Electronic Supplementary Information

Experimental section

Materials: Titanium oxysulfate (TiOSO₄·2H₂O), ethanol (CH₃CH₂OH), glycerol (C₃H₈O₃), palladium dichloride (PdCl₂), hydrochloric acid (HCl), sodium sulfate (Na₂SO₄), ammonium chloride (NH₄Cl), hydrazine hydrate (N₂H₄·H₂O), sodium hypochlorite (NaClO), sodium salicylate (C₇H₅O₃Na), sodium hydroxide (NaOH), para-(dimethylamino) benzaldehyde (C₉H₁₁NO), sodium nitroferricyanide (III) dihydrate (Na₂Fe(CN)₅NO·2H₂O), and 5 wt% Nafion solution were purchased from Aladdin Co., Ltd. (Shanghai, China). Carbon paper was purchased from Taiwan CeTech Company. All chemical reagents are analytical grade without further purification.

Preparation of Pd-TiO₂ and pristine TiO₂: Pd-TiO₂ was prepared as follows. 2.40 g TiOSO₄·2H₂O, 20 mL ethanol, 12 mL deionized water, 9 mL glycerol and 0.02 g PdCl₂ were mixed and stirred for 1 h. After that, the above mixture was transferred to a Teflon-lined autoclave and maintained in an oven at 200 °C for 9 h. After cooling to room temperature, the product was collected by filtration and washed several times with ethanol and deionized water. Finally, it was dried overnight in a vacuum oven at 60 °C and designated as Pd-TiO₂. For comparison, pristine TiO₂ was prepared via a similar procedure without the presence of PdCl₂.

Preparation of Pd-TiO₂/CP: Typically, 10 mg of Pd-TiO₂ catalyst was dispersed in a mixed solution containing 40 μ L of 5 wt% Nafion solution, 240 μ L of deionized water and 720 μ L of ethanol, followed by ultrasound for 1 h to form a uniform ink, and finally 20 μ L of the ink was loaded onto a pretreated carbon paper (CP, 1 × 1 cm²) and dried under infrared light for later use.

Characterizations: X-ray powder diffraction (XRD) patterns were collected on a Shimadzu XRD-6100 diffractometer (Shimadzu, Japan) with a Cu K α X-ray source. Transmission electron microscopy (TEM) images were conducted on a Zeiss Libra 200FE transmission electron microscope at an acceleration voltage of 200 kV. X-ray photoelectron spectroscopy (XPS) measurements were carried out on an ESCALAB 250Xi spectrometer equipped with monochromatized Al K α radiation. Raman spectra are obtained by a LabRAM HR Evolution Raman spectroscopy. Ultraviolet-visible (UV-vis) spectroscopy measurements were performed on a Shimadzu UV-1800 UVvis spectrophotometer. The ion chromatography (IC) data were obtained by using a ThermoFisher ICS 5000 plus IC.

Electrochemical measurements: The electrochemical measurements were carried out in a gastight H-type cell separated by a Nafion 211 membrane using a threeelectrode configuration. Before NRR tests, the Nafion membrane was pretreated by heating in the 3% H₂O₂ solution and 0.5 M H₂SO₄ at 80 °C for 1 h, respectively, and then washing with ultrapure water for another 1 h. We used a CHI760E electrochemical workstation (Shanghai, Chenhua) to conduct electrochemical experiments. In this work, the obtained Pd-TiO₂/CP, Ag/AgCl/saturated KCl, and graphite rod were used as the working electrode, reference electrode, and counter electrode, respectively. All potentials were converted to the RHE through calibration (*E* (*vs* RHE) = *E* (*vs* Ag/AgCl) + 0.197 V + 0.059 × pH). Determination of NH₃: Concentration of produced NH₃ was spectrophotometrically determined by the indophenol blue method. Specifically, 4 mL electrolyte was obatined from the cathodic chamber and mixed with 50 µL oxidizing solution containing NaClO (ρ Cl = 4 ~ 4.9) and NaOH (0.75 M), 500 µL coloring solution containing 0.4 M C₇H₆O₃Na and 0.32 M NaOH, and 50 µL catalyst solution (1 wt% Na₂[Fe(CN)₅NO]) for 1 h. Absorbance measurements were performed at λ = 655 nm. The concentration-absorbance curve was calibrated using standard NH₄⁺ solution with a serious of concentrations. The fitting curve (y = 0.5142x + 0.0204, R² = 0.999) shows good linear relation of absorbance value with NH₄⁺ concentration.

Determination of N₂H₄: The N₂H₄ in the electrolyte was determined by the method of Watt and Chrisp. The mixture of C₉H₁₁NO (5.99 g), HCl (30 mL), and C₂H₅OH (300 mL) was used as a color reagent. In detail, 5 mL electrolyte was removed from the electrochemical reaction vessel, and added into 5 mL above prepared color reagent and stirring 10 min at room temperature. Moreover, the absorbance of the resulting solution was measured at a wavelength of 460 nm. The concentration absorbance curves were calibrated using standard N₂H₄ solution with a series of concentrations. The fitting curve (y = 0.645x + 0.016, R² = 0.996) shows good linear relation of absorbance value with N₂H₄ concentration.

Calculations of NH₃ yield and FE:

NH₃ yield was calculated using the following equation:

$$NH_3 \text{ yield} = [NH_3] \times V / (t \times m_{cat.})$$
(1)

The amount of NH₃ produced was calculated as follows:

$$\mathbf{m}_{\rm NH3} = [\rm NH_3] \times \rm V \tag{2}$$

FE was calculated according to following equation:

$$FE = 3F \times [NH_3] \times V / (17 \times Q) \times 100\%$$
(3)

where $[NH_3]$ is the measured NH_3 concentration, V is the volume of the electrolyte in the cathodic chamber, t is the reduction time, $m_{cat.}$ is the loaded mass of catalyst on carbon paper, F is the Faraday constant, and Q is the total transferred charge during NRR test.

Fig. S1. Size distribution of Pd-TiO₂ nanoparticles.

Fig. S2. HRTEM image of pristine TiO_2 .

	-			Map Sum Spectrum		
	-				Element	Wt%
os/eV	4 — -				Ti	50.54
	-				0	47.70
	- 2—				Pd	1.76
	- - - 0-		Pd Pd			
	0	2			8	keV

Fig. S3. EDX spectrum of Pd-TiO₂ nanoparticles.

Fig. S4. XPS survey spectrum of Pd-TiO₂ nanoparticles.

Fig. S5. XPS spectrum of O 1s region for Pd-TiO₂.

Fig. S6. VB-XPS spectra for (a) Pd-TiO $_2$ and (b) TiO $_2$ samples.

Fig. S7. (a) UV-vis absorption spectra of indophenol assays with NH₃ concentrations after incubated for 2 h at room temperature. (b) Calibration curve used for calculation of NH₃ concentrations.

Fig. S8. (a) UV-vis absorption spectra of various N_2H_4 concentrations after incubated for 10 min at room temperature. (b) Calibration curve used for calculation of N_2H_4 concentrations.

Fig. S9. (a) Ion chromatogram curves of the standard solution with NH_4^+ concentrations in 0.1 M Na₂SO₄. (b) Calibration curve used for estimation of NH_4^+ . (c) Ion chromatogram for the electrolytes at a series of potentials after electrolysis for 2 h. (d) NH_3 yields and FEs for Pd-TiO₂/CP at corresponding potentials.

Fig. S10. UV-vis absorption spectra of the electrolytes stained with $p-C_9H_{11}NO$ indicator after 2 h electrolysis in N₂ atmosphere at a series of potentials.

Fig. S11. UV-vis absorption spectra of 0.1 M Na_2SO_4 electrolyte stained with indophenol indicator after 2 h electrolysis at the potential of -0.50 V.

Fig. S12. UV-vis absorption spectra of the electrolytes stained with indophenol indicator for the Pd-TiO₂/CP electrode after 2 h electrolysis at -0.50 V under different electrochemical conditions.

Fig. S13. UV-vis absorption spectra of electrolyte stained with indophenol indicator after 2 h potentiostatic test at -0.50 V for 1 h, 2 h, and 3 h, respectively.

Fig. S14. Cyclic voltammetry curves of (a) Pd-TiO₂/CP and (b) TiO₂/CP with various scan rates (20-100 mV s⁻¹).

Fig. S15. (a) Chronoamperometry curves of Pd-TiO₂/CP at -0.50 V vs. RHE for continuous cycles. (b) UV-vis absorption spectra of the electrolytes stained with an NH₃ color agent for continuous cycles.

Fig. S16. XRD pattern for Pd-TiO₂ after stability test.

Fig. S17. (a)TEM image and (b) size distribution for $Pd-TiO_2$ after stability test.

Table S1. Comparison of the electrocatalytic NRR performance of $Pd-TiO_2$ with other Pd- and Ti-based NRR electrocatalysts under ambient conditions in aqueous media.

Catalysts	Electrolyte	NH ₃ yield	FE (%)	Ref.
Pd-TiO ₂	0.1 M Na ₂ SO ₄	$17.4 \ \mu g \ h^{-1} \ mg_{cat.}^{-1}$	12.7	This work
Pd/C	0.1 M PBS	4.5 μ g h ⁻¹ mg _{cat.} ⁻¹	8.2	1
Pd _{0.2} Cu _{0.8} /rGO	0.1 M KOH	2.8 μg h ⁻¹ mg _{cat.} ⁻¹	-	2
Pd nanoparticles	0.1 M Na ₂ SO ₄	24.12 μg h ⁻¹ mg _{cat.} ⁻¹	9.49	3
PdO/Pd/CNTs	0.1 M NaOH	18.2 μg h ⁻¹ mg _{cat.} ⁻¹	11.5	4
Pd-Ag-S	0.1 M Na ₂ SO ₄	9.73 μ g h ⁻¹ mg _{cat.} ⁻¹	18.41	5
C-doped TiO ₂	0.1 M Na ₂ SO ₄	16.22 μg h ⁻¹ mg _{cat.} ⁻¹	1.84	6
B-doped TiO ₂	0.1 M Na ₂ SO ₄	14.4 µg h ⁻¹ mg _{cat.} ⁻¹	3.4	7
Mn-TiO ₂	0.1 M Na ₂ SO ₄	20.05 µg h ⁻¹ mg _{cat.} ⁻¹	11.93	8
TiO ₂ /Ti	0.1 M Na ₂ SO ₄	$5.6 \ \mu g \ h^{-1} \ m g_{cat.}^{-1}$	2.5	9
Ti ³⁺ -TiO _{2-x} /TM	0.1 M Na ₂ SO ₄	3.51×10 ⁻¹⁰ mol s ⁻¹ cm ⁻²	14.62	10
d-TiO ₂ /TM	0.1 M HC1	7.58 µg h ⁻¹ mg _{cat.} ⁻¹	9.17	11
Y-TiO ₂ -C	0.1 M HC1	$6.3 \ \mu g \ h^{-1} \ m g_{cat.}^{-1}$	11.0	12
TiO ₂ -rGO	0.1 M Na ₂ SO ₄	15.13 μg h ⁻¹ mg _{cat.} ⁻¹	3.3	13
TA-reduced Au/TiO ₂	0.1 M HC1	21.4 µg h ⁻¹ mg _{cat.} ⁻¹	8.11	14
TiS ₂ nanosheets	0.1 M Na ₂ SO ₄	16.02 µg h ⁻¹ mg _{cat.} ⁻¹	5.5	15
C-Ti _x O _y /C	0.1 M Li ₂ SO ₄	14.8 µg h ⁻¹ mg _{cat.} ⁻¹	17.8	16
TiC/C NF	0.1 M HCl	14.1 μ g h ⁻¹ mg _{cat.} ⁻¹	5.8	17

Zr-doped TiO ₂	1.0 M KOH	8.9 μg h ⁻¹ cm ⁻²	17.3	18
---------------------------	-----------	---	------	----

References

- J. Wang, L. Yu, L. Hu, G. Chen, H. Xin and X. Feng, *Nat. Commun.*, 2018, 9, 1 7.
- 2 M. M. Shi, D. Bao, S. J. Li, B. R. Wulan, J. M. Yan and Q. Jiang, Adv. Energy Mater., 2018, 8, 1800124.
- G. Deng, T. Wang, A. A. Alshehri, K. A. Alzahrani, Y. Wang, H. Ye, Y. Luo and
 X. Sun, J. Mater. Chem. A, 2019, 7, 21674-21677.
- 4 J. Lv, S. Wu, Z. Tian, Y. Ye, J. Liu and C. Liang, J. Mater. Chem. A, 2019, 7, 12627-12634.
- 5 H. Wang, S. Liu, H. Zhang, S. Yin, Y. Xu, X. Li, Z. Wang and L. Wang, Nanoscale, 2020, 12, 13507-13512.
- 6 K. Jia, Y. Wang, Q. Pan, B. Zhong, Y. Luo, G. Cui, X. Guo and X. Sun, Nanoscale Adv., 2019, 1, 961-964.
- 7 Y. Wang, K. Jia, Q. Pan, Y. Xu, Q. Liu, G. Cui, X. Guo and X. Sun, ACS Sustainable Chem. Eng., 2018, 7, 117-122.
- 8 H. Chen, T. Wu, X. Li, S. Lu, F. Zhang, Y. Wang, H. Zhao, Q. Liu, Y. Luo and A. M. Asiri, Z. Feng, Y. Zhang and X. Sun, ACS Sustainable Chem. Eng., 2021, 9, 1512-1517.
- 9 R. Zhang, X. Ren, X. Shi, F. Xie, B. Zheng, X. Guo and X. Sun, ACS Appl.
 Mater. Interfaces, 2018, 10, 28251-28255.
- B. Li, X. Zhu, J. Wang, R. Xing, Q. Liu, X. Shi, Y. Luo, S. Liu, X. Niu and X. Sun, *Chem. Commun.*, 2020, 56, 1074-1077.

- L. Yang, T. Wu, R. Zhang, H. Zhou, L. Xia, X. Shi, H. Zheng, Y. Zhang and X.
 Sun, *Nanoscale*, 2019, **11**, 1555-1562.
- 12 L. Yang, C. Choi, S. Hong, Z. Liu, Z. Zhao, M. Yang, H. Shen, A. W. Robertson,
 H. Zhang, T. W. B. Lo, Y. Jung and Z. Sun, *Chem. Commun.*, 2020, 56, 1091010913.
- X. Zhang, Q. Liu, X. Shi, A. M. Asiri, Y. Luo, X. Sun and T. Li, *J. Mater. Chem. A*, 2018, 6, 17303-17306.
- 14 M. M. Shi, D. Bao, B. R. Wulan, Y. H. Li, Y. F. Zhang, J. M. Yan and Q. Jiang, *Adv. Mater.*, 2017, **29**, 1606550.
- K. Jia, Y. Wang, L. Qiu, J. Gao, Q. Pan, W. Kong, X. Zhang, A. A. Alshehri, K. A. Alzahrani B. Zhong, X. Guo and L. Yang, *Inorg. Chem. Front.*, 2019, 6, 1986-1989.
- 16 Q. Qin, Y. Zhao, M. Schmallegger, T. Heil, J. Schmidt, R. Walczak, G. Gescheidt-Demner, H. Jiao and M. Oschatz, *Angew. Chem. Int. Ed.*, 2019, 58, 13101-13106.
- G. Yu, H. Guo, W. Kong, T. Wang, Y. Luo, X. Shi, A. M. Asiri, T. Li and X.
 Sun, J. Mater. Chem. A, 2019, 7, 19657-19661.
- 18 N. Cao, Z. Chen, K. Zang, J. Xu, J. Zhong, J. Luo, X. Xu and G. Zheng, Nat. Commun., 2019, 10, 2877.