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1. Materials and instrumentation

Starting material and solvents were of commercial grade and were used without further purification.
Column chromatography was carried out with Merck 60 A (0.040-0.063 mm) silica gel. TLC was
performed with Merck silica gel 60 F254 plates. *H NMR and 3C NMR were recorded at 298 K on a
Bruker Advance Il HD 300 MHz spectrometer. *H NMR and *C NMR chemical shifts (&) are reported in
ppm and referenced to the protonated residual solvent signal.

2. Synthetic procedures

Synthesis of 1

In a dry two-necked round-bottom flask was added P,0Os (30 g, 0.11 mol, 1.5 equiv.) and dry Et,0 (85
mL). The mixture was heated to 48°C and a solution of 3-methoxybenzyl alcohol (10 g, 0.07 mol, 1
equiv.) in 105 mL of Et,0 was added dropwise with an extra funnel over 2h. Stirring was stopped and
the reaction was performed overnight under reflux. Et,0 was decanted, and the solid was washed and
sonicated with dichloromethane (3 x 40 ml). The organic layers were combined and evaporated under
reduced pressure. The resulting oil was purified by silica gel column chromatography using
CH,Cly/Hexane (2/3) as eluent. A yellow solid was obtained, was dissolved in a minimum amount of
dichloromethane and precipitated with a mixture of pentane/Et,0 (7/3). A white solid was collected
by filtration to give compound 1. (1 g, 11%).

Characterizations of 1 was consistent with literature.?

H NMR (CDCls, 400 MHz, 298K) 57.27 (d, J = 8.38 Hz, 1H), 6.88 (d, J = 2.8 Hz, 1H), 6.66 (dd, /= 8.5 Hz,
4) = 2.8 Hz, 1H), 4.76 (d, J = 13.6 Hz, 1H), 3.74 (s, 3H), 3.64 (d, J = 13.6 Hz, 1H).

Synthesis of 2

A solution of boron tribromide (70 mL, 1 M in dichloromethane, 15.5 equiv.) was added dropwise to a
suspension of compound 1 (1.65 g, 4.5 mmol, 1 equiv.) in dry dichloromethane (25 mL) at 0°C. The
solution was warmed to room temperature and stirred overnight. The mixture was poured into an ice
and H,0 slurry. The solid residue was washed with 100 mL of hot water and dried to provide a slightly
colored powder. The powder was poured into 7 mL of acetonitrile and sonicated for 20 min. The
precipitate was filtered, washed with 10 mL of Et,O and dried to give compound 2 (500 mg, 56%).
Characterizations of 2 was consistent with literature.?

H NMR (400 MHz, acetone-ds, 298K) & 7.21 (d, J = 8.0 Hz, 1H), 6.88 (d, J = 2.6 Hz, 1H), 6.55 (dd, 3/ = 8.3
Hz, %) = 2.6 Hz, 1H), 4.78 (d, J = 13.4 Hz, 1H), 3.55 (d, J = 13.4 Hz, 1H).

Synthesis of 4

To 2 (30 mg, 94.2 umol, 1 equiv.) dissolved in DMF (2.5 mL), were added 3 (111 mg, 320 umol, 3.4
equiv.) and Cs,CO;5 (138 g, 424 umol, 4.5 equiv.). The reaction mixture was stirred at 80 °C for 18 hours.
It was diluted with distilled water (5 mL), extracted with CHCls (2 x 10 mL) and dried over MgSO..
Organic solvents were removed under reduced pressure. The resulting solid was washed with diethyl
ether and purified by silica gel column chromatography using CHCl3/CH30H (95/5) as eluent to give 4
as a white solid (78 mg, 74%).

Characterization of 4 was consistent with literature.?
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H NMR (CDCls, 300 MHz, 298K) §7.26 (d, J = 8.4 Hz, 3H), 6.93 (d, J = 2.7 Hz, 3H), 6.92-6.89 (m, 9H),
6.67 (dd, 3/ = 8.3 Hz, %/ = 2.6 Hz, 3H), 4.75 (d, J = 13.2 Hz, 3H), 4.72 (d, J = 11.8 Hz, 3H), 4.68 (m, 3H),
4.45 (d, J = 11.8 Hz, 3H), 4.33-4.25 (m, 12H), 3.95-3.88 (m, 3H), 3.85 (s, 9H), 3.63 (d, J = 11.8 Hz, 3H),
3.57-3.52 (m, 3H), 1.90-1.82 (m, 3H), 1.77-1.70 (m, 3H), 1.67-1.55 (m, 12H).

TLC: Rf (CHCl3/CH30H : 95/5) = 0.50.
Synthesis of anti-5 (Cryptophane C) and syn-5 (Cryptophane D)

4 (50 mg, 45 umol, 1 equiv.) was dissolved into 50 mL of a mixture of chloroform/HFIP (1/1). After
complete dissolution of 4, KHSO4 (4 mg, 29 umol, 0.7 equiv.) was added. The reaction mixture was
stirred for 20 hours. The solvents were evaporated and resulting oil was dissolved in 15 mL of
dichloromethane, washed with water (20 mL) and extracted with dichloromethane (2 x 15 mL). The
combined organic layers were dried over MgSO, and evaporated and the resulting solid was purified
by silica gel column chromatography using CH,Cl,/CH3COCH3; (95/5) as eluent to yield anti-5 (10 mg,
31%) and syn-5 (6 mg, 18%) as white solids.

Characterizations of anti-5 and syn-5 were consistent with literature.*

anti-5 - *H NMR (CDCls, 300 MHz, 298K) §7.09 (d, J = 8.5 Hz, 3H), 6.79 (d, J = 2.6 Hz, 3H), 6.67 (s, 3H),
6.62 (s, 3H), 6.36 (dd, 3/ = 8.4 Hz, *J = 2.7 Hz, 3H), 4.61 (d, J = 13.7 Hz, 3H), 4.60 (d, J = 13.5 Hz, 3H), 4.38-
4.29 (m, 6H), 4.25-4.26 (m, 3H), 4.07-4.02 (m, 3H), 3.80 (s, 9H), 3.51 (d, J = 13.6 Hz, 3H), 3.39 (d, J =
13.9 Hz, 3H).

13C NMR (CDCls, 75 MHz, 298K) & 156.6, 148.6, 147.4, 141.19, 132.9, 132.3, 131.9, 131.0, 119.6, 116.7,
114.8, 111.8, 66.9, 65.5, 56.6, 36.4, 36.2.

TLC: Rf CH,Cl,/CH3COCHs (95/5) = 0.35

syn-5 - 'H NMR (CDCls, 300 MHz, 298K) 57.10 (d, J = 8.5 Hz, 3H), 6.83 (s, 3H), 6.66 (s, 3H), 6.68-6.65
(m, 6H), 4.62 (d, J = 13.8 Hz, 3H), 4.60 (d, J = 13.6 Hz, 3H), 4.32-4.23 (m, 6H), 4.16-4.01 (m, 3H), 3.81 (s,
9H), 3.70-3.64 (m, 3H), 3.50 (d, J = 13.6 Hz, 3H), 3.45 (d, J = 13.8 Hz, 3H).

13C NMR (CDCls, 75 MHz, 298K) 6 157.3, 150.1, 147.0, 141.0, 134.9, 132.4, 132.0, 131.0, 131.3, 119.1,
114.2,113.5, 71.6, 66.2, 56.3, 36.4, 36.2.

TLC: Rf CH,Cl,/CH3COCHs (95/5) = 0.56
Synthesis of 6a

Vanillic alcohol (45.0 g, 292 mmol, 1 equiv.) was dissolved in absolute alcohol (500 mL). K,CO5(45.0 g,
331 mmol, 1.13 equiv.) and dibromoethane (100 mL, 1.16 mol, 3.97 equiv.) were added under stirring.
The mixture was stirred at 78°C for 6 hours. The solvent was removed under reduced pressure, then
water (300 mL) and ethyl acetate (200 mL) were added to the residue. The solution was stirred at room
temperature overnight, filtered and the aqueous phase was extracted with ethyl acetate (3 x 100 mL).
The combined organic layers were washed with 10% aqueous NaOH (4 x 100 mL), brine (100 mL) and
dried over MgS0,. Organic solvent was removed and the crude product was dissolved in warmed
diisopropyl ether (300 mL). The solution was cooled and the brown oil was eliminated by decantation.
Evaporation of the solvent afforded 6a as a white solid (36.0 g, 47%).

Characterization of 6a was consistent with literature.®

H NMR (CDCls, 300 MHz, 298K) 5 6.95 (s, 1H), 6.94-6.85 (m, 2H), 4.62 (s, 2H), 4.32 (t, J = 6.7 Hz, 2H),
3.87 (s, 3H), 3.64 (t, J = 6.7 Hz, 2H), 1.79 (s, 1H).
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Synthesis of 6b

Vanillic alcohol (5.0 g, 33 mmol, 1 equiv.) was dissolved in absolute alcohol (50 mL). K2CO5 (5.0 g, 37
mmol, 1.13 equiv.) and dibromopropane (13 mL, 129 mmol, 3.97 equiv.) were added under stirring.
The mixture was stirred at 78°C for 6 hours. The solvent was removed under reduced pressure, then
water (25 mL) and ethyl acetate (35 mL) were added to the residue. The solution was stirred at room
temperature overnight, filtered and the aqueous phase was extracted with ethyl acetate (3 x 10 mL).
The combined organic layers were washed with 10% aqueous NaOH (4 x 10 mL), brine (10 mL) and
dried over MgSQO,. Organic solvent was removed and the crude product was purified by silica gel
column chromatography using CH,Cl, as eluent to yield 6b as a white solid (5.5 g, 60%).
Characterization of 6b was consistent with literature.’

H NMR (CDCls, 300 MHz, 298K) 56.94 (s, 1H), 6.88 (s, 2H), 6.62 (d, J = 2.6 Hz, 2H), 4.15 (t, J = 6.0 Hz,
2H), 3.87 (s, 3H), 3.63 (t, J = 6.0 Hz, 2H), 2.36 (q, J = 6.1 Hz, 2H), 1.66 (t, J = 2.6 Hz, 1H).

TLC: Rf (CH,Cl,) = 0.20.
Synthesis of 7a

In a dry round-bottom flask, compound 6a (12.0 g, 46 mmol, 1 equiv.) was dissolved in anhydrous
acetonitrile (200 mL) and scandium triflate (638 mg, 1.30 mmol, 0.03 equiv.) was added. The mixture
was stirred at 82 °C for 48 hours. Solvent was evaporated and the resulting mixture was purified by
silica gel column chromatography using CH>Cl, as eluent to yield 7a as a white solid (3.5 g, 31%).
Characterization of 7a was consistent with literature.®

H NMR (CDCls, 300 MHz, 298K) 56.92 (s, 3H), 6.84 (s, 3H), 4.75 (d, J = 13.7 Hz, 3H), 4.31-4.27 (m, 6H),
3.84 (s, 9H), 3.59-3.55 (m, 9H).

TLC: Rf (CH,Cl,) = 0.35.
Synthesis of 7b

In a dry round-bottom flask, compound 6b (3.8 g, 12 mmol, 1 equiv.) was dissolved in anhydrous
acetonitrile (100 mL) and scandium triflate (182 mg, 0.4 mmol, 0.03 equiv.) was added. The mixture
was stirred at 82 °C for 48 hours. Solvent was evaporated and the resulting mixture was purified by
silica gel column chromatography using CH>Cl, as eluent to yield 7b as a white solid (1.28 g, 40%).
Characterization of 7b was consistent with literature.’

H NMR (CDCls, 300 MHz, 298K) 56.91 (s, 3H), 6.85 (s, 3H), 4.76 (d, J = 13.7 Hz, 3H), 4.14-4.11 (m, 6H),
3.83 (s, 9H), 3.63-3.47 (m, 6H), 2.35-2.28 (m, 6H).

TLC: Rf (CH,Cl,) = 0.71.
Synthesis of 8a

To 7a (2.0 g, 2.7 mmol, 1 equiv.) dissolved in DMF (50 mL), were added vanillin (1.4 g, 9.18 mmol, 3.4
equiv.) and Cs,COs (4.02 g, 12.3 mmol, 4.5 equiv.). The reaction mixture was stirred at 50 °C for 18
hours. It was diluted with ethyl acetate (150 mL), washed with 10% aqueous NaOH (4 x 70 mL), then
with distilled water (3 x 70 mL) and dried over MgSQ.. Organic solvent was removed under reduced
pressure to give 8a as a white solid (2.1 g, 82%).

Characterization of 8a was consistent with literature.®
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H NMR (CDCls, 300 MHz, 298K) 59.85 (s, 3H), 7.43-7.41 (m, 6H), 7.04 (d, J = 8.7 Hz, 3H), 7.02 (s, 3H),
6.85 (s, 3H), 4.75 (d, J = 13.7 Hz, 3H), 4.47-4.35 (m, 12H), 3.90 (s, 9H), 3.74 (s, 9H), 3.55 (d, J = 13.7 Hz,
3H).

Synthesis of 8b

To7b (1.0g, 1.3 mmol, 1 equiv.) dissolved in DMF (25 mL), were added vanillin (671 mg, 4.4 mmol, 3.4
equiv.) and Cs,C0O3 (1.9 g, 5.8 mmol, 4.5 equiv.). The reaction mixture was stirred at 50 °C for 18 hours.
It was diluted with ethyl acetate (75 mL), washed with 10% aqueous NaOH (4 x 35 mL), then with
distilled water (3 x 35 mL) and dried over MgSQ,. Organic solvent was removed under reduced pressure
to give 8b as a white solid (1.17 g, 90%).

Characterization of 8b was consistent with literature.’

1H NMR (CDCls, 300 MHz, 298K) 59.81 (s, 3H), 7.38-7.36 (m, 6H), 6.97-6.95 (m, 3H), 6.90 (s, 3H), 6.83
(s, 3H), 4.73 (d, J = 13.7 Hz, 3H), 4.36-4.13 (m, 12H), 3.88 (s, 9H), 3.73 (s, 9H), 3.50 (d, J = 13.7 Hz, 3H),
2.37-2.30 (m, 6H).

Synthesis of 9a

8a (2.0 g, 2.12 mmol, 1 equiv.) was dissolved into a mixture of 50 mL of chloroform/methanol (1/1).
NaBH4 (2.4 g, 63.6 mmol, 30 equiv.) was added at 0°C and the reaction mixture was stirred for 2 hours,
then for 20 hours at room temperature. Solvents were evaporated and the residue was dissolved in
100 mL of water and extracted with dichloromethane (3 x 100 mL). The combined organic layers were
dried over MgSO, and evaporated and the resulting solid was purified by silica gel column
chromatography using CHCI3/CHsOH (95/5) as eluent to yield 9a as a white solid (1.92 g, 92%).
Characterization of 9a was consistent with literature.°

14 NMR (CDCls, 300 MHz, 298K) §7.00 (s, 3H), 6.90 (d, J = 1.8 Hz, 3H), 6.87 (s, 3H), 6.83 (d, J = 1.8 Hz,
3H), 6.82 (s, 3H), 4.74 (d, J = 13.8 Hz, 3H), 4.61 (d, J = 5.6 Hz, 6H), 4.38-4.35 (m, 12H), 3.77 (s, 9H), 3.70
(s, 9H), 3.53 (d, J = 13.8 Hz, 3H).

TLC: Rf (CHCl3/CH3OH : 95/5) = 0.23.
Synthesis of 9b

8b (1.0 g, 1.0 mmol, 1 equiv.) was dissolved into a mixture of 25 mL of chloroform/methanol (1/1).
NaBH4(1.15 g, 30.0 mmol, 30 equiv.) was added at 0°C and the reaction mixture was stirred for 2 hours,
then for 20 hours at room temperature. Solvents were evaporated and the residue was dissolved in 50
mL of water and extracted with dichloromethane (3 x 50 mL). The combined organic layers were dried
over MgS0, and evaporated and the resulting solid was purified by silica gel column chromatography
using CHCls/CHsOH (95/5) as eluent to yield 9b as a white solid (882 mg, 89%).

Characterization of 9b was consistent with literature.’

H NMR (CDCls, 300 MHz, 298K) &6.92-6.78 (m, 15H), 4.73 (d, J = 13.8 Hz, 3H), 4.62-4.54 (m, 6H), 4.26-
4.12 (m, 12H), 3.77 (s, 9H), 3.70 (s, 9H), 3.51 (d, J = 13.8 Hz, 3H), 2.32-2.25 (m, 6H).

TLC: Rf (CHCl3/CH3OH : 95/5) = 0.12.
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Synthesis of anti-10a (Cryptophane A) and syn-10a (Cryptophane B)

9a (100 mg, 102 umol, 1 equiv.) was dissolved into 100 mL of chloroform/HFIP (1/1). After complete
dissolution of 9a, KHSO4 (10 mg, 73 umol, 0.7 equiv.) was added. The reaction mixture was stirred for
20 hours. The solvents were evaporated and resulting oil was dissolved in 20 mL of dichloromethane,
washed with water (30 mL) and extracted with dichloromethane (2 x 30 mL). The combined organic
layers were dried over MgS0O,4 and evaporated and the resulting solid was purified by silica gel column
chromatography using CHCl3/CH3sCOCH;3 (90/10) as eluent to yield syn-10a (54 mg, 60%) and anti-10a
(18 mg, 20%) as white solids.

Characterizations of syn-10a and anti-10a were consistent with literature.!

syn-10a - *H NMR (CDCls, 300 MHz, 298K) 5 6.76 (s, 6H), 6.68 (s, 6H), 4.60 (d, J = 13.7 Hz, 6H), 4.19-4.13
(m, 12 H), 3.80 (s, 18H), 3.40 (d, J = 13.7 Hz, 6H).

13C NMR (CDCls, 75 MHz, 298K) 5179.6, 146.7, 134.1, 131.6, 120.8, 113.8, 69.3, 55.7, 36.2.
TLC: Rf (CHCl3/CH3COCHs : 90/10) = 0.62.

anti-10a - 'H NMR (CDCls, 300 MHz, 298K) §6.78 (s, 6H), 6.68 (s, 6H), 4.58 (d, J = 13.7 Hz, 6H), 4.31-
4.26 (m, 6 H), 3.95-3.91 (m, 6H), 3.79 (s, 18H), 3.40 (d, J = 13.7 Hz, 6H).

13C NMR (CDCls, 75 MHz, 298K) 6 150.2, 146.2, 134.9, 131.7, 122.6, 114.3, 70.3, 55.8, 36.2.

TLC: Rf (CHCI3/CH3COCHs; : 90/10) = 0.32.

Synthesis of anti-10b (Cryptophane E) and syn-10b (Cryptophane F)

9b (200 mg, 202 pumol, 1 equiv.) was dissolved into 200 mL of chloroform/HFIP (1/1). After complete
dissolution of 9b, KHSO. (20 mg, 146 umol, 0.7 equiv.) was added. The reaction mixture was stirred for
20 hours. The solvents were evaporated and resulting oil was dissolved in 40 mL of dichloromethane,
washed with water (60 mL) and extracted with dichloromethane (2 x 40 mL). The combined organic
layers were dried over MgS0O,4 and evaporated and the resulting solid was purified by silica gel column
chromatography using CHCl3/CH3sCOCH3 (90/10) as eluent to yield anti-10b (75 mg, 40%) and syn-10b
(47 mg, 25%) as white solids.

Characterizations of anti-10b and syn-10b were consistent with literature.??

anti-10b - *H NMR (CDCls, 300 MHz, 298K) §6.69 (s, 6H), 6.61 (s, 6H), 4.67 (d, J = 13.7 Hz, 6H), 4.07-
4.04 (m, 6H), 3.91-3.85 (m, 6H), 3.83 (s, 9H), 4.43 (d, J = 13.7 Hz, 6H), 2.31-2.28 (m, 6H).

13C NMR (CDCls, 75 MHz, 298K) & 147.2, 147.1, 131.1, 131.1, 112.3, 112.2, 63.7, 55.7, 36.1, 29.7.
TLC: Rf (CHCl3/CHsCOCHs : 90/10) = 0.57.

syn-10b - 'H NMR (CDCls, 300 MHz, 298K) 5 6.72 (s, 6H), 6.67 (s, 6H), 4.60 (d, J = 13.7 Hz, 6H), 4.09-4.04
(m, 6 H), 3.90-3.76 (m, 6H), 3.76 (s, 18H), 3.41 (d, J = 13.7 Hz, 6H), 2.36-2.29 (m, 3H), 2.00-1.94 (m, 3H).

13C NMR (CDCls, 75 MHz, 298K) & 149.0, 147.3, 133.3, 131.9, 118.3, 113.8, 69.2, 55.9, 36.1, 30.4.

TLC: Rf (CHCl3/CHsCOCHs : 90/10) = 0.13.
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Influence of HFIP on the cyclisation percussor 9a

A solution of precursor 9a (3 mM in CDCls, 600 pL) was titrated in NMR tubes with aliquots of a
concentrated solution of HFIP (30 mM in CDCls). The shifts Ad of the precursor’s proton signals at 6.907,
6.872 and 6.831 ppm of precursor 9a and proton at 4.397 ppm of HFIP were measured after each
addition and plotted as a function of the number of equivalents of HFIP. Association constant Ka was
obtained by nonlinear leastsquares fitting of these plots using the Bindfit3.
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Figure S15. 'H NMR spectrum of 9a (CDCls, 300 MHz, 298 K).
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Figure S16. 'H NMR spectrum of 9b (CDCl3, 300 MHz, 298 K).
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Figure $19. 'H NMR spectrum of syn-10a (CDCls;, 300 MHz, 298 K).
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Figure $21. 'H NMR spectrum of anti-10b (CDCls, 300 MHz, 298 K).

e 58 i 5 3 a7
Y N N | [
(@) —
AN
\
d o ¢ og Q o
10b-anti
Cryptophane E
I
I
160 140 120 100 80 60 40 20 0
S(ppm)

Figure $22. 13C NMR spectrum of anti-10b (CDCl;, 75 MHz, 298 K).
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4. Influence of HFIP on the cyclisation precursor 9a

it

o

N\ i 0
J 1 :
b 3.0
re e
U 2.0

NN
e
) S t L0
— .

" J\ A It

|
i

L

7.0 6.5 6.0

55 5.0 45 40 35
&(ppm)

Figure $25. 'H NMR spectra (CDCls, 500 MHz, 298 K) of precursor 9a upon progressive addition of HFIP.
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Figure S26. (a) 'H NMR titration curves (CDCls, 500 MHz, 298 K) of precursor 9a (3mM) upon progressive addition of HFIP.
The chemical induced shifts AS of aromatic protons at 6.907, 6.872 and 6.831 ppm of precursor 9a and proton at 4.397 ppm
of HFIP were used. (b) Table gathering data obtained after the affinity constant determination.
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