015	98.4931
2	8.546	MM	0.2960	81.02644	4.56172	1.5069

Signal 1: DAD1 C, Sig=210,4 Ref=360,100

Peak	RetTime	Тур	e	Width	Area	Height	Area
#	[min]			[min]	[mAU*s]	[mAU]	%
			-				
1	20.155	BV	R	0.6042	3.00069e4	662.72308	50.0026
2	23.900	BV	R	0.8222	3.00038e4	476.48727	49.9974

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	19.972	VV R	0.6261	3.82208e4	810.60114	97.1150
2	25.085	VV R	0.6456	1135.42065	20.62930	2.8850

Signal 1: DAD1 C, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	15.958	BB	0.5593	1.44974e4	395.78857	49.8994
2	25.419	MM	1.6305	1.45558e4	148.78726	50.1006

Signal 1: DAD1 C, Sig=210,4 Ref=360,100

Peak	RetTime [·]	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		·				
1	16.740 I	BB	0.5339	730.16742	19.18851	3.9459
2	25.785 I	BB	1.3129	1.77742e4	180.17317	96.0541

Signal 1: DAD1 A, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.367	BV R	0.1786	4235.14160	358.87387	89.1567
2	10.899	BB	0.2590	515.08105	29.90011	10.8433


```
Signal 1: DAD1 C, Sig=210,4 Ref=360,100
```

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.051	MM	0.3238	9204.31738	473.81577	49.9131
2	11.651	VB	0.5960	9236.36035	212.12172	50.0869

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.751	BB	0.3307	4.23787e4	1987.67102	99.7895
2	11.482	BB	0.3087	89.38857	4.33246	0.2105

Signal 1: DAD1 A, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.554	MM	0.3686	3271.01880	147.91644	50.5982
2	12.539	MM	0.7031	3193.67505	75.70998	49.4018

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.897	BB	0.2021	6028.88477	456.33356	98.9748
2	10.569	BB	0.2920	62.44792	3.01062	1.0252

Peak RetTime Type # [min]	Width Area [min] [mAU*s]	Height Area [mAU] %	1
1 11.728 BV 2 12.961 VB	0.3084 1346.69177 0.4049 1352.51953	65.91394 49.8920 49.48120 50.1080))
DAD1 B, Sig=254,4 R	ef=360,100 (D:\CHEMSTATA\1SHIY	UISHIYJ-3-109B 2020-12-07 18-10-	46irelacation00002.D) 옷
800 - Ph 2f	OEt -Ac		
600 -			
400 -			
200 -			
0	4 6 8	3 10 12	14 16 18

Signal 1: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.414	MM	0.3703	2.13732e4	961.90515	97.0431
2	12.818	MM	0.4472	651.23108	24.26995	2.9569

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	18.086	BB	0.5206	3627.91333	100.64352	49.9370
2	20.144	BB	0.5737	3637.06958	91.51700	50.0630

Signal 1: DAD1 C, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	18.199	BB	0.4280	93.63518	2.63865	2.6872
2	20.221	BB	0.5777	3390.84961	85.68890	97.3128

Signal 1: DAD1 C, Sig=220,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.646	BB	0.4287	5863.24609	203.16783	96.0448
2	20.369	MM	0.5906	241.45497	6.81371	3.9552

Signal 1: DAD1 C, Sig=220,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	15.646	BB	0.4287	5863.24609	203.16783	96.0448	
2	20.369	MM	0.5906	241.45497	6.81371	3.9552	

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.525	BB	0.4019	2658.90991	100.11333	50.5419
2	13.991	BB	0.6195	2601.89478	64.10281	49.4581

Signal 1: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.651	BB	0.3955	173.95155	6.27411	7.6078
2	13.891	BB	0.5680	2112.53955	57.31940	92.3922

Signal 1: DAD1 A, Sig=210,4 Ref=360,100

 Peak RetTime Type Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

----	------
 -----|
 -----|
 1

 1
 9.964
 VV R
 0.2236
 3360.18701
 229.67091
 49.6016

 2
 10.654
 VB
 0.3632
 3414.16138
 132.22545
 50.3984


```
Signal 1: DAD1 A, Sig=210,4 Ref=360,100
```

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.309	BV E	0.1767	67.27077	5.65959	0.3994
2	10.637	VB R	0.2495	1.67752e4	1022.09692	99.6006

Signal 1: DAD1 A, Sig=210,4 Ref=360,100

Peak #	RetTime Typ [min]	pe Width [min]	Area [mAU*s]	Height [mAU]	Area %			
1	15.842 BV	0.4933	2474.17627	70.53150	49.6480			
2	17.556 VB	0.5397	2509.25879	65.38808	50.3520			
	DAD1 A, Sig=21(0,4 Ref=360,100 (D:)	CHEMSTAA\1SHIYJ\	SHIYJ-3-44A-3 2021	-02-16 18-12-00\r	elacation00002.1	D)	
	_	NHAc				4:355		
200		OEt				T.		
		OEt						
	ר ד גן סו							
150	- 21	K-AC						
	-							
100)							
	-							
50	-) -							
	-							
		ΛΛ					310	
							16	
	2	4	6 8	10	12	14	16	18

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	14.355	VB R	0.6668	1.08888e4	248.71510	97.2413
2	16.310	VB R	0.3487	308.90768	11.23804	2.7587

Signal 1: DAD1 A, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	9.701	MM	0.3821	2.14142e4	933.94714	49.5767
2	10.656	MM	0.3430	2.17799e4	1058.38904	50.4233

Signal 1: DAD1 A, Sig=210,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	10.081	VB R	0.2542	184.60168	9.52206	1.8352
2	10.742	BV R	0.2969	9874.18848	494.60416	98.1648

Signal 1: DAD1 A, Sig=210,4 Ref=360,100

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %			
1	13.721	BB	0.3626	4904.28613	206.86893	50.2624			
2	15.489	BB	0.4161	4853.07178	175.77356	49.7376			
	DAD1 A, S	ig=210,4 R	∍f=360,100 (1S JHAc	SHIYJ\shiyj-3-48b_oj3-	2 2020-10-24 14-44-	17\relacation00002.E))	-733	
10			OEt					\$	
8	_] ci		ÓEt						
	-	2m-A	C						
6	0-								
4	-								
	-								
2	0-								
			M						
	1_,_,_	2	4	6	8 10	12	14	16	18

Signal 1: DAD1 A, Sig=210,4 Ref=360,100

 Peak RetTime Type
 Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

----	-----
 -----|
 ----|

 1
 15.733
 BB
 0.4418
 3395.52173
 116.59029
 100.0000

Peak RetTime Type # [min]	Width Area [min] [mAU*s]	Height [mAU]	Area %		
1 14.681 BB	0.3712 1897.0583	5 73.48484	49.5575		
2 16.472 BB	0.4228 1930.93872	2 64.95163	50.4425		
DAD1 D, Sig=230,4 F	Ref=360,100 (D:\CHEM32\SHIYJ\ HAc	SHIYJ-3-12 2020-09-16 1	4-21-52\003-P1-B6-shiyj-	3-12b.D)	
250 Br			14.815		
200 - 200 -					
150 -					
100 -					
50 -			2		
0	A		16.66		
2.5	5 7.5	10 12.5	15 17.5	5 20	22.5

Signal 1: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	14.815	BB	0.3814	6202.06348	233.89536	97.6576
2	16.661	BB	0.4122	148.76442	5.01272	2.3424

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.994	BB	0.3666	2295.15405	88.48380	98.1273
2	14.898	MM	0.4385	43.80046	1.66472	1.8727

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	4.079	MM	0.2449	2711.77124	184.55461	50.2136
2	4.695	MM	0.3374	2688.70483	132.80968	49.7864

Signal 1: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	3.938	MM	0.2134	3074.28076	240.12175	81.2064
2	4.450	MM	0.2530	711.48199	46.86198	18.7936

Signal 1: DAD1 D, Sig=230,4 Ref=360,100

 Peak RetTime Type
 Width
 Area
 Height
 Area

 # [min]
 [min]
 [mAU*s]
 [mAU]
 %

----	-----
 -----|
 -----|

 1
 17.119
 BB
 0.5108
 4893.10986
 131.28204
 49.3576

 2
 19.573
 BB
 0.6012
 5020.47412
 114.13428
 50.6424

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	17.250	BB	0.5141	165.28810	4.38208	1.2028
2	19.852	BB	0.6011	1.35771e4	308.71213	98.7972

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.499	BV	0.1687	3024.60596	243.94107	50.1102
2	6.618	MF	0.2427	3011.30396	206.77905	49.8898

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	5.464	BV R	0.2291	1.16548e4	683.00140	97.2997
2	6.589	VB E	0.2249	323.44791	19.55738	2.7003

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	9.278	MM	0.4540	1.53304e4	562.76740	50.0550
2	14.140	MM	0.8282	1.52967e4	307.82202	49.9450

Signal 1: DAD1 A, Sig=210,4 Ref=360,100

Peak #	RetTime Type [min]	Width [min]	Area [mAU*s]	Height [mAU]	Area %		
1	15.258 BV	0.4743	1.39240e4	434.01779	49.9065		
2	16.870 VB	0.6122	1.39761e4	352.75870	50.0935		
	DAD1 A, Sig=210,4 Re	f=360,100 (D:\	CHEMSTA A\1SHIY	/J\SHIYJ-3-138-2 2020)-12-19 18-51-35\re	elacation00002.D)]
140	NHBz						
120	- - 5	I					
100						35	
80	- - -					14.8	
60)_						
40	-						
20							63 ⁵¹
		1					97 A1.
	2	4	6	8 10	12	14 1	6 18

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	14.885	BB	0.4504	2686.73535	86.48200	98.4776
2	16.838	MM	0.5199	41.53515	1.33141	1.5224

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	7.806	BV	0.1447	9834.31445	1036.78589	49.8065
2	8.685	VB	0.1709	9910.74609	883.11548	50.1935

Signal 1: DAD1 D, Sig=230,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	%	
1	7.808	BB	0.1412	403.29742	43.87557	4.5845	
2	8.684	BB	0.1704	8393.61816	751.02795	95.4155	

Signal 1: DAD1 B, Sig=254,4 Ref=360,100

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	20.958	BB	0.9554	1229.65405	18.69534	49.6709
2	30.161	MM	1.5518	1245.95081	13.38186	50.3291

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	20.418	BB	0.9681	4584.30859	71.11302	95.7731
2	29.341	MM	1.2548	202.32512	2.68733	4.2269

VIII. HRMS spectra

1-([1,1'-biphenyl]-4-yl)-2,2-diethoxyethan-1-one (1f)

2,2-diethoxy-1-(2-fluorophenyl)ethan-1-one (1j)

1-(3,4-difluorophenyl)-2,2-diethoxyethan-1-one (11)

2,2-diethoxy-1-(thiophen-2-yl)ethan-1-one (1p)

2-bromo-5,6-dihydro-[1,1'-biphenyl]-3(4H)-ol (2aa)

(S)-N-(2,2-dimethoxy-1-phenylethyl)acetamide (2ab-Ac)

(S)-N-(2,2-diethoxy-1-(o-tolyl)ethyl)acetamide (2c-Ac)

(S)-2,2-diethoxy-1-(p-tolyl)ethan-1-amine (2e)

(S)-1-([1,1'-biphenyl]-4-yl)-2,2-diethoxyethan-1-amine (2f)

(S)-2,2-diethoxy-1-(3-methoxyphenyl)ethan-1-amine (2g)

(S)-1-(3,4-dimethoxyphenyl)-2,2-diethoxyethan-1-amine (2i)

(S)-2,2-diethoxy-1-(4-fluorophenyl)ethan-1-amine (2k)

(S)-1-(3,4-difluorophenyl)-2,2-diethoxyethan-1-amine (2l)

(S)-1-(4-chlorophenyl)-2,2-diethoxyethan-1-amine (2m)

(S)-1-(4-bromophenyl)-2,2-diethoxyethan-1-amine (2n)

(S)-methyl (S)-4-(1-amino-2,2-diethoxyethyl)benzoate (20)

(R)-2,2-diethoxy-1-(thiophen-2-yl)ethan-1-amine (2p)

methyl 3-benzamido-4,4-dimethoxybutanoate (2q-Bz)

(S)-N-benzyl-2,2-diethoxy-1-phenylethan-1-amine (3)

(S)-N-(2,2-diethoxy-1-(4-methoxyphenyl)ethyl)benzamide (7)

IX Reference

- [1] B. Qin, X. Liu, J. Shi, K. Zheng, H. Zhao, X. Feng. J. Org. Chem. 2007, 72, 2374-2378.
- [2] O. R.Shangpliang, K. Wanniang, B. Kshiar, I. D. Marpna, T. Mitre Lipon, P. Mizar, B. Myrboh. ACS Omega, 2019, 4, 6035–6043
- [3] C. Chen, Z. Cao, X. Zhang, Y. Li, L. Yu, X. Jiang. Chin. J. Chem. 2020, 38, 1045-105
- [4] F. Chen, Y. Wang, J. Ai, Z. Zhan, Y. Lv, Z. Liang, C. Luo, D. Mei, M. Geng, W. Duan. ChemMedChem 2012, 7, 1276 – 1285.
- [5] F. Ayala-Mata, C. Barrera-Mendoza, H. A. Jiménez-Vázquez, E. Vargas-Díaz, L. G. Zepeda. *Molecules* 2012, 17, 13864-13878.
- [6] a) H. Takaya, T. Ohta, S. Inoue, M. Tokunaga, M. Kitamura, and R. Noyori. Org. Synth. 1995, 74-
- 85. 8. b) X. Tan, S. Gao, W. Zeng, S. Xin, Q. Yin, and X. Zhang. J. Am. Chem. Soc. 2018, 140, 2024-2027.
- [7] R. Kuwano, N. Kameyama, R. Ikeda. J. Am. Chem. Soc. 2011, 133, 7312-7315.
- [8] R. Almansa, J. F. Collados, D. Guijarro, M. Yus. Tetrahedron: Asymmetry 2010, 21,1421-1431
- [9] Z. Tokic-Vujosevic, G. Petrovic, B. Rakic, R. Matovic, R. N. Saicic. Synth. Commun. 2005, 35, 435-447.