Supplementary Information for

Ruthenium Catalyzed Stereo- and Chemoselective Oxidative Coupling of Vinyl Ketones: An Efficient Access to (E,E)-1,6-dioxo-2,4-dienes

Dattatraya H. Dethe*, Appasaheb K. Nirpal ${ }^{\dagger}$, Nagabhushana C. Beeralingappa ${ }^{\dagger}$, Vimlesh Kumar^{\dagger}, Aparna Srivastava, Kunj B. Mishra, Arsheed A. Bhat

Department of Chemistry, Indian Institute of Technology-Kanpur, Kanpur - 208016, India.
E-mail: ddethe@iitk.ac.in, Tel: + 91-512-2596537, fax: + 91-512-2597436.

Contents

1. General information 3
2. Optimization of Reaction Conditions 3
3. Experimental procedure
3.1. General procedure for the oxidative coupling reaction of vinyl ketones 4
3.1a. Examples with spectral data for compounds 3 $4-10$
4. Experimental details for the synthesis of bioactive natural products $\mathbf{4 , 5 , 6}$ and 7 10-11
5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR of Compounds, 3 12-48
6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for the bioactive natural products $\mathbf{4 , 5 , 6}$ and 7. 49-59

1. General Information

General Aspects: Experiments involving moisture andair sensitive components were performed in oven-dried glassware. Commercial solvents and reagents were used without further purification unless otherwise noted. Yields refer to chromatographically pure compounds, unless otherwise stated. Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm Merck silica gel plates (60F-254) using UV light as a visualizing agent and an p -anisaldehyde or ninhydrin stain, and heat as developing agents. Merck silica gel (particle size 100-200 and 230-400 mesh) was used for flash column chromatography. Neat compounds were used for record IR spectra. NMR spectra were recorded on either a BrukerAvance $400\left({ }^{1} \mathrm{H}, 400 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 100\right.$ $\mathrm{MHz})$, BrukerAvance $500\left({ }^{1} \mathrm{H}, 500 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 125 \mathrm{MHz}\right.$), or JEOL DELTA (ECX) $500\left({ }^{1} \mathrm{H}, 500 \mathrm{MHz} ;{ }^{13} \mathrm{C}, 125\right.$ $\mathrm{MHz})$. Mass spectrometric data were obtained using WATERS-Q-Tof-Premier-HAB213 and WATERS-QTof-Premier-APCI-MS instruments and IR data recorded from PerkinElmer, FT-IR spectrometer. The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{mspt}=$ septet, $\mathrm{dd}=$ doublet of doublet, $\mathrm{ddd}=$ doublet of a doublet of a doublet, $\mathrm{dt}=$ doublet of a triplet, $\mathrm{td}=$ triplet of a doublet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad .

2. Table S1: Optimization of Reaction Conditions ${ }^{\text {a }}$

Entry	Catalyst ($5 \mathrm{~mol} \%$)	Additive (20 mol\%)	Oxidant 1.0 equiv.	Solvent	${ }^{\text {c }}$ Yield 3aa/ 3aa', (\%)
1	$\mathrm{Cp}^{*} \mathrm{Co}(\mathrm{CO}) \mathrm{I}_{2}(\mathbf{C 1})$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2}$	DCE	0
2	$\left[\mathrm{RuCl}_{2}(p \text {-cymene })\right]_{2}(\mathbf{C 2})$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2}$	DCE	40/20
3	$\left[\mathrm{Cp}^{*} \mathrm{RuCl}_{2}\right]_{2}(\mathbf{C 3})$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2}$	DCE	35/20
4	$\left[\mathrm{RuCl}_{2}\left(\mathrm{PPh}_{3}\right)_{3}\right]$ (C4)	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2}$	DCE	0
5	$\left[\mathrm{CpRu}\left(\mathrm{CH}_{3} \mathrm{CN}\right)_{3}\right] \mathrm{PF}_{6}(\mathbf{C 5})$	-	-	DCE	0
6	$\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(\mathbf{C 6})$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2}$	DCE	30/30
$7{ }^{\text {b }}$	$\left[\mathrm{RuCl}_{2}(p \text {-cymene })\right]_{2}(\mathbf{C 2})$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2}$	MeOH	-
$8^{\text {b }}$	$\left[\mathrm{RuCl}_{2}(p \text {-cymene) }]_{2}(\mathbf{C 2})\right.$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2}$	dioxane	40/20
$9^{\text {b }}$	$\left[\mathrm{RuCl}_{2}(p \text {-cymene) }]_{2}(\mathbf{C 2})\right.$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2}$	TFE	Trace
$10^{\text {b }}$	$\left[\mathrm{RuCl}_{2}(p \text {-cymene })\right]_{2}(\mathbf{C 2})$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2}$	HFIP	Trace
$11^{\text {b }}$	$\left[\mathrm{RuCl}_{2}(p \text {-cymene })\right]_{2}(\mathbf{C 2})$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2}$	toluene	Trace
$12^{\text {b }}$	$\left[\mathrm{RuCl}_{2}(p \text {-cymene })\right]_{2}(\mathbf{C 2})$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	30/20
$13^{\text {b }}$	$\left[\mathrm{RuCl}_{2}(p \text {-cymene })\right]_{2}(\mathbf{C 2})$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2}$	MeCN	Trace
$14^{\text {b }}$	$\left[\mathrm{RuCl}_{2}(p \text {-cymene })\right]_{2}(\mathbf{C 2})$	AgSbF_{6}	$\mathrm{Cu}(\mathrm{OAc})_{2}$	${ }^{\text {t }} \mathrm{AmOH}$	Trace

Reaction conditions: ${ }^{\mathbf{a}} \mathbf{1 a}(0.4 \mathrm{mmol}), \mathbf{2 a}(0.3 \mathrm{mmol}),\left[\mathrm{Ru}(\mathrm{p}-\mathrm{cymene}) \mathrm{Cl}_{2}\right]_{2}(5 \mathrm{~mol} \%)$, additive ($20 \mathrm{~mol} \%$) and oxidant (1.0 equiv.) in a specific solvent (3.0 mL) at $100^{\circ} \mathrm{C}$ for 24 h . ${ }^{\mathrm{b}}$ Reaction carried out using 2.1 equiv of $\mathrm{Cu}(\mathrm{OAc})_{2} . \mathrm{H}_{2} \mathrm{O}$ at $80^{\circ} \mathrm{C}$.
 isopropanol, $\mathrm{DCM}=$ dichloromethane, ${ }^{\mathrm{t}} \mathrm{AmOH}=\mathrm{t}$-amyl alcohol

3. Experimental Procedures

3.1. General procedure for the oxidative coupling reaction of vinyl ketones

A 8 mL screw-cap vial was charged with $\left[\mathrm{RuCl}_{2}(\mathrm{p}-\mathrm{cymene})\right]_{2}(9.0 \mathrm{mg}, 0.01 \mathrm{mmol}, 5.0 \mathrm{~mol} \%), \mathrm{Cu}(\mathrm{OAc}) 2 \cdot \mathrm{H}_{2} \mathrm{O}(125 \mathrm{mg}$, $0.63 \mathrm{mmol}, 2.1$ equiv), $\mathrm{AgSbF}_{6}(21 \mathrm{mg}, 0.06 \mathrm{mmol}, 20 \mathrm{~mol} \%$) and 1,2 -dichloroethane (2.0 mL). The vial was sealed under nitrogen and allowed to stir at room temperature under nitrogen atmosphere for 10 minutes. To this vinyl ketone $\mathbf{1}$ (0.40 mmol, 1.33 equiv) and vinyl ketone 2 (0.25 equiv) were added using a syringe and the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ (using an oil bath). To this reaction mixture, vinyl ketone $2(0.30 \mathrm{mmol}, 0.75$ equiv) in 1,2-DCE (2.0 ml) was added slowly using syringe pump over 12 hrs ., at $80^{\circ} \mathrm{C}$. Then the reaction mixture was stirred at same temperature for next 12 hrs . After cooling down, the mixture was diluted with ethyl acetate, filtrated and concentrated to give the crude compound which was directly purified by silica gel column chromatography.
\{Note: 0.2 mmol scale reactions were carried out for the synthesis of carbohydrate derivatives, 3qi-3rl. During the synthesis of natural product 4, we isolated homodimer of decyl vinyl ketone as a minor product but we didn't get pure ${ }^{1} \mathrm{H}$ NMR spectrum due to less compound. So we repeated same reaction in 3-batches $(0.3 \mathrm{mmol} \times 3)$ to get pure spectra and for details, please see page 10).

3.1a. Examples with data

Compound 3aa Following general procedure, 3aa was purified by silica column chromatography (pet ether/EtOAc at a 8:2
 ratio), obtained as a colourless solid ($65 \mathrm{mg}, 0.23 \mathrm{mmol}, 78 \%$). IR (neat): $v_{\text {max }} / \mathrm{cm}^{-1} 2933$, 2852, 1735, 1681, 1585, 1465, 1438, 1402, 1361, 1310, 1230, 1175, 1113, 1072, 977, 882, 763. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.49-6.43(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H})$, $2.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.27(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.01,197.84,174.34,139.88,138.79,136.78,136.17,51.57,41.30,34.11,29.10,29.04,28.74,27.97$, 24.92, 23.95. HRMS(ESI-TOF) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$281.1753; found 281.1751.

Following general procedure, 3a' ${ }^{\prime}$ was obtained as a white solid ($7.5: 2.5$:hexane:EtOAc) ($5 \mathrm{mg}, 0.036 \mathrm{mmol}, 12 \%$); IR
 (neat): $v_{\text {max }} / \mathrm{cm}^{-1} 3362,3041,2982,2948,2877,1712,1679,1582,1457,1411,1369,1255,991,852$, $735 ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.19-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.52-6.38(\mathrm{~m}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.80$ (2C), 139.76 (2C), 136.89 (2C), 27.94 (2C); HRMS m/z calcd for $\mathrm{C}_{8} \mathrm{H}_{11} \mathrm{O}_{2}$
$[\mathrm{M}+\mathrm{H}]^{+}$139.0759; found 139.0762 .
Compound 3ab/3ab, Following general procedure, 3ab was purified by silica column chromatography (pet ether/EtOAc at
 a 8:2 ratio), obtained as a yellowish solid ($65 \mathrm{mg}, 0.22 \mathrm{mmol}, 75 \%$). IR (neat): $v_{\text {max }} / \mathrm{cm}^{-1}$ 2930, 2853, 1735, 1682, 1585, 1464, 1435, 1406, 1376, 1308, 1225, 1169, 1073, 977, 881, 846, 762. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.52-6.42(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}$, $3 \mathrm{H}), 2.60(\mathrm{dt}, J=22.7,7.3 \mathrm{~Hz}, 4 \mathrm{H}), 2.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.61-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.30(\mathrm{~m}, 6 \mathrm{H}), 1.12(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.44,200.09,174.35,138.88,138.81,135.94,135.87,51.57,41.32,34.60,34.11,29.81$, 29.79, 28.75, 24.92, 23.96, 7.97. HRMS(ESI-TOF) m / z calcd. for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$295.1909; found 295.1906.

Following general procedure, 3ab' was obtained as a colourless solid (7.5:2.5:hexane:EtOAc) ($6 \mathrm{mg}, 0.039 \mathrm{mmol}, 13 \%$); IR
 (neat): $v_{\max } / \mathrm{cm}^{-1} 3360,3040,2979,2938,2887,1713,1681,1585,1458,1410,1370,1258,999,853$, 738; ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.23-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.51-6.41(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{q}, \mathrm{J}=7.3 \mathrm{~Hz}$, $4 \mathrm{H}), 1.11(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.46(2 \mathrm{C}), 138.83$ (2C), 135.82 (2C), 34.58 (2C), 7.96 (2C); HRMS m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{15} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$167.1072; found 167.1076.

Compound 3ad Following general procedure, 3ad was purified by silica column chromatography (pet ether/EtOAc at a 8:2
 ratio), obtained as a colourless solid ($76 \mathrm{mg}, 0.23 \mathrm{mmol}, 79 \%$). IR (neat): $v_{\text {max }} / \mathrm{cm}^{-1}$ 3357, 2932, 2856, 1736, 1681, 1585, 1466, 1436, 1402, 1368, 1305, 1224, 1169, 1071, 1027, 882, 724. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.56-6.38(\mathrm{~m}$, $2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{td}, J=7.4,5.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.30(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{dd}, J=8.5,6.3 \mathrm{~Hz}, 6 \mathrm{H}), 1.34-1.30(\mathrm{~m}, 8 \mathrm{H})$,
$0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.09,199.05,174.31,138.89,138.85,136.08,136.01,51.53$, 41.32 , $41.13,34.10,29.11,29.08,28.99,26.20,24.92,23.97,22.41,13.92$. HRMS(ESI-TOF) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+} 323.2222$; found 323.2231.

Following general procedure, 3ad' was obtained as a white solid (7.5:2.5:hexane:EtOAc) ($6 \mathrm{mg}, 0.027 \mathrm{mmol}, 9 \%$); IR (neat): $v_{\text {max }} / \mathrm{cm}^{-1} 3356,3029,2960,2933,2898,1675,1565,1242,1132,1085,1025,870$, 835,$720 ;{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.20-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.52-6.43(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{t}, \mathrm{J}$ $=6.9 \mathrm{~Hz} 4 \mathrm{H}), 1.64-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.36-1.32(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.18$ (2C), 138.90 (2C), 136.05 (2C), 41.11 (2C), 26.20 (2C), 22.40 (2C), 13.91 (2C); HRMS m/z calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$223.1698; found 223.1696.

Compound 3ae Following general procedure, 3ae was purified by silica column chromatography (pet ether/EtOAc at a 8:2
 ratio), obtained as a yellowish solid ($77 \mathrm{mg}, 0.24 \mathrm{mmol}, 80 \%$). IR (neat): $v_{\max } / \mathrm{cm}^{-1} 3353$, 3047, 2934, 2858, 1733, 1668, 1581, 1460, 1430, 1399, 1362, 1220, 1172, 1062, 1027, 882, 724. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.14-7.17$ (br d, 2H), 6.46-6.48 (br d, 2H), 3.65 (s, $3 \mathrm{H}), 2.57(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.16-2.14(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.58(\mathrm{~m}, 4 \mathrm{H})$, $1.31(\mathrm{~m}, 6 \mathrm{H}), 0.94(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 199.91, 199.36, 174.30, 138.89 (2C), 136.37, 136.06, $51.51,50.35,41.32,34.10,29.75,29.02,28.98,25.35,25.12,25.01,23.98,22.68$. HRMS(ESI-TOF) m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 323.2222$; found 323.2229.

Following general procedure, 3ae' was obtained as a white solid (7.5:2.5:hexane:EtOAc) ($7 \mathrm{mg}, 0.03 \mathrm{mmol}, 10 \%$); IR
 (neat): $v_{\text {max }} / \mathrm{cm}^{-1} 3353,3025,2959,2926,2895,1670,1575,1238,1129,1088,1022,868,842$, 719 ; ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.18-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.50-6.44(\mathrm{~m}, 2 \mathrm{H}), 2.46(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $4 \mathrm{H}), 2.23-2.13(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.80$ (2C), $138.91(2 \mathrm{C}), 136.39(2 \mathrm{C}), 50.35(2 \mathrm{C}), 25.10(2 \mathrm{C}), 22.69(2 \mathrm{C}) ;$ HRMS m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 223.1698$; found 223.1695.

Compound 3af Following general procedure, 3af was purified by silica column chromatography (pet ether/EtOAc at a 8:2
 ratio), obtained as a colourless solid ($72 \mathrm{mg}, 0.21 \mathrm{mmol}, 70 \%$). IR (neat): $v_{\text {max }} / \mathrm{cm}^{-1} 3353$, $29329,2867,1738,1683,1580,1468,1422,1404,1301,1242,1168,1109,1017,885,720$. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.25-7.02(\mathrm{~m}, 2 \mathrm{H}), 6.62-$ $6.28(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{td}, J=7.4,1.6 \mathrm{~Hz}, 4 \mathrm{H}), 2.29(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.59(\mathrm{~m}, 6 \mathrm{H}), 1.29(\mathrm{dd}, J=5.7,2.9$ $\mathrm{Hz}, 12 \mathrm{H}$), $0.87(\mathrm{dd}, J=7.8,5.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.24,200.10,174.35,138.97,138.88,136.10$, 136.02, 51.56, 41.43, 41.32, 34.14, 31.66, 29.09, 29.05, 28.99, 28.96, 24.92, 24.07, 23.97, 22.56, 14.10. HRMS(ESI-TOF) m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 351.2535$; found 351.2542 .

Following general procedure, 3af' was obtained as a white solid (7.5:2.5:hexane:EtOAc) ($8.0 \mathrm{mg}, 0.03 \mathrm{mmol}, 10 \%$); IR
 (neat): $v_{\text {max }} / \mathrm{cm}^{-1} 3355,3044,2956,2927,2885,2854,1680,1575,1464,1402,1368,1340,1236$, $1214,1129,1078,1012,888,832,739,722 ;{ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.22-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.55$ $-6.40(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.65-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 12 \mathrm{H}), 0.87(\mathrm{t}, \mathrm{J}=6.7$ $\mathrm{Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.21$ (2C), 138.90 (2C), 136.06 (2C), 41.43 (2C), 31.66 (2C), 28.96 (2C), 24.08 (2C), $22.56(2 \mathrm{C}), 14.10(2 \mathrm{C})$; HRMS m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 279.2324$; found 279.2327.

Compound 3ba Following general procedure, 3ba was purified by silica column chromatography (pet ether/EtOAc at a
 $8: 2$ ratio), obtained as a colourless solid ($71 \mathrm{mg}, 0.24 \mathrm{mmol}, 80 \%$). IR (neat): $\mathrm{v}_{\mathrm{max}} / \mathrm{cm}^{-1} 2927$, $2851,1735,1680,1584,1437,1359,1229,1016,722 .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24$ $7.04(\mathrm{~m}, 2 \mathrm{H}), 6.56-6.38(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 1.29(\mathrm{~s}, 8 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 199.97, 197.74, 174.29, 139.80, 138.67, 136.67, 136.09, 51.46, 41.24, 34.05, 29.16, 29.09, 29.03 (2C), 27.87, 24.87, 23.92. HRMS(ESI-TOF) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O} 4 \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 317.1729$; found 317.1727.

Homodimer of methyl vinyl ketone was obtained as a minor product ($4 \mathrm{mg}, 0.03 \mathrm{mmol}, 10 \%$). For data please see 3aa'.
Compound 3bc Following general procedure, 3bc was purified by silica column chromatography (pet ether/EtOAc at a
 $8: 2$ ratio), obtained as a colourless solid ($72 \mathrm{mg}, 0.22 \mathrm{mmol}, 75 \%$). IR (neat): $\mathrm{v}_{\mathrm{max}} / \mathrm{cm}^{-1}$ 2927, 2853, 1730, 1681, 1585, 1438, 1369, 1224, 1030, 725. ${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.53-6.40(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{td}, J=7.3,2.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.27$
$(\mathrm{d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.59(\mathrm{~m}, 6 \mathrm{H}), 1.28(\mathrm{~s}, 8 \mathrm{H}), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.02$, $199.95,174.27,138.80$ (2C), 135.99, 135.94, 51.43, 43.15, 41.25, 34.04, 29.15, 29.09, 29.02 (2C), 24.87, 23.94, 17.45, 13.71. HRMS(ESI-TOF) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 323.2222$; found 323.2228.

Following general procedure, 3bc' was obtained as a colourless solid (7.5:2.5:hexane:EtOAc) ($5 \mathrm{mg}, 0.036 \mathrm{mmol}, 12 \%$); IR (neat): $v_{\max } / \mathrm{cm}^{-1} 2968,2924,2869,1745,1725,1696,1564,1468,1409,1379,1248,1065,880$, $723 ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}^{2} \mathrm{CDCl}_{3}\right) \delta 7.21-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.52-6.40(\mathrm{~m}, 2 \mathrm{H}), 2.56(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 4 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 4 \mathrm{H}), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.95$
(2C), 138.86 (2C), 136.05 (2C), 43.23 (2C), 17.54 (2C), 13.77 (2C); HRMS m/z calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$195.1385; found 195.1389 .

Compound 3be Following general procedure, 3be was purified by silica column chromatography (pet ether/EtOAc at a
 8:2 ratio), obtained as a colourless solid ($78 \mathrm{mg}, 0.23 \mathrm{mmol}, 78 \%$). IR (neat): $\mathrm{v}_{\max } / \mathrm{cm}^{-1}$ 2928, 2852, 1736, 1680, 1581, 1468, 1365, 1222, 1029, 723. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (5 0 0 ~ M H z , ~ C D C l ~}{ }_{3}$) δ $7.23-7.06(\mathrm{~m}, 2 \mathrm{H}), 6.55-6.40(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.57(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~d}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.21-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.29(\mathrm{~s}, 8 \mathrm{H}), 0.94(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.04,199.78,174.29,138.84(2 \mathrm{C}), 136.27,135.99,51.45,50.24,41.27,34.04,29.16$, 29.10, 29.03 (2C), 25.00, 24.87, 23.94, 22.60 (2C). HRMS(ESI-TOF) m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 359.2198$; found 359.2197.

Homodimer of isobutyl vinyl ketone was obtained as a minor product ($6 \mathrm{mg}, 0.027 \mathrm{mmol}, 9 \%$). For data please see 3ae'.
Compound 3ca Following general procedure, 3ca was purified by silica column chromatography (pet ether/EtOAc at a
 8:2 ratio), obtained as a white solid ($50 \mathrm{mg}, 0.21 \mathrm{mmol}, 70 \%$). IR (neat): $v_{\max } / \mathrm{cm}^{-1} 3473,2952$, 2948, 2832, 1723, 1645, 1476, 1379, 1223, 1216, 1102, 1023, 852, 742. ${ }^{1} \mathbf{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 7.20-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.49-6.49(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=7.0 \mathrm{~Hz}$, 2H), $2.32(\mathrm{~s}, 3 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.71-1.66(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.23,199.26,171.23,139.68,138.97$, 136.90, 135.96, 64.04, 40.61, 28.05, 27.98, 21.04, 20.34. HRMS(ESI-TOF) m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 239.1283$; found 239.1285 .

Homodimer of methyl vinyl ketone was obtained as a minor product ($3.0 \mathrm{mg}, 0.024 \mathrm{mmol}, 8 \%$). For data please see 3aa'.
Compound 3da Following general procedure, 3da was purified by silica column chromatography (pet ether/EtOAc at a
 $8: 2$ ratio), obtained as a colourless solid ($65 \mathrm{mg}, 0.22 \mathrm{mmol}, 76 \%$). IR (neat): $v_{\max } / \mathrm{cm}^{-1} 3403$, 3023, 2925, 2941, 2865, 1714, 1648, 1445, 1389, 1228, 1204, 1118, 1056, 856, 737; ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.19-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.47-6.47(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H})$, $3.48(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.61(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.78,197.83,139.87,138.83,138.54,136.77,136.16,128.47$ (2C), 127.69, 127.69 (2C), 73.02, 70.02, 40.95, 29.21, 27.96, 20.90. HRMS(ESI-TOF) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+}$287.1647; found 287.1645.

Homodimer of methyl vinyl ketone was obtained as a minor product ($5.0 \mathrm{mg}, 0.036 \mathrm{mmol}, 12 \%$). For data please see 3aa'.
Compound 3db Following general procedure, $\mathbf{3 d b}$ was purified by silica column chromatography (pet ether/EtOAc at a 8:2
 ratio), obtained as a colourless solid ($65 \mathrm{mg}, 0.21 \mathrm{mmol}, 72 \%$). IR (neat): $v_{\max } / \mathrm{cm}^{-1} 3355,3042$, 2937, 2852, 2798, 1713, 1679, 1487, 1375, 1244, 1214, 1126, 1071, 841, 725. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.26(\mathrm{~m}, 5 \mathrm{H}), 7.19-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.50-6.40(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{~s}$, $2 \mathrm{H}), 3.48(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.65-2.58(\mathrm{~m}, 4 \mathrm{H}), 1.76-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.12(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.33,199.76,138.89,138.79,138.45,135.91,135.77,128.36$ (2C), 127.69, 127.59 (2C), $72.92,69.92,40.87,34.49,29.12,20.81,7.87$. HRMS(ESI-TOF) m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 301.1804$; found 301.1802.

Homodimer of ethyl vinyl ketone was obtained as a minor product ($6.0 \mathrm{mg}, 0.036 \mathrm{mmol}, 12 \%$). For data please see 3ab'.
Compound 3cc Following general procedure, 3cc was purified by silica column chromatography (pet ether/EtOAc at a 8:2
 ratio), obtained as a colourless solid ($63 \mathrm{mg}, 0.22 \mathrm{mmol}, 75 \%$). IR (neat): $v_{\max } / \mathrm{cm}^{-1} 3463$, 2971, 2910, 2812, 1754, 1739, 1608, 1423, 1335, 1246, 1202, 1158, 1087, 856, 703. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.41-6.49(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.56(\mathrm{dt}, J=17.7,7.3 \mathrm{~Hz}, 4 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.60(\mathrm{~m}, 6 \mathrm{H}), 1.35(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=$
$7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 199.96, 199.61, 171.20, 139.03, 138.77, 136.71, 135.90, 64.28, 43.21, 41.05, 28.49, 25.60, 23.56, 21.02, 17.51, 13.77. HRMS(ESI-TOF) m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$281.1753; found 281.1756.

Homodimer of propyl vinyl ketone was obtained as a minor product ($8.0 \mathrm{mg}, 0.039 \mathrm{mmol}, 13 \%$). For data please see 3bc'.
Compound 3gb Following general procedure, 3gb was purified by silica column chromatography (pet ether/EtOAc at a 8:2
 ratio), obtained as a colourless solid ($55 \mathrm{mg}, 0.20 \mathrm{mmol}, 69 \%$). IR (neat): $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 3360$, 3043, 2918, 2873, 2850, 1731, 1714, 1681, 1583, 1463, 1311, 1217, 1174, 910, 793. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.53-6.42(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.63$ $(\mathrm{m}, 4 \mathrm{H}), 2.31(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.66-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.22(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.12(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.35,199.40,173.39,139.02,138.63,135.92,135.81,60.33,40.77,34.50,34.03,24.40$, 23.28, 14.21, 7.85. HRMS(ESI-TOF) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$267.1596; found 267.1594.

Homodimer of ethyl vinyl ketone was obtained as a minor product ($6.0 \mathrm{mg}, 0.036 \mathrm{mmol}, 12 \%$). For data please see 3ab’.
Compound 3gg Following general procedure, 3gg was purified by silica column chromatography (pet ether/EtOAc at a 8:2
 ratio), obtained as a white solid ($70 \mathrm{mg}, 0.18 \mathrm{mmol}, 62 \%$). IR (neat): $v_{\text {max }} / \mathrm{cm}^{-1} 3354,2953$, 2919, 2850, 1727, 1676, 1585, 1469, 1406, 1374, 1253, 1217, 1186, 908, 862, 718. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.50-6.42(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.63$ $-2.54(\mathrm{~m}, 4 \mathrm{H}), 2.30-2.24(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.58(\mathrm{~m}, 10 \mathrm{H}), 1.10-1.21(\mathrm{~m}, 10 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.22$, 199.47, 173.47, 139.13, 138.78, 136.20, 135.87, 60.42, 41.44, 40.87, 34.12, 31.95, 30.11, 29.53, 29.43, 29.37, 29.04, 24.50, 24.11, 23.39, 22.74, 14.25, 14.18. HRMS(ESI-TOF) m/z calcd. for $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{O}_{4}$ $[\mathrm{M}+\mathrm{H}]^{+} 379.2848$; found 379.2842 .

Following general procedure, 3gg' was obtained as a colourless solid (7.5:2.5:hexane:EtOAc) ($16 \mathrm{mg}, 0.04 \mathrm{mmol}, 14 \%$); IR (neat): $v_{\text {max }} / \mathrm{cm}^{-1}$ 2953, 2918, 2850, 1677, 1586, 1470, 1405, 1371, 1313, 1244, 1218, 1131, 1100,
 $906,853,750 ;{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.53-6.41(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=$ $6.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.65-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.27-6.4(\mathrm{~m}, 28 \mathrm{H}), 0.86(\mathrm{t}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{~ N M R}(100 \mathrm{MHz}$, CDCl_{3}) $\delta 200.24(2 \mathrm{C}), 138.91(2 \mathrm{C}), 136.06$ (2C), 41.43 (2C), 31.96 (2C), 29.63 (2C), 29.54 (2C), 29.48 (2C), 29.38 (2C), 29.30 (2C), 24.12 (2C), 22.75 (2C), 14.19 (2C); HRMS m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{47} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 391.3576$; found 391.3572 .

Compound 3ha Following general procedure, 3ha was purified by silica column chromatography (pet ether/EtOAc at a
 8.5:1.5 ratio), obtained as a colourless solid ($78 \mathrm{mg}, 0.22 \mathrm{mmol}, 75 \%$). IR (neat): $\mathrm{v}_{\text {max }} / \mathrm{cm}^{-1} 2915$, $2849,1674,1594,1467,1359,1235,1082,719 .{ }^{1} \mathbf{H} \mathbf{N M R}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20-7.07(\mathrm{~m}, 2 \mathrm{H})$, $6.58-6.34(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~m}, 2 \mathrm{H}), 1.30-1.23(\mathrm{~m}, 26 \mathrm{H}), 0.87$ $(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.04$, 197.70, $139.80,138.63,136.64,136.12,41.33,31.92,29.93-$ 28.97 (11C), 27.86, 24.03, 22.68, 14.11. HRMS(ESI-TOF) m / z calcd. for $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 349.3107$; found 349.3108.

Homodimer of methyl vinyl ketone was obtained as a minor product ($4.0 \mathrm{mg}, 0.03 \mathrm{mmol}, 10 \%$). For data please see 3aa'.
Compound 3ib Following general procedure, 3ib was purified by silica column chromatography (pet ether/EtOAc at a
 8.5:1.5 ratio), obtained as a colourless solid ($34 \mathrm{mg}, 0.20 \mathrm{mmol}, 68 \%$). IR (neat): $\mathrm{v}_{\mathrm{max}} / \mathrm{cm}^{-1} 2923$, $2852,1708,1690,1594,1436,1329,1248,1149,1033,725 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31(\mathrm{dd}$, $J=15.2,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{dd}, J=15.4,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.44(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=15.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.11(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.41,166.29$, $141.65,138.00,135.32,128.34,51.93,34.47,7.84$. HRMS(ESI-TOF) m/z calcd. for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{O}_{3}[\mathrm{M}+\mathrm{H}]^{+} 169.0865$; found 169.0869 .

Compound 3ja Following general procedure, 3ja was purified by silica column chromatography (pet ether/EtOAc at a 8:2
 ratio), obtained as a colourless solid ($34 \mathrm{mg}, 0.16 \mathrm{mmol}, 55 \%$). IR (neat): $v_{\text {max }} / \mathrm{cm}^{-1} 2920,2853,1713$, $1675,1584,1445,1409,1372,1330,1279,1263,1140,1109,1091,884,794 .{ }^{1} \mathbf{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.24-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.58-6.43(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.86-1.77(\mathrm{~m}$, $4 \mathrm{H}), 1.42-1.24(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 202.65,197.90,139.94,138.76,136.66,134.93,49.64,28.48$ (2C), 28.00, 25.86, 25.69 (2C). HRMS(ESI-TOF)m/z calcd. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$207.1385; found 207.1388.

Homodimer of methyl vinyl ketone was obtained as a minor product ($5.0 \mathrm{mg}, 0.036 \mathrm{mmol}, 12 \%$). For data please see 3aa'.
Compound 3jb Following general procedure, 3jb was purified by silica column chromatography (pet ether/EtOAc at a 8:2

ratio), obtained as a colourless solid ($37 \mathrm{mg}, 0.17 \mathrm{mmol}, 57 \%$). IR (neat): $v_{\text {max }} / \mathrm{cm}^{-1} 2923,2850,1678,1582,1449,1408$, $1369,1331,1264,1238,1142,1118,1066,849,702 .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.62-6.41(\mathrm{~m}$, $2 \mathrm{H}), 2.61(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.58-2.51(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.77(\mathrm{~m}, 4 \mathrm{H}), 1.32(\mathrm{~m}, 6 \mathrm{H}), 1.11(\mathrm{t}, J=8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 202.71,200.48,138.91,138.87,135.74,134.78,49.64,34.64,28.48$ (2C), 25.87, 25.69 (2C), 7.97. HRMS(ESI-TOF) m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 221.1542$; found 221.1545.

Homodimer of ethyl vinyl ketone was obtained as a minor product ($5.0 \mathrm{mg}, 0.03 \mathrm{mmol}, 10 \%$). For data please see 3ab'.
Compound 3kc Following general procedure, 3kc was purified by silica column chromatography (pet ether/EtOAc at a 8:2
 IR (neat): $v_{\text {max }} / \mathrm{cm}^{-1} 3444,3028,2937,2964,2877,1795,1630,1464,1387,1239,1197,1071$, 953, 864, 723. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.01(\mathrm{~d}, J=8.2,2 \mathrm{H}), 7.57-7.53(\mathrm{t}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.43(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.46-6.40(\mathrm{~m}, 2 \mathrm{H}), 5.19(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.55(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 2.05(\mathrm{dd}, J=14.2,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.65(\mathrm{dd}, J=14.7,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.37(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.94,198.82,166.19,139.26,138.63,136.26,135.77,133.03,129.62$ (3C), 128.44 (2C), $70.98,43.25,37.27,30.20,20.36,17.53,13.80$. HRMS(ESI-TOF) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 329.1753$; found 329.1750 .

Homodimer of propyl vinyl ketone was obtained as a minor product ($8.0 \mathrm{mg}, 0.042 \mathrm{mmol}, 14 \%$). For data please see 3bc'.
Compound 3lc Following general procedure, 3lc was purified by silica column chromatography (pet ether/EtOAc at a 8:2
 ratio), obtained as a brownish solid ($50 \mathrm{mg}, 0.19 \mathrm{mmol}, 65 \%$). IR (neat): $v_{\text {max }} / \mathrm{cm}^{-1} 3404$, 3027, 2960, 2925, 2852, 1711, 1677, 1585, 1496, 1453, 1366, 1218, 1185, 1068, 820, 747. ${ }^{1} \mathbf{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.20(\mathrm{~m}, 3 \mathrm{H}), 7.12-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.48-$ $6.44(\mathrm{~m}, 2 \mathrm{H}), 2.95(\mathrm{dt}, \mathrm{J}=6.3,5.5 \mathrm{~Hz}, 4 \mathrm{H}), 2.56(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.64-1.60(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.96,198.86,140.89,139.26,138.72,136.24,135.86,128.62$ (2C), 128.41 (2C), 126.31, 43.27, 42.90, 29.94, 17.54, 13.79. HRMS(ESI-TOF) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 257.1542$; found 257.1546 .

Homodimer of propyl vinyl ketone was obtained as a minor product ($9.0 \mathrm{mg}, 0.045 \mathrm{mmol}, 15 \%$). For data please see 3bc'.
Compound 3le Following general procedure, 3le was purified by silica column chromatography (pet ether/EtOAc at a 8:2
 ratio), obtained as a brownish solid ($56 \mathrm{mg}, 0.21 \mathrm{mmol}, 70 \%$). IR (neat): $v_{\text {max }} / \mathrm{cm}^{-1} 3408$, 3025, 2961, 2940, 2828, 1721, 1652, 1586, 1423, 1405, 1360, 1208, 1126, 1087, 746, 699. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.48-$ $6.42(\mathrm{~m}, 2 \mathrm{H}), 2.99-2.89(\mathrm{~m}, 4 \mathrm{H}), 2.45(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.19-2.13(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~d}, \mathrm{~J}=$ $6.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 199.84,198.90,139.29,138.79,136.52,135.92,128.63$ (2C), 128.43 (2C), 126.32, 50.35, 42.93, 29.92, 29.83, 25.08, 22.69 (2C). HRMS(ESI-TOF) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$271.1698; found 271.1695.

Homodimer of isobutyl vinyl ketone was obtained as a minor product ($12.0 \mathrm{mg}, 0.054 \mathrm{mmol}, 18 \%$). For data please see 3ae'.
Compound 3ma Following general procedure, 3ma was purified by silica column chromatography (pet ether/EtOAc at a $8: 2$ ratio), obtained as a colourless solid ($38 \mathrm{mg}, 0.19 \mathrm{mmol}, 65 \%$). IR (neat): $v_{\max } / \mathrm{cm}^{-1} 2969,2934$, 2880, 1746, 1680, 1589, 1472, 1410, 1382, 1362, 1232, 1209, 1145, 1136, 1074, 889, 728. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{dd}, J=15.5,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~d}, J=$ $15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.32(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.81,198.04,143.83,137.46,135.14,134.16,37.67,28.10,26.73,22.50,14.00$, 12.64. HRMS(ESI-TOF) m/z calcd. for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$195.1385; found 195.1383.

Compound 3mc Following general procedure, 3mc was purified by silica column chromatography (pet ether/EtOAc at a呈 $8: 2$ ratio), obtained as a colourless solid ($45 \mathrm{mg}, 0.20 \mathrm{mmol}, 67 \%$). IR (neat): $v_{\text {max }} / \mathrm{cm}^{-1} 2960$, 2932, 2874, 1711, 1690, 1614, 1463, 1409, 1367, 1259, 1210, 1176, 1126, 1094, 906, 732. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{dd}, J=15.3,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}$, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.58(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.70-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.56(\mathrm{~m}, 2 \mathrm{H})$, $1.36-1.31(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.87,200.26$, 143.70, 136.50, 134.44, 134.32, 43.40, 37.66, 26.75, 22.51, 17.64, 13.99, 13.82, 12.61. HRMS(ESI-TOF) m / z calcd. for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 223.1698$; found 223.1695.

Compound 3me Following general procedure, 3me was purified by silica column chromatography (pet ether/EtOAc at a

$8: 2$ ratio), obtained as a colourless solid ($45 \mathrm{mg}, 0.19 \mathrm{mmol}, 64 \%$). IR (neat): $v_{\text {max }} / \mathrm{cm}^{-1} 2956$,

2941, 2869, 1721, 1695, 1611, 1436, 1421, 1376, 1262, 1205, 1167, 1160, 1001, 896, $726 .{ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (~} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.50(\mathrm{dd}, J=15.3,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.47(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.19-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.37-1.33(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.92(\mathrm{t}, J$ $=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 201.86,200.06,143.78,136.55,134.70,134.31,50.53,37.66,32.00,26.75$, 25.18, 22.62, 22.52, 13.99, 12.63. HRMS(ESI-TOF) m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$237.1855; found 237.1859.

Compound 3mf Following general procedure, 3mf was purified by silica column chromatography (pet ether/EtOAc at a 이 $8: 2$ ratio), obtained as a colourless solid ($41 \mathrm{mg}, 0.15 \mathrm{mmol}, 52 \%$). IR (neat): $v_{\max } / \mathrm{cm}^{-1} 2958$, 2932, 2870, 1723, 1636, 1610, 1447, 1423, 1373, 1260, 1208, 1170, 1165, 1009, 816, 723. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50(\mathrm{dd}, J=15.4,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J$ $=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{dq}, J=22.8,7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.35-1.29$ $(\mathrm{m}, 6 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 201.83(\mathrm{~s}), 200.36,143.70$, $136.47,134.42,134.30,41.58,37.66,31.67,29.00,26.76,24.19,22.56,22.51,14.09,13.98,12.61$. HRMS(ESI-TOF) m/z calcd. for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$265.2168; found 265.2169.

Compound 3ni Following general procedure, 3ni was purified by silica column chromatography (pet ether/EtOAc at a 8:2
 ratio), obtained as a viscous liquid ($90 \mathrm{mg}, 0.12 \mathrm{mmol}, 61 \%$). $\mathrm{R}_{f}=0.45$ (EtOAc-Hexane 2:8). IR (neat): $\mathrm{V}_{\text {max }} / \mathrm{cm}^{-1}: 3088,3064,3031,2924,2858,1952,1722,1659,1496,1454$, 1364, 1270, 1204, 1093, 1028. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.20(\mathrm{~m}, 25 \mathrm{H}), 6.82$ (dt, $J=15.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{dt}, J=15.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.58(\mathrm{~m}$, $2 \mathrm{H}), 4.56-4.54(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.09-4.07(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.97$ (t, $J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=9.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=10.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.66(\mathrm{~m}, 4 \mathrm{H}), 2.65(\mathrm{dt}, J=12.5,7.0$ $\mathrm{Hz}, 2 \mathrm{H}$), 2.26 (dd, $J=14.5,7.0 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.2,166.8,147.9,138.6,138.1,137.2,128.4$, $128.3,128.2,127.8,127.7,127.7,127.6,127.5,127.4,121.3,84.5,80.7,79.3,78.4,74.7,74.6,73.3,72.2,71.7,69.3,51.3$, 38.4, 25.4. HRMS(ESI-TOF) m / z calcd. for $\mathrm{C}_{47} \mathrm{H}_{50} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 765.3403$; found 765.3409.

Compound 3oi Following general procedure, 3oi was purified by silica column chromatography (pet ether/EtOAc at a 8:2
 ratio), obtained as a viscous liquid ($93 \mathrm{mg}, 0.12 \mathrm{mmol}, 63 \%$). $\mathrm{R}_{f}=0.45$ (EtOAc-Hexane 2:8). IR (neat): $\mathrm{V}_{\text {max }} / \mathrm{cm}^{-1}: 3088,3064,3031,2923,2853,1721,1665,1453,1360,1261$, 1210, 1098. ${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.32-7.23(\mathrm{~m}, 23 \mathrm{H}), 7.16-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.73$ (dt, $J=15.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\mathrm{dt}, J=15.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.68-4.66(\mathrm{~m}, 2 \mathrm{H}), 4.61(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 3 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 4.46(\mathrm{~d}$, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{dd}, J=10.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.64$ $(\mathrm{m}, 5 \mathrm{H}), 2.40-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.04(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.6,166.8,147.9,138.1,137.2,128.4$, $128.3,128.3,128.1,127.8,127.7,127.5,127.5,127.4,121.2,83.7,80.6,79.1,78.2,74.6,74.2,73.3,71.9,69.2,51.3,37.8$, 25.4. HRMS(ESI-TOF) m / z calcd. for $\mathrm{C}_{47} \mathrm{H}_{50} \mathrm{O}_{8} \mathrm{Na}\left[\mathrm{M}+\mathrm{Na}^{+}\right.$: 765.3403; found 765.3408.

Compound 30j Following general procedure, 30j was purified by silica column chromatography (pet ether/EtOAc at a 8:2
 ratio), obtained as a viscous liquid ($102 \mathrm{mg}, 0.13 \mathrm{mmol}, 65 \%$). $\mathrm{R}_{f}=0.45$ (EtOAcHexane 2:8). IR (neat): $\mathrm{V}_{\text {max }} / \mathrm{cm}^{-1}: 3087,3061,3028,2924,1718,1663,1453,1275$, $1260,1098 .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.18(\mathrm{~m}, 23 \mathrm{H}), 7.15-7.14(\mathrm{~m}, 2 \mathrm{H})$, $6.71(\mathrm{dt}, J=15.6,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.62(\mathrm{dt}, J=15.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.68-4.65(\mathrm{~m}, 2 \mathrm{H}), 4.61(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 3 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H})$, $4.45(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.01(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $3 \mathrm{H}), 3.85(\mathrm{dd}, J=10.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.65(\mathrm{dd}, J=10.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.34(\mathrm{~m}, 2 \mathrm{H}), 2.140-2.03(\mathrm{~m}$, $2 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.36(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 208.6,166.5,153.5$, $147.5,138.8,138.4,138.1,137.9,137.2,128.4,128.3,128.1,128.0,127.9,127.7,127.6,127.5,127.4,121.6,83.8,80.6$, $79.2,78.3,74.6,74.2,73.4,71.9,69.3,64.0,37.9,30.7,25.4,19.1,13.7$. HRMS(ESI-TOF) m / z calcd. for $\mathrm{C}_{50} \mathrm{H}_{56} \mathrm{O}_{8} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 807.3873$; found 807.3869 .

Compound 3ok Following general procedure, 3ok was purified by silica column chromatography (pet ether/EtOAc at a
 8:2 ratio), obtained as a viscous liquid ($94 \mathrm{mg}, 0.12 \mathrm{mmol}, 60 \%$). $\mathrm{R}_{f}=0.45$ (EtOAcHexane 2:8). IR (neat): $\mathrm{V}_{\text {max }} / \mathrm{cm}^{-1}: 3444,3089,3064,2959,2925,2872,1722,1652$, $1496,1454,1315,1266,1207,1095,1027 .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.31-7.25$ $(\mathrm{m}, 23 \mathrm{H}), 7.17-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.73(\mathrm{dt}, J=15.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{dd}, J=15.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 4.67(\mathrm{~m}, 1 \mathrm{H}), 4.61$ $(\mathrm{s}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 4.46(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-4.02$ $(\mathrm{m}, 3 \mathrm{H}), 3.91(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=$ $10.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.96(\mathrm{dt}, J=13.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 0.96(\mathrm{dd}, J=7.0,6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 208.6,166.5,147.5,138.5,138.4,138.1,137.9,137.2,128.5,128.4,128.3,128.1,127.9,127.8,127.7$, $127.5,127.5,127.3,126.9,121.6,83.8,80.6,79.2,78.3,74.6,74.2,73.3,71.9,70.3,69.2,65.3,37.8,27.7,25.4,19.1$. HRMS(ESI-TOF) m / z calcd. for $\mathrm{C}_{50} \mathrm{H}_{56} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 807.3873$; found 807.3870.

Compound 3ol Following general procedure, 3ol was purified by silica column chromatography (pet ether/EtOAc at a
 $8: 2$ ratio), obtained as a viscous liquid ($89 \mathrm{mg}, 0.11 \mathrm{mmol}, 55 \%$). $\mathrm{R}_{f}=0.45$ (EtOAcHexane 2:8). IR (neat): $\mathrm{V}_{\text {max }} / \mathrm{cm}^{-1}: 3421,3031,3063,2923,2853,1715,1653,1496$, 1453, 1362, 1262, 1177, 1094, 1026; ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.28(\mathrm{~m}$, $23 \mathrm{H}), 7.16$ (dd, $J=7.0,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.71(\mathrm{dt}, J=15.5,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~d}, J=15.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.81-4.77(\mathrm{~m}, 1 \mathrm{H}), 4.68(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{dd}, J=12.0,3.0 \mathrm{~Hz}, 3 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H})$, $4.46(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.86(\mathrm{dd}, J=10.0,4.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.78-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=10.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.35(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.07(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.74-$ $1.2(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.54(\mathrm{~d}, 2 \mathrm{H}), 1.44-1.34(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 208.6,165.9,147.1,128.4,128.3,128.1$, $127.9,127.9,127.7,127.5,127.5,127.4,122.2,83.8,80.5,79.2,78.3,74.6,74.2,73.3,72.3,71.9,69.2,37.8,31.6,25.3$, 23.7. HRMS(ESI-TOF) m / z calcd. for $\mathrm{C}_{52} \mathrm{H}_{58} \mathrm{O}_{8} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 833.4029$; found 833.4039.

4. Synthesis of bioactive natural products 4,5,6 and 7

Compound 4 Following general procedure, 4 was purified by silica column chromatography (pet ether/EtOAc at a 8:2 o ratio), obtained as a white solid ($48 \mathrm{mg}, 0.14 \mathrm{mmol}, 48 \%$). IR (neat): $v_{\text {max }} / \mathrm{cm}^{-1} 2954,2918,2850$, 1706, 1678, 1586, 1469, 1406, 1373, 1245, 1216, 1077, 718. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21-$ $7.11(\mathrm{~m}, 2 \mathrm{H}), 6.53-6.39(\mathrm{~m}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 1.66-1.59(\mathrm{~m}, 6 \mathrm{H}), 1.32-1.25(\mathrm{~m}$, $16 \mathrm{H}), 0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.85(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.24$ (2C), 138.91 (2C), 136.06 (2C), 41.43, 41.38, 31.96, 31.46, 29.63, 29.54, 29.48, 29.38(2C), 29.30, 24.12, 23.80, 22.77, 22.64, 14.09, 13.99. HRMS(ESI-TOF) m/z calcd. for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 335.2950$; found 335.2958 .

Following general procedure, 3gn' was obtained as a yellowish solid (7.5:2.5:hexane:EtOAc) ($7 \mathrm{mg}, 0.03 \mathrm{mmol}, 10 \%$); IR (neat): $v_{\max } / \mathrm{cm}^{-1} 2955,2926,2854,1742,1714,1677,1588,1466,1406,1374,1240,1130,1078$,
 1009,$721 ;{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.55-6.38(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 4 \mathrm{H}), 1.63(\mathrm{~m}, 4 \mathrm{H}), 1.31-1.27(\mathrm{~m}, 8 \mathrm{H}), 0.89(\mathrm{t}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 200.24 (2C), 138.91 (2C), 136.06 (2C), 41.43 (2C), 31.96 (2C), 24.12 (2C), 22.75 (2 C), 14.19 (2 C); HRMS m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 251.2011$; found 251.2010.

Note: When reaction was carried out in 0.3 mmol scale, we didn't get pure ${ }^{1} \mathrm{H}$ NMR spectrum of homodimer of decyl vinyl ketone. So we repeated same reaction in 3 batches ($0.3 \mathrm{mmol} \times 3$), combined and purified to get
 pure spectra. homodimer of decyl vinyl ketone was obtained as a colourless solid, please see $\mathbf{3 g g}$, for data (7.5:2.5:hexane:EtOAc). Yield was calculated w.r.t. one batch ($7 \mathrm{mg}, 0.018 \mathrm{mmol}, 6 \%$). Overall yield from three batches $(0.3 * 3)=21 \mathrm{mg}, 0.054 \mathrm{mmol}, 6 \%$. IR (neat): $v_{\max } / \mathrm{cm}^{-1} 2953$, 2918, 2850, 1677, 1586, 1470, 1405, 1371, 1313, 1244, 1218, 1131, 1100, $906,853,750 ;{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.21$ $-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.53-6.41(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.65-1.58(\mathrm{~m}, 4 \mathrm{H}), 1.27-6.4(\mathrm{~m}, 28 \mathrm{H}), 0.86(\mathrm{t}, J=6.9 \mathrm{~Hz}$, 6 H); ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.24$ (2C), 138.91 (2C), 136.06 (2C), 41.43 (2C), 31.96 (2C), 29.63 (2C), 29.54 (2C), 29.48 (2C), 29.38 (2C), 29.30 (2C), 24.12 (2C), 22.75 (2C), 14.19 (2C); HRMS m/z calcd for $\mathrm{C}_{26} \mathrm{H}_{47} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 391.3576$; found 391.3572 .

Compound 3qf Following general procedure, 3qf was purified by silica column chromatography (pet ether/EtOAc at a 8:2
 ratio), obtained as a brownish solid ($52 \mathrm{mg}, 0.15 \mathrm{mmol}, 52 \%$). IR (neat): $v_{\text {max }} / \mathrm{cm}^{-1} 3354,3047$, 2928, 2866, 1729, 1680, 1579, 1467, 1421, 1366, 1344, 1241, 1215, 1173, 1107, 1078, 848, 723. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.20-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.53-6.41(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 2.58(\mathrm{~m}, 4 \mathrm{H}), 2.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.60(\mathrm{~m}, 6 \mathrm{H}), 1.37-1.25(\mathrm{~m}, 11 \mathrm{H}), 0.87(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.19,199.78,173.72,139.02,138.81,136.15,135.95,60.34,41.44,41.05,34.18,31.65,28.96$, 28.70, 24.75, 24.07, 23.61, 22.56, 14.32, 14.10. HRMS(ESI-TOF) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 337.2379$; found 337.2377.

Homodimer of hexyl vinyl ketone was obtained as a minor product ($12 \mathrm{mg}, 0.042 \mathrm{mmol}, 14 \%$). For data please see 3af'.

Synthesis of Ostopanic Acid, 5

To a magnetically stirred solution of ester $\mathbf{3 q f}(40 \mathrm{mg}, 0.12 \mathrm{mmol})$ in 1,2-dichloroethane (3 mL) was added $\mathrm{Me}_{3} \mathrm{SnOH}$ (216 $\mathrm{mg}, 1.2 \mathrm{mmol}$) and the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 12 h . The solvent was removed by rotary evaporation and the mixture was diluted with EtOAc . Water $(5 \mathrm{~mL})$ was poured into mixture and the phases were separated and extracted with $\mathrm{EtOAc}(3 \times 10 \mathrm{~mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporation of the solvent and purification of the residue on silica gel column chromatography using 40% EtOAc-hexane as an eluent furnished ostopanic acid (5) (27 $\mathrm{mg}, 72 \%$) as a white solid. $R_{f}=0.60$ (EtOAc-hexane 3:7). IR (neat): $v_{\mathrm{max}} / \mathrm{cm}^{-1} 2925,2854,1708,1679,1465,1404,1367$, 1254, 1128, 1107, 1078, 957, 722. ${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.21-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.52-6.42(\mathrm{~m}, 2 \mathrm{H}), 2.59(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.59(\mathrm{~m}, 6 \mathrm{H}), 1.39-1.28(\mathrm{~m}, 8 \mathrm{H}), 0.86(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13}$ C NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.21,199.73,177.83,139.07,138.80,136.17,135.92,41.44,40.99,33.52,31.65,28.96$, 28.54, 24.49, 24.07, 23.56, 22.56, 14.09. HRMS(ESI-TOF) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 331.1885$; found 331.1889.

Compound 3gm Following general procedure, $\mathbf{3 g m}$ was purified by silica column chromatography (pet ether/EtOAc at a

8:2 ratio), obtained as a yellowish solid ($50 \mathrm{mg}, 0.15 \mathrm{mmol}, 50 \%$). IR (neat): $v_{\max } / \mathrm{cm}^{-1} 3358$, 2953, 2928, 2855, 1732, 1677, 1586, 1466, 1406, 1374, 1271, 1251, 1129, 1105, 1087, 862, 838. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.22-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.55-6.36(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 2.64-2.54(\mathrm{~m}, 4 \mathrm{H}), 2.31(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.61(\mathrm{~m}, 6 \mathrm{H}), 1.65-1.21(\mathrm{~m}, 11 \mathrm{H}), 0.85(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.24,199.50$, 173.49, 139.14, 138.80, 136.20, 135.87, 60.43, 41.43, 40.87, 34.12, 31.73, 29.19, 24.50, 24.10, 23.96, 23.54, 23.03, 14.22, 14.13. HRMS(ESI-TOF) m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{33} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 337.2379$; found 337.2376.

Following general procedure, $\mathbf{3 g m}$ ' was obtained as a colourless solid (7.5:2.5:hexane:EtOAc) ($11 \mathrm{mg}, 0.036 \mathrm{mmol}, 12 \%$);

IR (neat): $v_{\max } / \mathrm{cm}^{-1} 3355,3047,2953,2954,2887,2855,1714,1677,1585,1469,1405,1372$, $1323,1265,1229,1130,1088,1058,801,738 .{ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21-7.10(\mathrm{~m}, 2 \mathrm{H})$, $6.53-6.39(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=6.8 \mathrm{~Hz}, 4 \mathrm{H}), 1.63-7.10(\mathrm{~m}, 4 \mathrm{H}), 1.30-1.24(\mathrm{~m}, 16 \mathrm{H}), 0.86(\mathrm{t}, J=$ $6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 200.23$ (2C), 138.90 (2C), 136.05 (2C), 41.42 (2C), 31.73 (2C), 29.19 (2C), 29.19 (2C), 24.12 (2C), 22.67 (2C), 14.14 (2C); HRMS m/z calcd. for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 307.2637$; found 307.2628.

Synthesis of JA, 6

To a magnetically stirred solution of ester $\mathbf{3 g m}(40 \mathrm{mg}, 0.11 \mathrm{mmol})$ in 1,2-dichloroethane (3 mL) was added $\mathrm{Me}_{3} \mathrm{SnOH}$ (207 $\mathrm{mg}, 1.18 \mathrm{mmol}$) and the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 12 h . The solvent was removed by rotary evaporation and the mixture was diluted with EtOAc. Water (5 mL) was poured into mixture and the phases were separated and extracted with $\mathrm{EtOAc}\left(3 \times 10 \mathrm{~mL}\right.$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, evaporation of the solvent and purification of the residue on silica gel column chromatography using 40% EtOAc-hexane as eluent furnished JA (6) ($24 \mathrm{mg}, 70 \%$) as a white solid. $R_{f}=0.60$ (EtOAc-hexane 3:7). IR (neat): $v_{\max } / \mathrm{cm}^{-1} 3046,2925,2854,1708,1680,1580,1464,1404,1376$, 1313, 1266, 1128, 1104, 1083, 953, 723. ${ }^{1}$ H NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.21-7.11(\mathrm{~m}, 2 \mathrm{H}), 6.54-6.41(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{~m}$, $4 \mathrm{H}), 2.37(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.68-1.60(\mathrm{~m}, 6 \mathrm{H}), 1.29-1.25(\mathrm{~m}, 8 \mathrm{H}), 0.86(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): ~ \delta 200.28,199.41,178.41,139.22,138.78,136.25,135.83,41.45,40.81,33.65,31.74,29.20,29.14,24.26,24.16$, 23.26, 22.68, 14.15. HRMS(ESI-TOF) m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$: 331.1885; found: 331.1883.

Synthesis of southern part (C1-C13) of macrolactin-T, 7

Following general procedure, 7 was purified by silica column chromatography (pet ether/EtOAc at a $8: 2$ ratio), obtained as a呈 3442, 3024, 2927, 2914, 2887, 1765, 1637, 1498, 1341, 1289, 1158, 1071, 954, 827, 741. ${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.57-7.53(\mathrm{t}, J=8.5 \mathrm{~Hz}, J=1 \mathrm{H}), 7.43(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.14-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.46-6.37(\mathrm{~m}, 2 \mathrm{H}), 5.19(\mathrm{~m}, 1 \mathrm{H}), 2.75(\mathrm{t}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.07-2.02(\mathrm{~m}, 2 \mathrm{H})$, $1.37(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 198.78, 197.73, 166.14, 139.62, 139.09, 136.91, 135.90, 133.04, 129.62 (3C), 128.44 (2C), $70.97,37.26,30.19,27.92,20.36$. HRMS(ESI-TOF) m/z calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+} 301.1440$; found 301.1443 .

Homodimer of methyl vinyl ketone was obtained as a minor product ($5.0 \mathrm{mg}, 0.039 \mathrm{mmol}, 13 \%$). For data please see 3aa'.

5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra of Compounds 3

|

($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	T
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

S\#341516 $\underset{\sim}{~ ㄱ ㅡ ㄱ ㅜ ㄱ ~}$ تḩ gis M
$\underbrace{\text { ºn }}$ m

3ab
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\infty}{\infty} \stackrel{\infty}{\infty} \stackrel{\infty}{\sim}$

($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ad
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

S\#6517.198
$\stackrel{\vec{N}}{\stackrel{\rightharpoonup}{4}}$
$\underbrace{m \sim \infty}_{\sim}$

3ad
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
|

	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

3ad
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

SAI20

굳

($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^0]AN2001RE

3ae
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

VK803PA

($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

I

($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^1]

3ba
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3bc'
(400 MHZ, CDCl_{3})

($100 \mathrm{MHZ}, \mathrm{CDCl}_{3}$)

3be
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Prove needita berepair

($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

AN5014官 ${ }^{\text {m }}$
Prove neajeg to be repair

3ca
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

 11

3cc
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3cc
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

挹キます。

$\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ）

S\＃614941

$\stackrel{\stackrel{\sim}{m}}{\stackrel{\sim}{n}}$
Nomer

（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$)

S\#69075䒫

m
|

3gg'
$\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

[^2]

3ha
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

为

3ha
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3jb
($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

S\#712区

|

3jb
($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3kc
（ $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

AN5柬的BC
Prove ${ }^{\text {an}}{ }^{\circ}$
\／
录荡

3kc
（ $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1
200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

31 c
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

AN 92.5 RE - ${ }^{\circ}$	 MKY!		$\stackrel{\text { ¢ }}{\text { ¢ }}$

31c
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

S\#7冨1811

31 e
($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

3ma
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
S\#61890蕅
$\stackrel{\stackrel{\circ}{\text { i }} \stackrel{\infty}{\circ}}{\stackrel{\circ}{\mid}}$

($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

(

($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Prover top to be repair
।/

($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1	1	1	1	1	1	1	1	1	1	1	1	1	,	1	1	1	1	1	1
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30		10

1	1		1	1		1	,	1	1	1	1	1	1	1	1	,	1	1	1	1	
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

301
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

6. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra for the bioactive natural products $\mathbf{4 , 5 , 6}$ and 7

AN1296宏
$\stackrel{\rightharpoonup}{\text { ت. }}$
|

($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

210	200	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ (\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10	0

s\#69075范
$\stackrel{7}{\circ} \stackrel{\circ}{\circ}$
m
|

($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1}$ H NMR spectrum of homodimer of decyl vinyl ketone obtained from 0.3 mmol scale. (6\% yield)

($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\text { N }}{\substack{0 \\ i \\ \text { i } \\ i}}$

($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

			,	1	,		1		,	1	1	1	1	1	I	1	1	,	
200	190	180	170	160	150	140	130	120	110	$\begin{array}{r} 100 \\ \mathrm{ppm}) \end{array}$	90	80	70	60	50	40	30	20	10

7
($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

AN ${ }^{\text {c }}$ 9 6 RE	\pm	
Prỡentneed to be repair	$\stackrel{\square}{\square}$	
\/	1	\1r! 11

Comparison table

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR comparison between natural and synthetic (7E,9E)-henicosa-7,9-diene-6,11dione (4)

${ }^{\mathbf{1}} \mathrm{H}-\mathrm{NMR}$ in CDCl_{3}		${ }^{13} \mathrm{C}-\mathrm{NMR}$ in CDCl_{3}	
Natural 400 MHz	Synthetic 500 MHz	Natural 100 MHz	Synthetic 125 MHz
0.92-0.86 (m)	0.88-0.85 (m)	200.11	200.24
1.36-1.28 (m)	1.32-1.25 (m)	200.10	200.24
1.67-1.59 (m)	1.66-1.59 (m)	138.80	138.91
2.60 (t, $J=7.5 \mathrm{~Hz})$	2.57 (t, $J=7.4 \mathrm{~Hz}$)	138.79	138.91
6.49 (dd, $J=11.5,2.8 \mathrm{~Hz})$	6.53-6.39 (m)	135.97	136.06
7.18 (dd, $J=11.5,2.8 \mathrm{~Hz})$	7.21-7.11 (m)	135.96	136.06
		41.35	41.43
		41.31	41.38
		31.88	31.96
		31.38	31.46
		29.55	29.63
		29.46	29.54
		29.40	29.48
		29.30	29.38
		29.22	29.30
		24.04	24.12
		23.72	23.80
		22.67	22.77
		22.45	22.64
		14.11	14.09
		13.91	13.99

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR comparison between natural and synthetic Ostopanic acid (5)

${ }^{1} \mathbf{H}-\mathrm{NMR}$ in CDCl_{3}		${ }^{13} \mathrm{C}-\mathrm{NMR}$ in CDCl_{3}	
$\begin{aligned} & \text { Natural } \\ & 400 \mathrm{MHz} \end{aligned}$	Synthetic 500 MHz	$\begin{aligned} & \text { Natural } \\ & 100 \mathrm{MHz} \end{aligned}$	Synthetic 125 MHz
0.87 (t, $J=6.7 \mathrm{~Hz})$	0.87 (t, $J=6.8 \mathrm{~Hz})$	200.2	200.21
1.30 (m)	1.39-1.28 (m)	199.7	199.73
1.64 (m)	$1.67-1.59$ (m)	178.3	177.83
2.36 (t, J=7.4 Hz)	2.34 (t, $J=7.5 \mathrm{~Hz}$)	139.0	139.07
2.57 (t, $J=7.4 \mathrm{~Hz})$	2.57 (t, $J=7.3 \mathrm{~Hz})$	138.7	138.80
$2.59(\mathrm{t}, J=7.0 \mathrm{~Hz})$	2.59 (t, $J=7.1 \mathrm{~Hz})$	136.1	136.17
6.50-6.43 (m)	6.52-6.42 (m)	135.8	135.92
7.19-7.13 (m)	7.21-7.11 (m)	41.6	41.44
		40.7	40.99
		33.7	33.52
		31.5	31.65
		28.8	28.96
		28.5	28.54
		24.4	24.49
		24.0	24.07
		23.5	23.56
		22.4	22.56
		14.0	14.09

[^0]:

[^1]:

[^2]:

