Supplementary Information

Two Novel Telluroniobates with an Efficient Catalytic Activity for the

Imidation/Amidation Reaction

Mengyuan Cheng,^{a,+} Yufeng Liu,^{b,+} Nan Li,^{a,+} Jingwen Shi,^a Weixin Du,^a Dongdi Zhang,^{*a} GuopingYang,^{*b}

Guan Wang,^a and Jingyang Niu*^a

^aHenan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China.

^bJiangxi Key Laboratory for Mass Spectrometry and Instrumentation, Jiangxi Province Key Laboratory of Synthetic Chemistry, East China University of Technology, Nanchang, 330013, P. R. China.

Content

Experimental section	2
Characterization of Te15Nb21 and Te10Nb14	4
Optimization of reaction conditions	16
Characterization of substrates and products ^{S4-5}	17
NMR Spectra	21

Experimental section

General methods and materials. K₇[HNb₆O₁₉]·13H₂O were prepared according to the literature procedure.⁵¹ Purity was confirmed by IR spectroscopy. All reagents and solvents were of commercially available grade and used without any previous purification. IR spectra were recorded on a Bruker VERTEX 70 IR spectrometer in the 4000-400 cm⁻¹ range using crystalline sample in KBr pellet. Elemental analyses were obtained with a PerkinElmer Optima 2100 DV Inductively Coupled Plasma Optical Emission Spectrometry, C, H and N were carried out on a VarioElcube CHNS analyzer. The phase purity of bulk samples was further verified by powder X-ray diffraction (PXRD) patterns collected on a Bruker AXS D8 Advance instrument with Cu Kα radiation ($\lambda = 1.5418$ Å). Thermogravimetric analyses (TGA) were carried out on a NETZSCH STA 449 F5 Jupiter thermal analyzer under N₂ atmosphere with 10 °C·min⁻¹ heating rate. Negative-mode electrospray ionization mass spectrometry (ESI-MS) of compounds in water were performed on an AB SCIEX Triple TOF 4600 instrument.

CCDC 2097318 and 2097319 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

Catalysis. The products were isolated by column chromatography on silica gel (200-300 mesh) using petroleum ether (60-90 °C) and ethyl acetate. All compounds were characterized by ¹H NMR, ¹³C NMR and mass spectrometry, which were consistent with those reported in related literatures. NMR spectra were determined on Brucker ADVANCE III spectrometer at 500 MHz and 126 MHz. ¹H NMR peaks were labeled as singlet (s), doublet (d), triplet (t), and multiplet (m). The coupling constants, J, are reported in Hertz (Hz). GC analysis was performed on Agilent 7890B equipped with a capillary column (HP-5, 30 m × 0.25 μ m) using a flame ionization detector. The HR-MS was recorded on an Agilent Q-TOF 6520 equipment. **Synthesis of Te₁₅Nb₂₁ and Te₁₀Nb₁₄.** [{Cu(en)₂(H₂O)}₆][{Cu(en)₂}₃][H₃Te₁₅Nb₂₁Cu₃O₉₆]·47H₂O (**Te₁₅Nb₂₁**): CuSO₄·5H₂O (1.997 g, 12.5 mmol) was dissolved in 5 mL distilled water under stirring followed by addition

of ethylenediamine (en) (5 mL). The resulting blue-violet solution was then added dropwise to a mixed solution containing K₇HNb₆O₁₉·13H₂O (1.7 g, 1.2 mmol) and Na₂TeO₃ (1.332 g, 6.0 mmol) in distilled water (130 mL). Next, the mixture was stirred for 13 h and adjusted to pH 10.5 using 6 mol L⁻¹ HCl. Subsequently, the obtained mixture was heated at 90 °C for 5-6 h, and then cooled to room temperature and filtered. Purple block-shaped crystals were obtained within a week (yield 19 % based on Nb). IR (KBr disks): 3371, 3313, 3217, 1634, 1584, 1457, 1386, 1313, 1279, 1161, 1107, 1044, 983, 866, 717, 650, 525 cm⁻¹. Elemental analysis (%) calculated for Te₁₅Nb₂₁Cu₁₂C₃₆N₃₆H₂₅₃O₁₄₉: Nb, 23.78; Te, 23.33; Cu, 9.29; C, 5.27; N, 6.14; H, 3.10; found for: Nb, 23.57; Te, 23.05; Cu, 9.12; C, 5.03; N, 5.94; H, 2.93.

[{Cu(en)₂}₆][Te₁₀Nb₁₄Na₂(OH)₂O₆₁]·36H₂O (**Te₁₀Nb₁₄**): En was added dropwise to CuSO₄·5H₂O (4.52 g, 28.3 mmol) dissolved in 10 mL distilled water with stirring. The resulting blue-violet solution was then added dropwise to a solution of K₇HNb₆O₁₉·13H₂O (1.6 g, 1.2 mmol), Na₂TeO₃ (1.363 g, 6.1 mmol) and Na₃PO₄·12H₂O (2.6 mmol) in distilled water (130 mL). Next, the mixture was adjusted to pH 10.63 with 3 mol L⁻¹ HCl solution and heated at 90 °C for 80 min and then cooled to room temperature. Purple block-shaped crystals obtained within a week (yield: 13 % based on Nb). IR (KBr disks): 3306, 3216, 2243, 1635, 1584, 1458, 1398, 1317, 1279, 1183, 1112, 1046, 982, 868, 705, 768, 526 cm⁻¹. Elemental analysis (%) calculated for Na₂Te₁₀Nb₁₄O₉₉Cu₆C₂₄N₂₄H₁₆₀: Nb, 24.19; Na, 0.85; Te, 23.73; Cu, 7.09; C, 5.36; N, 6.25; H, 3.07; found for: Nb, 24.51; Na, 0.62; Te, 24.03; Cu, 5.82; C, 4.37; N, 5.31; H, 2.70.

Typical procedure of the Te₁₅Nb₂₁ **catalyzed amidation reactions**. Succinic anhydride (0.5 mmol), phenylamine (0.5 mmol), DMSO (0.2 mL, if the reaction substrate is 1 mmol, the reaction can be solvent-free), **Te**₁₅Nb₂₁ (1 mol%) were added in a 4-mL reaction vial. Then the reaction was carried out in screw cap vials with a Teflon seal at 140 °C for the desired time. After reaction, the mixture was purified by column chromatography (petroleum ether/EtOAc) to afford the desired products.

Characterization of Te₁₅Nb₂₁ and Te₁₀Nb₁₄.

Scheme S1. Comparison of synthetic conditions of PONb clusters with Te as heteroatom.

Formula	$Te_{15}Nb_{21}Cu_{12}C_{36}N_{36}H_{253}O_{149}$	$Na_2 Te_{10} Nb_{14} O_{99} Cu_6 C_{24} N_{24} H_{160}$
Formula weight	8203	5374
Temperature/K	150	273.15
Crystal system	hexagonal	orthorhombic
Space group	P6 ₃ /m	C222 ₁
a/Å	24.0801(4)	26.590(4)
b/Å	24.0801(4)	27.526(5)
c/Å	25.4757(4)	23.910(4)
α/°	90	90
β/°	90	90
γ/°	120	90
Volume/Å ³	12793.0(5)	17500(5)
Z	2	4
$\rho_{calc}g/cm^3$	2.311	1.769
µ/mm⁻¹	3.663	3.296
F(000)	6902.0	9048.0
Crystal size/mm ³	0.28 × 0.22 × 0.12	0.3 × 0.2 × 0.2
Radiation	ΜοΚα (λ = 0.71073)	ΜοΚα (λ = 0.71073)
20 range for data collection/°	4.656 to 56.564	4.26 to 50.054
Index ranges	-32 ≤ h ≤ 25, -32 ≤ k ≤ 32, -33 ≤ l ≤ 33	-31≤ h ≤ 31, -31 ≤ k ≤ 32, -28 ≤ l ≤ 28
Reflections collected	110906	53472
Independent reflections	10804 [R_{int} = 0.0484, R_{sigma} = 0.0235]	15185[R _{int} = 0.0567, R _{sigma} = 0.0599]
Data/restraints/parameters	10804/298/467	15185/405/682
Goodness-of-fit on F ²	1.042	1.068
Final R indexes [I>=2σ (I)]	$R_1 = 0.0389$, w $R_2 = 0.1045$	$R_1 = 0.0502$, $wR_2 = 0.1315$
Final R indexes [all data]	$R_1 = 0.0484$, $wR_2 = 0.1121$	R ₁ = 0.0707, wR ₂ = 0.1444

Table S1. Crystal data and structure refinement of $Te_{15}Nb_{21}$ and $Te_{10}Nb_{14}$.^{S2-3}

 ${}^{a}\mathsf{R}^{1} = \sum ||\mathsf{Fo}| - |\mathsf{Fc}|| / \sum |\mathsf{Fo}| . {}^{b}\mathsf{w}\mathsf{R}^{2} = \{\sum [\mathsf{w}(\mathsf{Fo}^{2} - \mathsf{Fc}^{2})^{2}] / \sum [\mathsf{w}(\mathsf{Fo}^{2})^{2}] \}^{1/2}$

Figure S1. Combined polyhedral/ball-and-stick representation of the trimeric polyanion $Te_{15}Nb_{21}$, $[Te_{15}Nb_{21}Cu_3O_{96}]^{21-}$, highlighting the two different viewing directions. Color code: Te, orange; Nb, teal; Cu, blue; O, red.

Figure S2. Combined polyhedral/ball-and-stick representation of $[Te_5Nb_7CuO_{34}]^{11-}$ subunit, highlighting the four different viewing directions. Color code: Te, orange; Nb, teal; Cu, blue; O, red.

Figure S3. Combined polyhedral/ball-and-stick representation of $[TeNb_7O_{28}]^{17-}$ fragment, resulting from the the removal of one $\{Nb_3O_{13}\}$ triad and two $\{NbO_6\}$ octahedra of the other two $\{Nb_3O_{13}\}$ triads from the plenary Keggin cluster. Color code: Te, orange; Nb, teal; O, red.

Figure S4. Combined polyhedral/ball-and-stick representation of polyanion $[Te{Nb_7(Te_2Cu)}O_{32}]^{15-}$, which can be regarded as a trivacant Keggin-type polyanion if the site of $\{Te_2Cu\}$ segment is replaced by two Nb centres. Color code: Te, orange; Nb, teal; Cu, blue; O, red.

Figure S5. Schematic view of ball-and-stick representation of **Te**₁₀**Nb**₁₄, highlighting the sandwich-type dimer. Color code: Te, orange; Nb, teal; Na, blue gray; O, red.

Figure S6. Ball-and-stick representation of $[Te_5Nb_7CuO_{34}]^{11-}$ subunit in **Te₁₅Nb₂₁**, highlighting the coordination environments of Te atoms, in which the tetra-coordinate and tri-coordinate tellurium atoms are shown in yellow and orange, respectively. Color code: Te, orange; Nb, teal; Cu, blue; O, red.

Figure S7. Ball-and-stick representation of polyanion **Te**₁₀**Nb**₁₄, highlighting the coordination environments of Te atoms, in which the tetra-coordinate and tri-coordinate tellurium atoms are shown in yellow and orange, respectively. Color code: Te, orange; Nb, teal; Na, blue gray; O, red.

Atom	BVS	Atom	BVS	Atom	BVS
Te1	3.99	02	1.93	011	1.80
Te2	3.75	03	1.69	012	2.10
Te3	4.11	04	1.90	013	1.85
Nb1	4.97	05	1.83	014	1.82
Nb2	4.95	06	1.86	015	1.46
Nb3	4.92	07	1.83	016	1.42
Nb4	4.93	08	1.69	017	1.45
Cu1	2.04	09	1.87	018	1.51
01	2.01	010	1.72	019	2.01

Table S2. Bond valence sum calculations for Nb, Te, Cu and O atoms in Te₁₅Nb₂₁.

Atom	BVS	Atom	BVS	Atom	BVS
Te1	3.90	04	1.87	019	1.47
Te2	4.21	05	2.02	020	1.42
Te3	4.06	O6	1.39	021	1.83
Te4	3.63	07	1.51	022	1.77
Te5	3.87	08	1.74	023	1.89
Nb1	5.03	09	1.55	024	1.86
Nb2	4.93	010	2.03	025	1.58
Nb3	5.05	011	1.95	026	1.85
Nb4	5.13	012	1.72	027	1.71
Nb5	4.91	013	1.95	028	1.40
Nb6	5.22	014	2.10	029	1.19*
Nb7	5.04	015	1.98	030	1.77
01	1.99	016	1.55	031	1.94
02	1.81	017	1.89	032	1.72
03	1.77	018	1.82		

Table S3. Bond valence sum calculations for Nb, Te and O atoms in Te₁₀Nb₁₄.

*Represents the monoprotonated oxygen atom.

Figure S8. Ball-and-stick representation of polyanion **Te**₁₀**Nb**₁₄, highlighting the protonated oxygen atoms, O and OH ligands are shown in red and pink, respectively. Color code: Te, orange; Nb, teal; Na, blue gray; O, red.

Figure S9. The IR spectrum of $K_7HNb_6O_{19}\cdot 13H_2O$ (Nb₆O₁₉) in the range of 4000-500 cm⁻¹.

Figure S10. The IR spectrum of $Te_{15}Nb_{21}$ in the range of 4000-500 cm⁻¹.

Figure S11. The IR spectrum of $Te_{10}Nb_{14}$ in the range of 4000-500 cm⁻¹.

Figure S12. IR spectra for Nb₆O₁₉, Na₂TeO₃, Te₁₅Nb₂₁ and Te₁₀Nb₁₄ in the region of 500-2000 cm⁻¹.

As shown in Figures S9-12, the Fourier transform infrared (FTIR) spectra of $Te_{15}Nb_{21}$ and $Te_{10}Nb_{14}$ are nearly identical, being characterized by absorptions in the region 500-900 cm⁻¹, attributed to metaloxygen vibrations, and in the regions 1600-1650 and 2800-4000 cm⁻¹, assigned to water of crystallization. The characteristic vibration of Te-O appears at ca. 650 cm⁻¹, whereas the band at ca. 1045 cm⁻¹ is attributed to en. Compared with the IR spectrum of K₇HNb₆O₁₉·13H₂O (Nb₆O₁₉), the band at ca. 860 cm⁻¹ for the Nb-O_t stretching vibration enhances obviously because of the coordination of Te atoms to Nb₆O₁₉ fragments.

Figure S13. The TG curve of Te₁₅Nb₂₁ (a) and Te₁₀Nb₁₄ (b).

Figure S14. Simulated (black), measured (red) and after catalysis (blue) powder X-ray diffraction patterns of **Te₁₅Nb₂₁** (a) and **Te₁₀Nb₁₄** (b).

Figure S15. Variable temperature IR spectra of Te₁₅Nb₂₁.

Figure S16. The negative-ion ESI mass spectrum of cluster anion in Te15Nb21 and Te10Nb14.

Te₁₅Nb₂₁, Te₁₀Nb₁₄ were dissolved in high-purity water and their solution behaviors were detected by ESI-MS. The peak envelopes are broad due to association of a range of counterions and solvent molecules, which is typical in ESI-MS of larger POMs. For Te₁₅Nb₂₁, all the major peaks in the spectrum could be assigned to the formula [Te₁₅Nb₂₁Cu₃O₉₆]^{21–} (Tables S4). The charge of the envelopes in the range of m/z 1550-1700 and 1200-1300 is 4- and 5-, respectively (Figure S16a). For polyanion Te₁₀Nb₁₄, similar patterns were also detected for the 3- and 4-, and charge envelopes in the range of *m*/*z* 1300-1450 and 950-1100 is 4- and 5-, respectively (Figure S16b and Table S5).

Entry	Identification	Charge	m / z (calcd)	m / z (found)
1	${Te_{15}Nb_{21}Cu_{3}O_{96}Cu_{5}(C_{2}N_{2}H_{8})_{9}(H_{2}O)_{7}H_{7}}$	-4	1645.84	1645.91
2	$\{Te_{15}Nb_{21}Cu_{3}O_{96}Cu_{4}(C_{2}N_{2}H_{8})_{4}(H_{2}O)_{24}H_{9}\}$	-4	1631.91	1631.92
3	${Te_{15}Nb_{21}Cu_{3}O_{96}Cu_{4}(C_{2}N_{2}H_{8})_{8}(H_{2}O)_{7}H_{9}}$	-4	1615.44	1615.40
4	${Te_{15}Nb_{21}Cu_{3}O_{96}Cu_{3}(C_{2}N_{2}H_{8})_{4}(H_{2}O)_{17}H_{11}}$	-4	1585.00	1585.15
5	${Te_{15}Nb_{21}Cu_{3}O_{96}Cu_{2}(C_{2}N_{2}H_{8})_{4}(H_{2}O)_{17}H_{12}}$	-5	1255.49	1255.31
6	$\{Te_{15}Nb_{21}Cu_{3}O_{96}Cu(C_{2}N_{2}H_{8})_{2}(H_{2}O)_{20}H_{14}\}$	-5	1229.95	1230.10
7	${Te_{15}Nb_{21}Cu_{3}O_{96}Cu_{2}(C_{2}N_{2}H_{8})_{4}(H_{2}O)_{7}H_{12}}$	-5	1219.46	1219.69
8	${Te_{15}Nb_{21}Cu_{3}O_{96}Cu(C_{2}N_{2}H_{8})(H_{2}O)_{17}H_{14}}$	-5	1207.13	1207.10

Table S4. Assignment of peaks of Te15Nb21.

Table S5. Assignment of peaks of Te₁₀Nb₁₄.

Entry	Identification	Charge	m / z (calcd)	m / z (found)
1	$\{Te_{10}Nb_{14}Na_5O_{63}Cu_2(C_2N_2H_8)_3(H_2O)_{15}H_4\}$	-3	1427.08	1427.26
2	${Te_{10}Nb_{14}Na_2O_{63}Cu_2(C_2N_2H_8)_4(H_2O)_{11}H_7}$	-3	1401.11	1401.24
3	${Te_{10}Nb_{14}Na_2O_{63}Cu_2(C_2N_2H_8)_3(H_2O)_{14}H_7}$	-3	1399.10	1399.24
4	${Te_{10}Nb_{14}Na_2O_{63}Cu_2(C_2N_2H_8)_4(H_2O)_4H_7}$	-3	1359.08	1358.92
5	${Te_{10}Nb_{14}Na_{3}O_{63}Cu(C_{2}N_{2}H_{8})_{2}(H_{2}O)_{6}H_{9}}$	-3	1318.18	1318.24
6	${Te_{10}Nb_{14}Na_2O_{63}Cu_2(C_2N_2H_8)_3(H_2O)_{14}H_6}$	-4	1049.07	1049.17
7	${Te_{10}Nb_{14}Na_{3}O_{63}Cu_{2}(C_{2}N_{2}H_{8})_{3}(H_{2}O)_{6}H_{5}}$	-4	1018.54	1018.42
8	${Te_{10}Nb_{14}Na_{3}O_{63}Cu_{2}(C_{2}N_{2}H_{8})_{2}(H_{2}O)_{6}H_{5}}$	-4	1003.51	1003.40
9	${Te_{10}Nb_{14}Na_2O_{63}Cu_2(C_2N_2H_8)_2(H_2O)_7H_6}$	-4	1002.52	1002.40
10	${Te_{10}Nb_{14}Na_4O_{63}Cu(C_2N_2H_8)(H_2O)_8H_6}$	-4	987.61	987.67

Optimization of reaction conditions

Table S6. Condition optimization for the amidation reaction.^[a]

	+	NH ₂ conditions		
	1a	2a	3a	
Entry	Catalyst (mol%)	Temp. (°C)	Time (h)	Yield ^[b] (%)
1	Te 15 Nb 21 (1.0)	100	5	23
2	Te₁₀Nb₁₄ (1.5)	100	5	19
3	Te₁₅Nb₂₁ (1.0)	120	5	58
4	Te 15 Nb 21 (1.0)	140	5	65
5	Te₁₅Nb₂₁ (1.0)	140	8	70
6	Te 15 Nb 21 (1.0)	140	10	78
7	Te₁₅Nb₂₁ (1.0)	140	12	94

[a] Reaction conditions: succinic anhydride **1a** (0.5 mmol), phenylamine **2a** (0.5 mmol), DMSO (0.2 mL). [b] The yields were determined by GC with biphenyl as the internal standard; N.D. = no detected.

Figure S17. Recyclability of catalyst Te15Nb21.

Characterization of substrates and products

1-phenylpyrrolidine-2,5-dione (3a)^{S3}

¹H NMR (500 MHz, CDCl₃) δ 7.48 (t, J = 7.7 Hz, 2H), 7.40 (t, J = 7.5 Hz, 1H), 7.27 (d, J = 7.4 Hz, 2H), 2.85 (s, 4H);

¹³**C NMR** (126 MHz, CDCl₃) δ = 176.35, 131.93, 129.24, 128.69, 126.52, 28.63.

1-(m-tolyl)pyrrolidine-2,5-dione (3b)^{S3}

¹**H NMR** (500 MHz, CDCl₃) δ 7.34 (t, J = 7.7 Hz, 1H), 7.19 (d, J = 7.6 Hz, 1H), 7.13-6.97 (m, 2H), 2.80 (s, 4H), 2.37 (s, 3H);

¹³**C NMR** (126 MHz, CDCl₃) δ = 176.50, 139.29, 131.86, 129.57, 129.06, 127.17, 123.65, 28.44, 21.38.

1-(3-chlorophenyl)pyrrolidine-2,5-dione (3c)^{S3}

¹H NMR (500 MHz, CDCl₃) δ 7.40-7.34 (m, 2H), 7.31 (s, 1H), 7.17 (d, *J* = 7.3 Hz, 1H), 2.80 (s, 4H);

¹³**C NMR** (126 MHz, CDCl₃) δ = 175.95, 134.52, 133.07, 130.19, 128.76, 126.73, 124.76, 28.37.

1-(4-isopropylphenyl)pyrrolidine-2,5-dione (3d)^{S3}

¹**H NMR** (500 MHz, CDCl₃) δ 7.32 (d, *J* = 8.0 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 2.93 (dt, *J* = 13.7, 6.8 Hz, 1H), 2.82 (s, 4H), 1.25 (d, *J* = 7.0 Hz, 6H);

2-benzylisoindoline-1,3-dione (3e)⁵⁴

¹**H NMR** (500 MHz, CDCl₃) δ 7.69 (dd, J = 5.3, 3.1 Hz, 2H), 7.53 (dd, J = 5.4, 3.1 Hz, 2H), 7.31 (d, J = 7.3 Hz, 2H), 7.19 (t, J = 7.4 Hz, 2H), 7.13 (t, J = 7.3 Hz, 1H), 4.71 (s, 2H);

¹³**C NMR** (126 MHz, CDCl₃) δ = 168.02, 136.43, 134.00, 132.08, 128.71, 128.65, 127.86, 123.33, 41.60.

5-methyl-2-phenylisoindoline-1,3-dione (3f)⁵⁵

¹**H NMR** (500 MHz, (CD₃)₂SO) δ 7.79 (d, *J* = 7.6 Hz, 1H), 7.74 (s, 1H), 7.65 (d, *J* = 7.6 Hz, 1H), 7.48-7.45 (m, 2H), 7.38 (dd, *J* = 7.6, 4.4 Hz, 3H), 2.46 (s, 3H);

¹³**C NMR** (126 MHz, (CD₃)₂SO) δ = 167.56, 167.46, 146.17, 135.55, 132.42, 132.35, 129.38, 129.31, 128.46, 127.83, 124.31, 123.84, 21.89.

5-chloro-2-phenylisoindoline-1,3-dione (3g)^{S5}

¹**H NMR** (500 MHz, CDCl₃) δ 7.83 (d, *J* = 1.7 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.66 (dd, *J* = 8.0, 1.8 Hz, 1H), 7.45-7.41 (m, 2H), 7.34 (dd, *J* = 6.7, 2.2 Hz, 3H);

¹³**C NMR** (126 MHz, CDCl₃) δ = 166.35, 166.04, 141.14, 134.53, 133.41, 131.40, 129.80, 129.22, 128.35, 126.50, 125.06, 124.20.

 N^1 , N^4 -diphenylsuccinamide (4a)⁵⁶

¹**H NMR** (500 MHz, (CD₃)₂SO) δ 9.89 (s, 2H), 7.47 (d, J = 8.0 Hz, 4H), 7.14 (t, J = 7.8 Hz, 4H), 6.88 (t, J = 7.3 Hz, 2H), 2.54 (s, 4H);

¹³**C NMR** (126 MHz, (CD₃)₂SO) δ = 170.87, 139.81, 129.14, 123.37, 119.36, 31.66.

N¹, N⁴-di-m-tolylsuccinamide (4b)

¹**H NMR** (500 MHz, (CD₃)₂SO) δ 9.81 (s, 2H), 7.34 (s, 2H), 7.26 (d, J = 8.2 Hz, 2H), 7.03 (t, J = 7.8 Hz, 2H), 6.71 (d, J = 7.5 Hz, 2H), 2.53 (s, 4H), 2.13 (s, 6H);

¹³**C NMR** (126 MHz, (CD₃)₂SO) δ = 170.79, 139.75, 138.27, 128.96, 124.06, 119.91, 116.58, 31.70, 21.68.

HRMS (ESI): m/z, calcd. for C₁₈H₂₁N₂O₂ [M+H]⁺ requires 297.1598, found 297.1601.

N¹, N⁴-bis(3-chlorophenyl)succinamide (4c)

¹**H NMR** (500 MHz, (CD₃)₂SO) δ 10.10 (s, 2H), 7.71 (s, 2H), 7.31 (d, *J* = 8.2 Hz, 2H), 7.18 (t, *J* = 8.1 Hz, 2H), 6.95 (d, *J* = 7.9 Hz, 2H), 2.55 (s, 4H);

¹³**C NMR** (126 MHz, (CD₃)₂SO) δ = 171.21, 141.17, 133.53, 130.84, 123.09, 118.81, 117.69, 31.48.

HRMS (ESI): m/z, calcd. for C₁₆H₁₅Cl₂N₂O₂ [M+H]⁺ requires 337.0505, found 337.0509.

*N*¹, *N*⁴-bis(4-isopropylphenyl)succinamide (4d)

¹**H NMR** (500 MHz, (CD₃)₂SO) δ 9.82 (s, 2H), 7.40 (d, *J* = 8.5 Hz, 4H), 7.04 (d, *J* = 8.5 Hz, 4H), 2.76-2.65 (m, 2H) 2.53 (s, 4H), 1.06 (d, *J* = 6.9 Hz, 12H);

¹³**C NMR** (126 MHz, (CD₃)₂SO) δ = 170.60, 143.37, 137.58, 126.80, 119.47, 33.31, 31.70, 24.44.

HRMS (ESI): m/z, calcd. for C₂₂H₂₉N₂O₂ [M+H]⁺ requires 353.2224, found 353.2222.

N¹, N²-dibenzylphthalamide (4e)⁵⁷

¹H NMR (500 MHz, (CD₃)₂SO) δ 8.78 (t, J = 5.9 Hz, 2H), 7.47-7.41 (m, 4H), 7.31 (d, J = 7.5 Hz, 4H), 7.26 (t, J = 7.5 Hz, 4H), 7.17 (t, J = 7.2 Hz, 2H), 4.36 (d, J = 5.9 Hz, 4H);

¹³**C NMR** (126 MHz, (CD₃)₂SO) δ = 168.69, 139.97, 136.83, 129.88, 128.70, 128.14, 127.66, 127.15, 42.91.

N¹, N²-bis(4-methylbenzyl)phthalamide (4f)

¹**H NMR** (500 MHz, (CD₃)₂SO) δ 8.72 (t, J = 6.0 Hz, 2H), 7.45-7.40 (m, 4H), 7.19 (d, J = 7.9 Hz, 4H), 7.06 (d, J = 7.9 Hz, 4H), 4.30 (d, J = 6.0 Hz, 4H), 2.21 (s, 6H);

¹³**C NMR** (126 MHz, (CD₃)₂SO) δ = 168.61, 136.91, 136.80, 136.13, 129.83, 129.24, 128.15, 127.66, 42.68, 21.17.

HRMS (ESI): m/z, calcd. for C₂₄H₂₅N₂O₂ [M+H]⁺ requires 373.1911, found 373.1913.

N¹, N²-bis(4-methoxybenzyl)phthalamide (4g)

¹**H NMR** (500 MHz, (CD₃)₂SO) δ 8.63 (t, J = 5.9 Hz, 2H), 7.37-7.30 (m, 4H), 7.15 (d, J = 8.6 Hz, 4H), 6.73 (d, J = 8.6 Hz, 4H), 4.22 (d, J = 5.9 Hz, 4H), 3.56 (s, 6H);

¹³**C NMR** (126 MHz, (CD₃)₂SO) δ = 168.65, 158.65, 136.80, 131.87, 129.85, 129.03, 128.18, 114.10, 55.49, 42.45.

HRMS (ESI): m/z, calcd. for C₂₄H₂₅N₂O₄ [M+H]⁺ requires 405.1809, found 405.1806.

NMR Spectra

S22

— 9.89

8.78 8.78 8.78 8.78 8.746 8.746 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.45 7.128 7.16 7.17 7.16 7.17 7.16 7.17 7.16 7.17 7.16 7.16 <

10 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 (f1 (ppm)

References

- (S1) R. P. Bontchev, E. L. Venturini and M. Nyman, *Inorg. Chem.*, 2007, **46**, 4483–4491.
- (S2) L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard and H. Puschmann, *Acta Crystallogr. Sect. A*, 2015, **71**, 59–75.
- (S3) O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339– 341.
- (S4) F. P. L. Lim, L. Y. Tan, E. R. T. Tiekinkb, A. V. Dolzhenko. RSC Adv. 2018, 8, 22351–22360.
- (S5) Ali, Md. A.; Moromi, S. K.; Touchy, A. S.; Shimizu, K. ChemCatChem. 2016, 8, 891–894.
- (S6) X. Wang, W. Xiong, Y. Huang, J. Zhu, Q. Hu, W. Wu, H. Jiang. Org. Lett. 2017, 19, 5818–582.
- (S7) R. Fu, Y. Yang, Y. Ma, F. Yang, J. Li, W. Chai, Q. Wang, R. Yuan. *Tetrahedron Lett.* 2015, **56**, 4527–4531.
- (S8) R. Singudas, S. R. Adusumalli, P. N. Joshi, V. Rai. Chem. Commun. 2015, 51, 473-476.