Supporting Information

An Acid Promoted Pseudocine Substitution Manifold of γ Aminocyclopentenone Enables Divergent Access to Polycyclic Indole Derivatives

Biplab Mondal ${ }^{1}$, Chenna Jagadeesh ${ }^{1}$, Dinabandhu Das ${ }^{2}$ and Jaideep Saha ${ }^{1 *}$
${ }^{1}$ Department of Biological and Synthetic Chemistry, Centre of Biomedical Research (CBMR), SGPGIMS Campus. Raebareli Road, Lucknow 226014, Uttar Pradesh. India.
${ }^{2}$ School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.

Table of contents

Entry Description1 General Experimental3
2 Detailed Optimization of the Reaction Conditions 4-5
3 Preparation and Characterization data of the starting 6-11materials
4 Characterization of compound $\mathbf{4 a}$ 12
5 General procedure for compounds 4-26 13
6 Preparation and characterization data of compounds 4-26. 14-25
7 General procedure for compounds 27-39 26
8 Preparation and characterization data of compounds 27-39 27-33
9 General procedure for compounds 40-47 34
10 Preparation and characterization data of compounds 40-47 35-38
11 General procedure for compounds 48-54 39
12 Preparation and characterization data of compounds 48-54 40-43
13 NMR Spectra of New Compounds 44-106
14 Crystallographic Data 107-111
15 References 112

1. General Experimental:

Unless otherwise noted, all new reactions reported herein were performedusing oven-dried or flame-dried glassware under argon atmosphere and stirred magnetically. Solvents received from commercial sources were dried using standard protocols before using in this study and for THF, it was used as freshly distilled. Unless noted, all the reagents and catalysts were used as it was received from commercial sources and no further purification was made on those. Reaction monitoring was performed via TLC, using Merck silica gel 60 F 254 plates. TLC plates were visualized either under UV light (254 nm) or by using 10% ethanolic phosphomolybdic acid (PMA) or 1% aqueous KMnO_{4} or iodine. Silica gel of 230-400 mesh size was used for the flash column chromatography. 1H, 13C NMR spectra were recorded on Avance III, Bruker at $400 \mathrm{MHz}, 100 \mathrm{MHz}$ and 376 MHz spectrometers respectively using CDCl_{3}. In the experimental section, the ${ }^{1} \mathrm{H}$ NMR chemicals shift are expressed in the form of ppm (δ) relative to $\delta=7.26$ for CDCl_{3} whereas ${ }^{13} \mathrm{C}$ NMR chemical shift are expressed relative to $\delta=77.16$. The following abbreviations were used to refer to multiplicities: $s=\operatorname{singlet}, \mathrm{d}=$ doublet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet. HRMS and Electron Spray Ionization (ESI) (m/z) spectra were recorded on Agilent Technologies 6530 AccurateMass Q-TOF LC/MS.

2. Detailed Optimization of the Reaction Conditions

(a)

entry	substrates	promoter	equiv.	solvent	time (h)	temp(${ }^{\circ} \mathrm{C}$)	additive	product	yield[\%] ${ }^{\text {b }}$
1	2a	p-TsOH	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	12	rt	-	4/4"	NR
2	2a	p-TsOH	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	12	50	-	4/4"	0/61
3	2a	TfOH	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	6	rt	-	4/4"	NR
4	2a	BCl_{3}	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	6	rt	-	-	c. $\mathrm{m}^{\text {c }}$
5	2a	SnCl_{4}	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	12	50	-	4/4"	35/0
6	2a	AlCl_{3}	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	12	50	-	4/4"	92/0
7	2a	AlCl_{3}	1.5	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	12	50	-	4/4"	15/74
8	2a	AlCl_{3}	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	12	50	-	4/4"	30/55
9	2a	AlCl_{3}	0.5	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	12	50	-	4/4"	15/40
10	2a	AlCl_{3}	2	$\mathrm{CH}_{3} \mathrm{CN}$	12	50	-	4/4"	26/43
11	2a	AlCl_{3}	2	THF	12	50	-	4/4"	0/0
12	2a	$\mathrm{Sc}(\mathrm{OTf})_{3}$	1	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	12	50	-	4/4"	81/0
13	2a	$\mathrm{Sc}(\mathrm{OTf})_{3}$	0.5	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	12	50	-	4/4"	62/20
14	2a	$\mathrm{Sc}(\mathrm{OTf})_{3}$	0.2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	12	50	-	4/4"	25/10
15	2a	$\mathrm{BF}_{3 .} \mathrm{Et}_{2} \mathrm{O}$	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	2	rt	-	4/4"	0/90
16	2a	$\mathrm{BF}_{3} \mathrm{Et} 2 \mathrm{O}$	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	2	rt	$\mathrm{Cu}(\mathrm{OAc})_{2}, \mathrm{H}_{2} \mathrm{O}$	4/4"	5/74
17	2a	$\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	12	50	$\mathrm{Cu}(\mathrm{OAc})_{2}, \mathrm{H}_{2} \mathrm{O}$	4/4"	58/35
18	2a	$\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$	2	toluene	2	80	-	4/4"	0/63
19	1'	AlCl_{3}	2	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	2	50	-	4/4"	55/0

Table S1. ${ }^{\text {a }}$ General reaction conditions: cyclopentenone Compound (1.0 equiv), indole derivativewere taken in solvent (0.1 M) and Lewis/Bronsted acid was added to the reaction mixture. The reaction was run for specific time and temperature. ${ }^{b}$ Yields of the isolated product. ${ }^{\text {c }}$ Complex mixture.
(b)Optimization condition using 2, 2'-bisindole ${ }^{\text {a }}$

2a	 31		ditions 40		
entry	Promoter	Time(h)	Solvent	Temp(${ }^{\circ} \mathrm{C}$)	40/48yield[\%] ${ }^{\text {b }}$
1	$p-\mathrm{TsOH}$	14	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	50	84/0
2	$\mathrm{BF}_{3} . \mathrm{Et}_{2} \mathrm{O}$	14	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	50	40/25
3	AlCl_{3}	24	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	50	10/53

Table S2. ${ }^{\text {a }}$ General reaction conditions: cyclopentenone Compound (1.0 equiv), $2,2^{\prime}$ 'bisindole(1.0 equiv) were taken in solvent (0.1 M) and Lewis/Bronsted acid was added to the reaction mixture. The reaction was run for specific time and temperature. ${ }^{\text {b }}$ Yields of the isolated product.

3. Preparation of the starting materials:

3.1. Preparation of 4-aminocyclopentenones: Following 4-aminocyclopentenone derivatives were used in the study and prepared following the literature procedures. ${ }^{1}$

2a

2b

2c

2d

$2 e$

$2 f$

2 g

2h

2i

2

2k

21

2m

2n

20
regioisomeric starting materials:

$2 a^{\prime}$

2b'

$2 e^{\prime}$

$2 f^{\prime}$

2h'
Figure S1. List of the amino-cyclopentenones used in the study

3.2 Synthesis of Indole derivatives:

Among the indole derivatives used in the study, compounds 3a-3I were prepared following the reported procedure. ${ }^{2-4}$

3a

3e

3f

3b

3c

$3 i$

3j

3k

3d

31

Figure S2. List of the indole derivatives used in the study

3.3. Characterization of newly synthesized starting material: amino-cyclopentenones

2-phenyl-4-(phenylamino)cyclopent-2-en-1-one(2a')

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.84-7.82(\mathrm{~m}, 3 \mathrm{H}), 7.51-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 6.92(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.86(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.68$ (brs, $1 \mathrm{H}), 3.22(\mathrm{dd}, J=18.6,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=18.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ MHz) $\delta 204.7,155.8,146.6,144.3,130.7,129.6,129.2,128.7,127.5,118.8,113.7,51.20$, 44.6; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}^{+}$Calcd.250.1226, Found 250.1228.

4-(phenylamino)-2-(p-tolyl)cyclopent-2-en-1-one(2b')

${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.81$ (s, 1H), 7.74 (d, $\left.J=5.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.34-7.32(\mathrm{~m}, 4 \mathrm{H}), 6.92$ (brs, 1 H), 6.81 (d, $J=6.3 \mathrm{~Hz}, 2 \mathrm{H}$), 4.87 (brs, 1 H), 3.90 (brs, 1 H), 3.22 (dd, $J=18.2,4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 2.56-2.48(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 204.9,155.0,146.6,144.0$, 139.2, 129.6, 129.3, 127.8, 127.4, 118.7, 113.7, 51.1, 44.6, 21.4; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}^{+}$Calcd. 264.1383, Found 264.1378.

2-(4-fluorophenyl)-4-(phenylamino)cyclopent-2-en-1-one(2e')

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ 7.69-7.67 (m, 3H), 7.22-7.18 (m, 2H), $7.05-7.01$ (apt, 2H), 6.77 (t, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 6.66 (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 4.71 (brs, 1H), 3.30 (brs, 1H), 3.07 (dd, $J=$ 18.5, $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{~d}, \mathrm{~J}=18.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 204.6$, $163.3(\mathrm{~d}, J=247.8 \mathrm{~Hz}), 155.5,146.5,143.1,129.7,129.4(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 126.80(\mathrm{~d}, J=3.1$ Hz), 118.9, $115.7(\mathrm{~d}, \mathrm{~J}=3.1 \mathrm{~Hz}$), 113.7, 51.1, 44.5; HRMS (ESI-TOF) m/z: [M+H]+ $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{FNO}^{+}$Calcd. 268.1132, Found 268.1153.

2-(4-chlorophenyl)-4-(phenylamino)cyclopent-2-en-1-one(2f')

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.83$ (brs, 1 H), 7.77 (d, $\left.J=7.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.45(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}$, 2H), $7.34-7.31$ (m, 2H), 6.91 (t, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}$), 6.79 (d, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 4.85 (brs, 1H), 3.61 (brs, 1 H), 3.21 (d, $J=17.3 \mathrm{~Hz}, 1 \mathrm{H}$), $2.52(\mathrm{~d}, J=18.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 100 MHz) $\delta 204.4,156.0,146.5,143.1,135.2,129.9,128.9,128.8,118.9,115.2,113.8$, 51.2, 44.6; HRMS (ESI-TOF) m/z: [M+H]+ $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{CINO}^{+}$Calcd. 284.0837, Found 284.0838.

4-(phenylamino)-2-(m-tolyl)cyclopent-2-en-1-one(2h')

${ }^{1}{ }^{1} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.68(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}=10.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.11$ $(\mathrm{m}, 4 \mathrm{H}), 6.78(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.71-4.70(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{brs}, 1 \mathrm{H})$, 3.07 (dd, $J=18.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.33(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 204.7, 155.8, 146.6, 144.4, 138.3, 130.6, 123.0 129.7, 128.6, 128.1, 124.6, 118.7, 113.7, 51.2, 44.6, 21.6; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{NO}^{+}$Calcd. 264.1383, Found 264.1379.

3.4. Characterization of newly synthesized staring material: indole derivatives

Dimethyl 2-((1-heptyl-1H-indol-2-yl)methyl)malonate(3b)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.78$ ($\mathrm{s}, 6 \mathrm{H}$), 3.41 (d, J=7.7 Hz, 2H), 1.79-1.74 (m, 2H), 1.37-1.27 (m, 8H), 0.91 (t, J $=6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 169.2,136.8,136.3,127.9,121.1,120.2$, 119.4, 109.3, 99.4, 53.0, 51.0, 43.4, 31.8, 30.3, 29.1, 27.1, 26.0, 22.7, 14.2; HRMS (ESITOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{21} \mathrm{H}_{30} \mathrm{NO}_{4}{ }^{+}$Calcd. 360.2169, Found 360.2169 .

4-((1-methyl-1H-indol-2-yl)methyl)-2,5-diphenyl-2,4-dihydro-3H-pyrazol-3-one(3i)

${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.90(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.62$ (d, $J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.43(\mathrm{~m}, 5 \mathrm{H}), 7.41-7.37(\mathrm{~m}, 4 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.16(\mathrm{~m}$, $3 \mathrm{H}), 7.14-7.11(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.06-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.12$ (brs, 2H), $4.09(\mathrm{t}, J=5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.71(\mathrm{~s}, 2 \mathrm{H}), 3.53(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{~s}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 100 MHz)ठ 172.8, 158.4, 150.5, 138.8, 137.9,137.8, 137.3, 134.7, 130.7 (2), 130.2, 129.0 (2), 128.9, 128.8.128.5, 127.8(2), 127.7, 126.8, 125.8, 125.6, 121.3, 120.9, 120.3, 120.1, 119.6, 119.4(2), 109.3, 109.0, 101.1, 100.0, 50.1, 29.6, 29.5, 26.0, 21.1; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}^{+}$Calcd.380.1757, Found 380.1747.

3-((1-methyl-1H-indol-4-yl)methyl)indolin-2-one(3k)

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 9.15(\mathrm{~s}, 1 \mathrm{H}), 7.34(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.13$ (s, 1H), 7.01 (d, J = $6.6 \mathrm{~Hz}, 1 \mathrm{H}$), 6.95 (d, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), $6.85(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~s}$, $1 \mathrm{H}), 6.55(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}$, 3H), $3.09(\mathrm{t}, \mathrm{J}=12.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 180.5,141.5,136.9$, 130.7, 129.8, 128.8, 128.0, 127.8, 125.4, 122.0, 121.5, 120.4, 109.7, 108.2, 99.4, 46.6, 35.0, 33.1; HRMS (ESI-TOF) m/z: [M+Na]+ $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}^{+} \mathrm{Calcd}$ 299.1155, Found 299.1157.

3-((1-methyl-1H-indol-2-yl)methyl)indolin-2-one(3h)

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 9.06(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.21(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.90(\mathrm{~m}, 3 \mathrm{H}), 6.33(\mathrm{~s}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J$ $=10.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dd}, J=15.3,10.2 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 179.6,141.6,137.6,137.0,129.1,128.4,127.7,125.0$, 122.5, 121.2, 120.2, 119.6, 110.0, 109.2, 101.0, 45.7, 29.9, 28.0; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}^{+} \mathrm{Calcd}$. 299.1155, Found 299.1154.

4 Dimethyl 2-((1-methyl-3-(4-oxo-3-phenylcyclopent-2-en-1-yl)-1H-indol-2$y() m e t h y l) m a l o n a t e\left(4^{\prime \prime}\right)$

In a mixture of 4 -aminocyclopentenone ($\mathbf{2 a}, 0.05 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) and indole derivative ($\mathbf{3 a}, 0.055 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in DCM was added $\mathrm{BF}_{3} . \mathrm{OEt} \mathrm{O}_{2}(0.025 \mathrm{~mL}, 0.2$ $\mathrm{mmol})$. The reaction was stirred at room temperature and solvent was evaporated. Crude residue was purified by silica gel column chromatography (Hexane/EtOAc 8:2) to furnish the title compound as white foam in $90 \%(0.078 \mathrm{~g})$ yield. $\mathrm{R}_{\mathrm{f}} 0.25$ (EtOAc: Hexane 3:7); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.49$ (m, 1H), 3.74 (s, 6H), 3.73 (s, 3H), 3.69 (d, J = $7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.53 (d, J = $7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.13 (dd, $J=19.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.81$ (dd, $J=19.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 207.6, 168.8, 162.9, 142.8, 137.7, 132.6, 131.7, 128.7, 127.4, 125.9, 122.0, 119.7, 119.1, 112.0, 109.5, 53.1, 52.1, 44.5, 36.0, 30.0, 24.0;HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}_{5}{ }^{+}$ Calcd. 432.1805, Found 432.1808.

5. General Procedure for [4+2]-annulation products (4-26)

In a 10 mL sealed tube, 4 -aminocyclopentenone (2, 1.0 equiv) and indole-derived bisnucleophiles (3, 1.0 equiv) were taken in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$ under N_{2} atmosphere. To this solution were added AlCl_{3} (2.0 equiv) and the reaction mixture was stirred at $50^{\circ} \mathrm{C}$ temperature until completion of the reaction as determined by TLC analysis (typical reaction time, $8-14 \mathrm{~h})$. It was then quenched with water $(5-10 \mathrm{~mL})$ and extracted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layer was washed with Brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then concentrated under reduced pressure. The crude product was purified by silica gel column chromatography to afford the desired products (4-26).

6. Preparation and characterization data of annulation product(4-26)

Dimethyl
(3S,3aS, 10cR)-6-methyl-2-oxo-3-phenyl-2,3,3a,5,6,10c hexahydrocyclopenta[c]carbazole-4,4(1H)-dicarboxylate(4)

Following the general procedure, reaction of 4-aminocyclopentenone (2a, $1.0 \mathrm{~g}, 4.0 \mathrm{mmol}$, 1.0 equiv) and indole derivative ($3 \mathrm{a}, 1.1 \mathrm{~g}, 4.0 \mathrm{mmol}, 1.0$ equiv) in presence of $\mathrm{AlCl}_{3}(1.1 \mathrm{~g}$, 8.0 mmol) delivered compound 4 , which was purified by silica gel column chromatography (Hexane/EtOAc 9:1) to furnish the title compound as brown solid in $81 \%(1.39 \mathrm{~g})$ yield.mp: $220-223^{\circ} \mathrm{C}$ R0. 25 (EtOAc: Hexane 2:8); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) $\delta 7.49$ (d, $J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{app} \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.06(\mathrm{~m}, 3 \mathrm{H}), 4.30(\mathrm{t}, J=7.3 \mathrm{~Hz}$, 1 H), 3.84 (dd, $J=11.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.72 (s, 3H), 3.64 (s, 3H), $3.60-3.51$ (m, 2H), 3.12 (app t, $J=15.3 \mathrm{~Hz}, 2 \mathrm{H}$), 2.97 (dd, $J=18.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 100 MHz) $\delta 216.3,170.1,169.2,138.2,138.0,131.3,129.5,128.7,127.4,126.1,121.8$, 119.4, 118.5, 109.3, 109.0, 56.2, 55.3, 53.4, 52.4, 47.1, 43.5, 31.1, 29.5, 23.6;HRMS (ESITOF)m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}_{5}{ }^{+}$Calcd. 432.1805, Found 432.1802.

Dimethyl
(3S,3aS, 10cR)-6-methyl-2-oxo-3-(p-tolyl)-2,3,3a,5,6,10c-hexahydrocyclopenta[c]carbazole-4,4(1H)-dicarboxylate(5)

Following the general procedure, reaction of 4 -aminocyclopentenone ($\mathbf{2 b}, 0.053 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and indole derivative ($\mathbf{3 a}, 0.055 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of AlCl_{3} ($0.053 \mathrm{~g}, 0.4 \mathrm{mmol}$) delivered compound $\mathbf{5}$, which was purified by silica gel column chromatography (Hexane/EtOAc 9:1) to furnish the title compound as brown solid in 90\% $(0.08 \mathrm{~g})$ yield. $\mathrm{R}_{f} 0.30$ (EtOAc: Hexane 2:8); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.48(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.01(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, 2H), 4.28 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.81 (dd, $J=12.3,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.71 (s, 3H), 3.64 (s, 3H), 3.59 - 3.49 (m, 2H), 3.10 (dd, $J=15.2,8.7 \mathrm{~Hz}, 2 \mathrm{H}$), $2.98-2.92(\mathrm{~m}, 4 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 216.6,170.1,169.2,138.1,137.1,134.8,131.3,129.3(2), 126.1$, 121.7, 119.4, 118.5, 109.2, 109.1, 56.2, 54.9, 53.3, 52.4, 47.0, 43.4, 31.1, 29.5, 23.6, 21.2;HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NO}_{5}{ }^{+}$Calcd.446.1962, Found 446.1958.

Following the general procedure, reaction of 4-aminocyclopentenone ($\mathbf{2 c}, 0.058 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and indole derivative ($3 \mathrm{a}, 0.055 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of AlCl_{3} ($0.053 \mathrm{~g}, 0.4 \mathrm{mmol}$) delivered compound 6 , which was purified by silica gel column chromatography (Hexane/EtOAc 9:1) to furnish the title compound as white solid in 86% (0.081 g) yield. $\mathrm{R}_{f} 0.30$ (EtOAc : Hexane 2:8); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.49(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $2 \mathrm{H}), 4.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ (dd, $J=12.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.60-$ $3.48(\mathrm{~m}, 2 \mathrm{H}), 3.13-3.08(\mathrm{~m}, 2 \mathrm{H}), 2.97(\mathrm{dd}, J=18.6,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.84(\mathrm{~m}, 4 \mathrm{H}), 1.21$ (d, $J=6.9 \mathrm{~Hz}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 216.8,170.1,169.2,148.0,138.1$, 135.2, 131.3, 129.4, 126.7, 126.1, 121.7, 119.4, 118.5, 109.2, 109.0, 56.1, 54.9, 53.3, 52.2, 47.2, 43.5, 33.9, 31.1, 29.5, 24.1, 24.0, 23.6;HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{29} \mathrm{H}_{32} \mathrm{NO}_{5}{ }^{+}$ Calcd. 474.2275, Found 474.2275.

Dimethyl
(3S,3aS, 10cR)-3-(4-methoxyphenyl)-6-methyl-2-oxo-2,3,3a,5,6,10c-hexahydrocyclopenta[c]carbazole-4,4(1H)-dicarboxylate(7)

Following the general procedure, reaction of 4 -aminocyclopentenone ($\mathbf{2 d}, 0.056 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and indole derivative ($\mathbf{3 a}, 0.055 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of AlCl_{3} ($0.053 \mathrm{~g}, 0.4 \mathrm{mmol}$) delivered compound 7 , which was purified by silica gel column chromatography (Hexane/EtOAc 8:2) to furnish the title compound as brown solid in 79\% (0.073 g) yield.mp: $214-217^{\circ} \mathrm{C}$; $\mathrm{R}_{f} 0.25$ (EtOAc: Hexane 2:8); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) δ $7.48(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.06$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.76$ (m, 4H), 3.72(s,3H), 3.65 (s, 3H), $3.59-3.50(\mathrm{~m}, 2 \mathrm{H}), 3.11-3.07(\mathrm{~m}, 2 \mathrm{H}), 2.98-2.92(\mathrm{~m}$, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ б 216.9, 170.1, 169.3, 158.8, 138.1, 131.3, 130.5, 129.8, 126.0, 121.7, 119.4, 118.5, 114.1, 109.2, 109.0, 56.1, 55.4, 54.4, 53.4, 52.6, 47.0, 43.3, 31.0, 29.5, 23.5;HRMS (ESI-TOF) m/z: [M+H] ${ }^{+} \mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NO}_{6}{ }^{+}$Calcd. 462.1911, Found 462.1908.

Following the general procedure, reaction of 4-aminocyclopentenone ($\mathbf{2 e}, 0.053 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and indole derivative ($\mathbf{3 a}, 0.055 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of AlCl_{3} ($0.053 \mathrm{~g}, 0.4 \mathrm{mmol}$) delivered compound 8 , which was purified by silica gel column chromatography (Hexane/EtOAc 9:1) to furnish the title compound as white solid in 70% $(0.063 \mathrm{~g})$ yield. $\mathrm{R}_{f} 0.30$ (EtOAc: Hexane 2:8); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.48$ (d, $J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.03(\mathrm{t}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dd}, J=12.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}$, 3H), $3.60-3.49(\mathrm{~m}, 2 \mathrm{H}), 3.13$ (dd, $J=21.3,15.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.00-2.92(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 216.1,170.0,169.2,162.1(\mathrm{~d}, J=245.1 \mathrm{~Hz}), 138.2,133.7(\mathrm{~d}, J=$ $3.2 \mathrm{~Hz}), 131.1(\mathrm{~d}, J=8 \mathrm{~Hz}), 129.4,126.0,121.8,119.5,118.5,115.5(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 109.3$, 108.9, 56.1, 54.5, 53.4, 52.5, 47.0, 43.3, 31.1, 29.5, 23.5; HRMS (ESI-TOF) m/z: [M+H] ${ }^{+}$ $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{FNO}_{5}{ }^{+}$Calcd. 450.1711, Found 450.1709.

Dimethyl

(3S,3aS,10cR)-3-(4-chlorophenyl)-6-methyl-2-oxo-2,3,3a,5,6,10c-hexahydrocyclopenta[c]carbazole-4,4(1H)-dicarboxylate(9)

Following the general procedure, reaction of 4-aminocyclopentenone ($\mathbf{2 f}, 0.057 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and indole derivative ($3 \mathrm{a}, 0.055 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of AlCl_{3} ($0.053 \mathrm{~g}, 0.4 \mathrm{mmol}$) delivered compound 9 , which was purified by silica gel column chromatography (Hexane/EtOAc 9:1) to furnish the title compound as brown solid in 63% (0.059 g) yield.mp: $239-242^{\circ} \mathrm{C}$; $\mathrm{R}_{f} 0.30$ (EtOAc: Hexane 2:8); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) δ $7.48(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 3 \mathrm{H}), 7.23(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 3 \mathrm{H})$, $4.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ (dd, $J=12.1,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.60-$ $3.48(\mathrm{~m}, 2 \mathrm{H}), 3.16-3.08(\mathrm{~m}, 2 \mathrm{H}), 3.02-2.92(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 215.7, 169.9, 169.2, 138.1, 136.4, 133.4, 131.2, 130.8, 128.8, 126.0, 121.8, 119.5, 118.5, 109.3, 108.9, 56.1, 54.7, 53.4, 52.5, 46.9, 43.4, 31.1, 29.5, 23.5;HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{26} \mathrm{H}_{25} \mathrm{ClNO}_{5}{ }^{+}$Calcd.466.1416, Found 466.1411.

Following the general procedure, reaction of 4 -aminocyclopentenone ($\mathbf{2 g}, 0.065 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and indole derivative ($\mathbf{3 a}, 0.055 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of AlCl_{3} ($0.053 \mathrm{~g}, 0.4 \mathrm{mmol}$) delivered compound 10 , which was purified by silica gel column chromatography (Hexane/EtOAc 9:1) to furnish the title compound as white solid in 66% $(0.078 \mathrm{~g})$ yield.mp: $230-233^{\circ} \mathrm{C}$; $\mathrm{R}_{f} 0.30$ (EtOAc: Hexane 2:8); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) δ $7.52-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=14.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=12.1,6.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.75 (s, 3H), 3.68 (s, 3H), $3.63-3.51$ (m, 2H), $3.18-3.11$ (m, 2H), 3.03 (s, 3H), 2.98 (dd, J $=18.9,8.5 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 215.6,169.9,169.2,138.1,136.9$, 131.7, 131.2, 131.1, 126.0, 121.8, 121.4, 119.5, 118.5, 109.3, 108.9, 56.1, 54.8, 53.4, 52.5, 46.9, 43.4, 31.1, 29.5, 23.5;HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]+{ }^{+} \mathrm{C}_{26} \mathrm{H}_{25} \mathrm{BrNO}_{5}{ }^{+}$Calcd.510.0911, Found 510.0909.

Dimethyl
(3S,3aS, 10cR)-6-methyl-2-oxo-3-(m-tolyl)-2,3,3a,5,6,10c-hexahydrocyclopenta[c]carbazole-4,4(1H)-dicarboxylate(11)

Following the general procedure, reaction of 4 -aminocyclopentenone ($2 \mathrm{~h}, 0.053 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and indole derivative ($\mathbf{3 a}, 0.055 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of AlCl_{3} ($0.053 \mathrm{~g}, 0.4 \mathrm{mmol}$) delivered compound 11, which was purified by silica gel column chromatography (Hexane/EtOAc 9:1) to furnish the title compound as white solid in 76% $(0.068 \mathrm{~g})$ yield.mp: $180-183^{\circ} \mathrm{C}$; $\mathrm{R}_{f} 0.30$ (EtOAc: Hexane 2:8); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) δ 7.49 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 7.04 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.93$ (d, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), 4.29 (t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 3.83 (dd, $J=11.8$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72$ (s, 3H), $3.64(\mathrm{~s}, 3 \mathrm{H}), 3.60-3.49$ (dd, $J=28.9,11.4 \mathrm{~Hz}, 2 \mathrm{H}$), 3.10 (d, J= 15.3 $\mathrm{Hz}, 2 \mathrm{H}$), 2.97 (dd, $J=18.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 100 MHz) $\delta 216.5,170.1,169.2,138.1,137.8,131.3,130.1,128.5,128.2,126.6,126.1$, 121.7, 119.4, 118.5, 109.2, 109.1, 56.2, 55.2, 53.3, 52.3, 47.0, 43.6, 31.1, 29.5, 23.5, 21.5; HRMS (ESI-TOF) m/z: [M+H]+ ${ }_{2} 27 \mathrm{H}_{28} \mathrm{NO}_{5}{ }^{+}$Calcd. 446.1962, Found 446.1964.

Following the general procedure, reaction of 4-aminocyclopentenone ($\mathbf{2 i}, 0.056 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and indole derivative ($3 \mathrm{a}, 0.055 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of AlCl_{3} ($0.053 \mathrm{~g}, 0.4 \mathrm{mmol}$) delivered compound 12 , which was purified by silica gel column chromatography (Hexane/EtOAc 8:2) to furnish the title compound as yellow solid in 85% $(0.078 \mathrm{~g})$ yield. $\mathrm{R}_{f} 0.30$ (EtOAc: Hexane 3:7); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.48(\mathrm{~d}, \mathrm{~J}=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{dd}, J=16.5,8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.78 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 4.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ - 3.83 (m, 1H), 3.80 (s, 3H), 3.71 (s, 3H), 3.64 (s, 3H), $3.60-3.49$ (m, 2H), 3.11 (dd, J = $15.2,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.00-2.93(\mathrm{~m}, 4 \mathrm{H}){ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 216.0,170.1$, 169.2, 159.7, 139.4, 138.1, 131.3, 129.6, 126.0, 121.7(2), 119.4, 118.5, 115.2, 112.9, 109.2, 109.0, 56.2, 55.4, 55.2, 53.3, 52.3, 46.9, 43.5, 31.1, 29.4, 23.5;HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NO}_{6}{ }^{+}$Calcd. 462.1911, Found 462.1908.

Dimethyl
(3S,3aS,10cR)-3-(3-chlorophenyl)-6-methyl-2-oxo-2,3,3a,5,6,10c-hexahydrocyclopenta[c]carbazole-4,4(1H)-dicarboxylate(13)

Following the general procedure, reaction of 4 -aminocyclopentenone ($\mathbf{2 j}, 0.053 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and indole derivative ($3 \mathrm{a}, 0.055 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of AlCl_{3} $(0.053 \mathrm{~g}, 0.4 \mathrm{mmol})$ delivered compound 13 , which was purified by silica gel column chromatography (Hexane/EtOAc 9:1) to furnish the title compound as white solid in 85% (0.079 g) yield.mp:190-195${ }^{\circ} \mathrm{C} ; \mathrm{R}_{f} 0.30$ (EtOAc: Hexane 2:8); ${ }^{1} \mathbf{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) δ $7.47(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 3 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.10(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{dd}, J=12.0,6.5 \mathrm{~Hz}$, 1 H), 3.70 (s, 3H), 3.64 (s, 3H), $3.59-3.46$ (m, 2H), 3.11 (app t, $J=15.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.01 (s, 3H), 2.95 (dd, $J=18.7,8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ б 215.3, 169.9, 169.1, 139.8, 138.1, 134.4, 131.1, 129.9, 129.2, 128.1, 127.6, 126.0, 121.8, 119.5, 118.5, 109.3, 108.8, 56.1, 54.9, 53.4, 52.4, 46.7, 43.4, 31.1, 29.5, 23.5;HRMS (ESI-TOF) m/z: [M+H] ${ }^{+}$ $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{CINO}_{5}{ }^{+}$Calcd. 466.1416, Found 466.1413 .

Following the general procedure, reaction of 4-aminocyclopentenone ($\mathbf{2 k}, 0.062 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and indole derivative ($\mathbf{3 a}, 0.055 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of AlCl_{3} $(0.053 \mathrm{~g}, 0.4 \mathrm{mmol})$ delivered compound 14 , which was purified by silica gel column chromatography (Hexane/EtOAc 7:3) to furnish the title compound as white solid in 63% $(0.062 \mathrm{~g})$ yield. $\mathrm{R}_{f} 0.30$ (EtOAc: Hexane 4:6); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.48(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 4.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$, $3.85(\mathrm{~s}, 3 \mathrm{H}), 3.81-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.60-3.51(\mathrm{~m}, 2 \mathrm{H}), 3.12-3.07$ (m, 2H), 3.00 (s, 3H), $3.00-2.93(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 216.6,170.1$, 169.3, 148.9, 148.4, 138.1, 131.2, 130.3, 126.0, 121.9, 121.7, 119.4, 118.5, 112.4, 111.3, 109.2, 109.0, 56.2, 56.1, 56.0, 54.8, 53.3, 52.6, 47.0, 43.0, 31.0, 29.5, 23.5; HRMS (ESITOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{28} \mathrm{H}_{30} \mathrm{NO}_{7}^{+}$Calcd. 492.2017, Found 492.2016.

Dimethyl (3S,3aS,10cR)-6-methyl-2-oxo-3-(3,4,5-trimethoxyphenyl)-2,3,3a,5,6,10c-hexahydrocyclopenta[c]carbazole-4,4(1H)-dicarboxylate(15)

Following the general procedure, reaction of 4 -aminocyclopentenone ($\mathbf{2 l}, 0.068 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and indole derivative ($3 \mathrm{a}, 0.055 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of AlCl_{3} ($0.053 \mathrm{~g}, 0.4 \mathrm{mmol}$) delivered compound 15 , which was purified by silica gel column chromatography (Hexane/EtOAc 7:3) to furnish the title compound as white solid in 76% $(0.079 \mathrm{~g})$ yield. $\mathrm{R}_{f} 0.30$ (EtOAc: Hexane 4:6); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.48(\mathrm{~d}, \mathrm{~J}=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{~s}$, $2 \mathrm{H}), 4.30(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 6 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{t}, J=3.6,1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.64$ (s, 3H), $3.60-3.50$ (m, 2H), 3.10 (app t, $J=14.9 \mathrm{~Hz}, 2 \mathrm{H}$), 3.04 (s, 3H), 2.97 (dd, $J=18.7$, $8.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 216.3,170.1,169.3,153.2,138.2,137.3$, $133.5,131.2,126.0,121.8,119.5,118.5,109.3,109.0,106.6,60.9,56.3,56.2,55.5,53.4$, 52.5, 47.2, 43.5, 31.1, 29.5, 23.6;HRMS (ESI-TOF) m/z: [M+H]+ ${ }_{29} \mathrm{H}_{32} \mathrm{NO}_{8}{ }^{+}$Calcd. 522.2122, Found 522.2122.

Following the general procedure, reaction of 4 -aminocyclopentenone ($2 \mathrm{~m}, 0.053 \mathrm{~g}, 0.2$ mmol, 1.0 equiv) and indole derivative ($\mathbf{3 a}, 0.055 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of $\mathrm{AlCl}_{3}(0.053 \mathrm{~g}, 0.4 \mathrm{mmol})$ delivered compound 16, which was purified by silica gel column chromatography (Hexane/EtOAc 9:1) to furnish the title compound as white solid in 61% $(0.054 \mathrm{~g})$ yield.mp: $224-227^{\circ} \mathrm{C} \mathrm{R}_{f} 0.30$ (EtOAc : Hexane $2: 8$); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.55(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.14(\mathrm{~m}$, $5 \mathrm{H}), 4.38(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.66-3.44$ (m, 3H), 3.14 (d, $J=18.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.03 (dd, $J=18.7,8.3 \mathrm{~Hz}, 1 \mathrm{H})$, , 2.91 (s, 3H), 2.37 (s, 3H); ${ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 216.2,170.1,169.4,138.1,131.2,130.8,127.2,126.2,126.1$, $121.8,121.3,120.2,119.6,119.4,118.5,109.3,109.1,56.2,53.3,52.4,50.2,47.0,43.3$, 31.2, 29.5, 23.7, 20.5;HRMS (ESI-TOF) m/z: [M+H] ${ }^{+} \mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NO}_{5}{ }^{+}$Calcd.446.1962, Found 446.1963.

Dimethyl
 (3S,3aS, 10cR)-6-methyl-3-(naphthalen-2-yl)-2-oxo-2,3,3a,5,6,10c-hexahydrocyclopenta[c]carbazole-4,4(1H)-dicarboxylate(17)

Following the general procedure, reaction of 4-aminocyclopentenone ($\mathbf{2 n}, 0.06 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and indole derivative ($3 \mathrm{a}, 0.055 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of AlCl_{3} $(0.053 \mathrm{~g}, 0.4 \mathrm{mmol})$ delivered compound 17 , which was purified by silica gel column chromatography (Hexane/EtOAc 9:1) to furnish the title compound as white solid in 73% $(0.07 \mathrm{~g})$ yield. $\mathrm{R}_{f} 0.30$ (EtOAc: Hexane 2:8); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.84-7.80(\mathrm{~m}, 3 \mathrm{H})$, $7.60(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.22$ (m, 2H), 7.13 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=12.0,6.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.74 (s, 3H), $3.69-3.58$ (m, 5H), 3.35 (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.16 (d, $J=18.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.05 (dd, $J=18.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 216.2,170.1$, 169.2, 138.2, 135.2, 133.3, 132.7, 131.4, 129.0, 128.4, 127.9, 127.6, 126.7, 126.4, 126.1 (2), 121.8, 119.5, 118.5, 109.3, 109.1, 56.2, 55.4, 53.4, 52.3, 46.9, 43.6, 31.2, 29.5, 23.6; HRMS (ESI-TOF) m/z: [M+H] ${ }^{+} \mathrm{C}_{30} \mathrm{H}_{28} \mathrm{NO}_{5}{ }^{+}$Calcd. 482.1962, Found 482.1967.

Following the general procedure, reaction of 4 -aminocyclopentenone ($\mathbf{2 0}, 0.051 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and indole derivative ($\mathbf{3 a}, 0.055 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of AlCl_{3} ($0.053 \mathrm{~g}, 0.4 \mathrm{mmol}$) delivered compound 18 , which was purified by silica gel column chromatography (Hexane/EtOAc 9:1) to furnish the title compound as white solid in 51% (0.045 g) yield.mp: $130-133^{\circ} \mathrm{C} ; \mathrm{R}_{f} 0.30$ (EtOAc: Hexane 2:8); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.45 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 6.92(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (dd, $J=$ $11.6,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.67(\mathrm{~s}, 3 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.61-3.43(\mathrm{~m}, 3 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 3.07-2.92$ $(\mathrm{m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 214.1,170.0,169.4,140.1,138.1,131.2,127.3$, 126.8, 126.0, 125.3, 121.8, 119.4, 118.5, 109.3, 108.6, 56.2, 53.4, 52.7, 49.9, 48.0, 42.6, 31.1, 29.5, 23.6;HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{24} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{~S}^{+}$Calcd. 438.1370, Found 438.1368.

Dimethyl
 (3S,3aS, 10cR)-6-heptyl-2-oxo-3-phenyl-2,3,3a,5,6,10c-hexahydrocyclopenta[c]carbazole-4,4(1H)-dicarboxylate(19)

Following the general procedure, reaction of 4-aminocyclopentenone (2a, $0.05 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and indole derivative ($\mathbf{3 b}, 0.072 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of AlCl_{3} ($0.053 \mathrm{~g}, 0.4 \mathrm{mmol}$) delivered compound 19 , which was purified by silica gel column chromatography (Hexane/EtOAc 9:1) to furnish the title compound as white solid in 72% $(0.074 \mathrm{~g})$ yield.mp: $235-238^{\circ} \mathrm{C}$; $\mathrm{R}_{f} 0.30$ (EtOAc: Hexane $2: 8$); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $7.51(\mathrm{~d}, ~ J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, 7.12 (t, $J=7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.32 (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.08$ (m, 2H), 3.87 (dd, $J=11.9,6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.70-3.63(\mathrm{~m}, 4 \mathrm{H}), 3.52(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=20.1,15.5 \mathrm{~Hz}, 2 \mathrm{H})$, 3.00 (dd, J= 18.6, $8.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.92(\mathrm{~s}, 3 \mathrm{H}), 1.80-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.32(\mathrm{~m}, 8 \mathrm{H}), 0.92(\mathrm{t}$, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 216.4,169.9,169.2,137.9,137.4,130.8$, 129.5, 128.6, 127.4, 126.2, 121.6, 119.3, 118.5, 109.5, 109.0, 56.2, 55.4, 53.2, 52.3, 47.0, 43.4(2), 31.8, 31.1, 30.4, 29.2, 27.1, 23.5, 22.7, 14.2;HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{32} \mathrm{H}_{38} \mathrm{NO}_{5}{ }^{+}$Calcd.516.2744, Found516.2744.

Following the general procedure, reaction of 4-aminocyclopentenone ($\mathbf{2 a}, 0.050 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and indole derivative ($\mathbf{3 c}, 0.061 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of AlCl_{3} $(0.053 \mathrm{~g}, 0.4 \mathrm{mmol})$ delivered compound 20 , which was purified by silica gel column chromatography (Hexane/EtOAc 8:2) to furnish the title compound as white solid in 91% $(0.084 \mathrm{~g})$ yield. $\mathrm{R}_{f} 0.30$ (EtOAc : Hexane 3:7); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.37(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.29(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.97$ (brs, 1H), $6.93-6.90(\mathrm{~m}, 1 \mathrm{H}), 4.31$ (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.89-3.86$ (m, 4H), 3.72 (s, 3H), 3.69 (s, 3H), 3.59 (q, $J=17.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.17 (dd, $J=23.2,15.3 \mathrm{~Hz}, 2 \mathrm{H}$), 3.00 (dd, $J=18.5,8.4 \mathrm{~Hz}$, 1H), 2.93 (s, 3H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 216.4,170.1,169.1,154.0,137.9$, $133.4,131.9,129.5,128.6,127.4,126.3,111.3,109.9,108.5,101.0,56.2,56.1,55.2,53.3$, 52.3, 47.0, 43.3, 31.0, 29.6, 23.6; HRMS (ESI-TOF) m/z: [M+H] ${ }^{+} \mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NO}_{6}{ }^{+}$Calcd. 462.1911, Found 462.1907.

Diethyl
(3S,3aS, 10cR)-6-methyl-2-oxo-3-phenyl-2,3,3a,5,6,10c-hexahydrocyclopenta[c]carbazole-4,4(1H)-dicarboxylate(21)

Following the general procedure, reaction of 4-aminocyclopentenone (2a, $0.05 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and indole derivative ($3 \mathrm{~d}, 0.061 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of AlCl_{3} ($0.053 \mathrm{~g}, 0.4 \mathrm{mmol}$) delivered compound 21, which was purified by silica gel column chromatography (Hexane/EtOAc 9:1) to furnish the title compound as brown solid in 85% $(0.078 \mathrm{~g})$ yield.mp: $194-197^{\circ} \mathrm{C}$; R0. 30 (EtOAc: Hexane 2:8); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $7.50(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.12(\mathrm{~m}, 1 \mathrm{H}), 4.09-4.01(\mathrm{~m}, 1 \mathrm{H})$, 3.85 (dd, $J=11.8,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.63-3.51(\mathrm{~m}, 3 \mathrm{H}), 3.14(\mathrm{dd}, J=21.3,15.3 \mathrm{~Hz}$, 2H), $3.01-2.89(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 216.6,169.6,168.9,138.2,138.1,131.4,129.5,128.6,127.4,126.1$, 121.6, 119.3, 118.5, 109.2, 109.1, 62.0, 61.7, 56.3, 55.2, 47.0, 43.6, 31.2, 29.4, 23.5, 14.0, 13.5;HRMS (ESI-TOF) m/z: [M+H]+ $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{NO}_{5}{ }^{+}$Calcd. 460.2118, Found 460.2118.

Following the general procedure, reaction of 4-aminocyclopentenone (2a, $0.05 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and indole derivative ($3 \mathrm{e}, 0.053 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of AlCl_{3} ($0.053 \mathrm{~g}, 0.4 \mathrm{mmol}$) delivered compound 22, which was purified by brown gel column chromatography (Hexane/EtOAc 9:1) to furnish the title compound as white solid in 52% $(0.044 \mathrm{~g})$ yield. $\mathrm{R}_{f} 0.30$ (EtOAc: Hexane 2:8); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.69(\mathrm{~d}, \mathrm{~J}=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.57(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.29(\mathrm{~m}$, $3 \mathrm{H}), 7.09(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~d}, J=$ $11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.32-3.25(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{dd}, J=17.7,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{dd}, J=19.1,8.5 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 216.7,200.9,137.7,137.5,135.8,133.4,132.6$, 129.2, 128.9, 128.5, 127.8, 126.4, 121.3, 119.2, 118.3, 109.2, 108.6, 57.6, 46.3, 44.0, 41.1, 29.6, 29.5, 20.2; HRMS (ESI-TOF) m/z: [M+H] ${ }^{+} \quad \mathrm{C}_{29} \mathrm{H}_{26} \mathrm{NO}_{2}{ }^{+}$Calcd. 420.1958, Found 420.1957.
(3S,3aR,4S, 10cR)-6-methyl-4-(4-methylbenzoyl)-3-phenyl-3,3a,4,5,6,10c-hexahydrocyclopenta[c]carbazol-2(1H)-one(23)

Following the general procedure, reaction of 4-aminocyclopentenone ($2 \mathrm{a}, 0.05 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and indole derivative ($5 f, 0.055 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of $\mathrm{AICl}_{3}(0.053$ $\mathrm{g}, 0.4 \mathrm{mmol}$) delivered compound 23 , which was purified by silica gel column chromatography (Hexane/EtOAc 9:1) to furnish the title compound as brown solid in 51% $(0.044 \mathrm{~g})$ yield. $\mathrm{R}_{f} 0.30$ (EtOAc: Hexane 2:8); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.60(\mathrm{~d}, \mathrm{~J}=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.38(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.19(\mathrm{~m}$, $5 \mathrm{H}), 7.10(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.76(\mathrm{~m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{~d}, \mathrm{~J}$ $=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.31-3.27(\mathrm{~m}, 2 \mathrm{H}), 3.10-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{dd}, J=19.0,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.42$ (s, 3H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 216.8,200.4,144.3,137.6(2), 133.2,132.8$, 129.6, 129.2, 128.9, 128.6, 127.7, 126.4, 121.2, 119.2, 118.3, 109.1, 108.6, 57.7, 46.5, 44.0, 41.0, 29.6, 29.4, 21.8, 20.3;HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{30} \mathrm{H}_{28} \mathrm{NO}_{2}{ }^{+}$Calcd. 434.2115, Found 434.2113.
(3S,3aR,4S,10cR)-4-(4-methoxybenzoyl)-6-methyl-3-phenyl-3,3a,4,5,6,10c-hexahydrocyclopenta[c]carbazol-2(1H)-one(24)

Following the general procedure, reaction of 4-aminocyclopentenone (2a, $0.05 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and indole derivative ($3 \mathrm{~g}, 0.059 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of AlCl_{3} $(0.053 \mathrm{~g}, 0.4 \mathrm{mmol})$ delivered compound 24 , which was purified by silica gel column chromatography (Hexane/EtOAc 8:2) to furnish the title compound as brown solid in 47% $(0.042 \mathrm{~g})$ yield. $\mathrm{R}_{f} 0.30$ (EtOAc: Hexane 3:7); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.70(\mathrm{~d}, \mathrm{~J}=8.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=14.7,7.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.38(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.25(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, 2H), $3.96-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.39$ (d, J= $10.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.30-3.24(\mathrm{~m}, 2 \mathrm{H}), 3.10-3.03(\mathrm{~m}, 2 \mathrm{H}), 2.91$ (dd, $J=19.1,8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 217.0,199.3,163.7,137.7,137.6,132.9,130.8,129.2,128.9$, 128.6, 127.7, 126.5, 121.2, 119.2, 118.3, 114.1, 109.1, 108.6, 57.8, 55.7, 46.7, 44.1, 40.7, 29.7, 29.5, 20.6; HRMS (ESI-TOF) m/z: [M+H] ${ }^{+} \mathrm{C}_{30} \mathrm{H}_{28} \mathrm{NO}_{3}{ }^{+}$Calcd. 450.2064, Found 450.2063.

3-((1S,5S)-5-(2-ethyl-1-methyl-1H-indol-3-yl)-3-oxo-2-phenylcyclopentyl)indolin-2one(25)

Following the general procedure, reaction of 4-aminocyclopentenone ($\mathbf{2 a}, 0.025 \mathrm{~g}, 0.1 \mathrm{mmol}$, 1.0 equiv) and indole derivative ($\mathbf{3 h}, 0.028 \mathrm{~g}, 0.1 \mathrm{mmol}, 1.0$ equiv) in presence of AlCl_{3} $(0.027 \mathrm{~g}, 0.2 \mathrm{mmol})$ delivered compound, which was purified by silica gel column chromatography (Hexane/EtOAc 7:3) to furnish the title compound 25 as yellowish brown solid in $69 \%(0.03 \mathrm{~g})$ yield as mixture of diastereomers (dr 1:1). $\mathrm{R}_{f} 0.2$ (EtOAc: Hexane 3:7); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.73(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 0.75 \mathrm{H}), 7.54(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0.88 \mathrm{H})$, 7.47 (d, J = $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.15(\mathrm{~m}, 8 \mathrm{H}), 7.13-7.11(\mathrm{~m}, 5 \mathrm{H}), 7.09-$ 7.03 (m, 4H), 6.86-6.81 (m, 2H), 6.76 (d, J = $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.70-6.63$ (m, 2H), 4.15 (q, J = $9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 0.85 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 3 \mathrm{H}), 3.46(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, 1.65 H), $3.27(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 0.79 \mathrm{H}), 3.10-2.94(\mathrm{~m}, 2 \mathrm{H}), 2.92$ (brs, 1 H), $2.84-2.76(\mathrm{~m}, 3 \mathrm{H}), 2.67(\mathrm{dd}, J=18.9,11.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) ~ \delta ~ 216.7,216.1,181.0,179.9,140.9,140.0,139.9,139.0,138.3,138.0,133.6,132.7$, 132.4, 130.6, 129.2, 129.0, 128.6(2), 128.2, 127.7, 127.2, 126.9, 126.4, 126.0, 125.5, 124.4, $122.8,122.7,121.8,121.7,119.7,119.6,118.7(2), 110.6,110.3,110.2,109.4(2), 109.0$, 56.3, 54.0, 51.9, 50.3, 48.9, 48.0, 43.7, 43.4, 31.6, 31.2, 29.9, 29.5(2), 25.3; HRMS (ESITOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$Calcd.433.1911, Found 433.1913.

3-((1S,5S)-5-(2-ethyl-1-methyl-1H-indol-3-yl)-3-oxo-2-(p-tolyl)cyclopentyl)indolin-2one(26)

Following the general procedure, reaction of 4 -aminocyclopentenone ($\mathbf{2 b}, 0.026 \mathrm{~g}, 0.1 \mathrm{mmol}$, 1.0 equiv) and indole derivative ($3 \mathrm{~h}, 0.028 \mathrm{~g}, 0.1 \mathrm{mmol}, 1.0$ equiv) in presence of AlCl_{3} ($0.027 \mathrm{~g}, 0.2 \mathrm{mmol}$) delivered compound, which was purified by silica gel column chromatography (Hexane/EtOAc 7:3) to furnish the title compound 26 as white solid in 65% $(0.029 \mathrm{~g})$ yield as mixture of diastereomers (dr3:1). $\mathrm{R}_{f} 0.2$ (EtOAc: Hexane 3:7); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.85(\mathrm{~s}, 1 \mathrm{H}), 8.42(\mathrm{~s}, 0.37 \mathrm{H}), 7.61(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 0.39 \mathrm{H}), 7.55(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1.4 \mathrm{H}), 7.29(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1.37 \mathrm{H}), 7.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, $7.14-7.02(\mathrm{~m}, 5 \mathrm{H}), 6.94(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 0.42 \mathrm{H})$,), $6.90(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-6.81(\mathrm{~m}$, $1 \mathrm{H}), 6.79-6.72(\mathrm{~m}, 2 \mathrm{H}), 4.23(\mathrm{dd}, J=19.4,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{t}, J=7.5 \mathrm{~Hz}, 0.39 \mathrm{H}), 3.66(\mathrm{~s}$, 1 H), 3.64 (s, 3H), $3.55-3.52(\mathrm{~m}, 1.5 \mathrm{H}$), 3.36 (d, $J=15.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.20 (d, $J=17.3 \mathrm{~Hz}$, 0.36 H), 3.12 (dd, $J=18.9,10.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.03 (dd, $J=9.6,6.6 \mathrm{~Hz}, 0.36 \mathrm{H}$), 2.96 (brs, 1H), $2.90(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{t}, J=8.7 \mathrm{~Hz}, 0.44 \mathrm{H}), 2.73(\mathrm{dd}, J=18.6,11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.26$ (s, 3H), $2.16(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 216.9,181.1,140.9,138.0,136.9$, 135.9, 132.7, 130.7, 129.7, 129.2, 127.5, 126.4, 125.4, 122.8, 121.7, 119.7, 118.7, 110.5, 110.4, 109.4, 55.9, 51.9, 50.3, 43.4, 31.7, 30.0, 29.5, 21.1; HRMS (ESI-TOF) m/z: [M+H] ${ }^{+}$ $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$Calcd. 447.2067, Found 447.2068.

7. General procedure for compounds27-39 via formal [4+2]/[4+3]-annulation

In a 10 mL sealed tube, 4-Aminocyclopentenone ($\mathbf{2}^{\prime}$, 1.0 equiv) and indole-derived bis-nucleophiles (3, 1.0 equiv) were taken in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$ under N_{2} atmosphere. To this solution were added AlCl_{3} (2.0 equiv) and the reaction mixture was stirred at $50^{\circ} \mathrm{C}$ temperature until completion of the reaction as determined by TLC analysis (typical reaction time, 6-8 h). It was then quenched with water (5-10 mL) and extracted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layer was washed with Brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then concentrated under reduced pressure. The crude product was purified by silica gel column chromatography to afford the desired products (27-39).

8. Preparation and characterization data of compounds(27-39)

3-((1R,2R)-2-(2-ethyl-1-methyl-1H-indol-3-yl)-4-oxo-3-phenylcyclopentyl)indolin-2one(27)

Following the general procedure, reaction of 4 -aminocyclopentenone ($\mathbf{2 a}$ ', $0.025 \mathrm{~g}, 0.1$ mmol, 1.0 equiv) and indole derivative ($3 \mathrm{~h}, 0.028 \mathrm{~g}, 0.1 \mathrm{mmol}, 1.0$ equiv) in presence of $\mathrm{AlCl}_{3}(0.027 \mathrm{~g}, 0.2 \mathrm{mmol})$ delivered compound, which was purified by silica gel column chromatography (Hexane/EtOAc 7:3) to furnish the title compound 27 in $84 \%(0.036 \mathrm{~g})$ yield as mixture of diastereomers (dr 6:1). $\mathrm{R}_{f} 0.2$ (EtOAc: Hexane 4:6); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) $\delta 9.09$ (s, 1H), 7.33 (dd, $J=13.6,7.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 5 \mathrm{H}), 7.12$ (dd, $J=12.0,7.7$ $\mathrm{Hz}, 3 \mathrm{H}), 7.05(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.79(\mathrm{~m}, 3 \mathrm{H}), 6.45(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{t}, J=$ $8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), 3.30-3.25(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{~d}, J=16.3 \mathrm{~Hz}$, 1 H), 2.65 (dd, $J=18.9,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.18$ (dd, $J=18.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$, 100 MHz) $\delta 216.1,181.4,141.1,139.9,137.9,132.6,130.9,129.2(2), 128.8,127.5,126.5$, 125.5, 122.7, 121.4, 120.0, 119.3, 110.7, 109.7, 109.0, 60.2, 51.0, 42.7, 40.3, 29.8, 29.5, 29.0; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$Calcd. 433.1911, Found 433.1913.

3-((1R,2R)-2-(2-ethyl-1-methyl-1H-indol-3-yl)-4-oxo-3-(p-tolyl)cyclopentyl)indolin-2one(28)

Following the general procedure, reaction of 4 -aminocyclopentenone ($\mathbf{2 b}$ ', $0.053 \mathrm{~g}, 0.2$ mmol, 1.0 equiv) and indole derivative ($3 \mathrm{~h}, 0.055 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of $\mathrm{AlCl}_{3}(0.053 \mathrm{~g}, 0.2 \mathrm{mmol})$ delivered compound, which was purified by silica gel column chromatography (Hexane/EtOAc 7:3) to furnish the title compound 28 in 80% (0.071 g) yieldas mixture of diastereomers (dr1:1) $\mathrm{R}_{f} 0.2$ (EtOAc: Hexane 4:6);1H NMR ($\mathrm{CDCl}_{3}, 400$ $\mathrm{MHz}) \delta 9.14(\mathrm{~s}, 1 \mathrm{H}), 9.07(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{t}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.16(\mathrm{~m}, 12 \mathrm{H}), 7.11(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.87(\mathrm{~m}, 5 \mathrm{H}), 6.81(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{t}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=5.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.89(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ (s, 3H), 3.64 (s, 3H), $3.50(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-$ 3.32 (m, 2H), 3.01 (d, J= $16.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.92-2.79 (m, 4H), $2.75-2.68$ (m, 1H), 2.41 (s, 3H), $2.34(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{dd}, \mathrm{J}=18.9,2.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 217.8$, $216.4,181.5,181.1,141.1,140.0,138.2,137.9,137.1,136.9(2), 136.2,133.3,132.5,131.9$, 130.9, 129.9, 129.8, 129.2, 128.6 (2), 127.8, 126.5, 126.0, 125.5, 124.4, 123.0, 122.7, 121.8, 121.4, 120.1, 119.6, 119.2, 118.8, 110.7, 110.3, 109.9, 109.4, 109.3, 108.9, 59.8, 59.4, 51.0,
49.0, 42.5, 41.5, 40.3(2), 40.2, 39.0, 29.8, 29.5, 29.0, 25.5, 21.3, 21.2; HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{30} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$Calcd.447.2067, Found 447.2068.

3-((1R,2R)-2-(2-ethyl-1-methyl-1H-indol-3-yl)-3-(4-fluorophenyl)-4-oxocyclopentyl)indolin-2-one(29)

Following the general procedure, reaction of 4 -aminocyclopentenone ($2 e^{\prime}, 0.027 \mathrm{~g}, 0.1$ mmol, 1.0 equiv) and indole derivative ($3 \mathrm{~h}, 0.028 \mathrm{~g}, 0.1 \mathrm{mmol}, 1.0$ equiv) in presence of $\mathrm{AlCl}_{3}(0.027 \mathrm{~g}, 0.2 \mathrm{mmol})$ delivered compound, which was purified by silica gel column chromatography (Hexane/EtOAc 7:3) to furnish the title compound 29 in $58 \%(0.026 \mathrm{~g})$ yield as mixture of diastereomers (dr 2:1) $\mathrm{R}_{f} 0.2$ (EtOAc: Hexane 4:6); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$) $\delta 8.71$ (s, 1H), 8.63 (s, 0.53 H), 7.46 (d, $J=7.9 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.37$ (d, $J=8.2 \mathrm{~Hz}, 0.62 \mathrm{H}), 7.31$ $7.28(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.08(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.03$ ($\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}$), $6.93(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.88-6.81(\mathrm{~m}, 3 \mathrm{H}), 6.45(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.25$ (t, J = $8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 0.6 \mathrm{H}), 4.07(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 0.6 \mathrm{H}), 3.88(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.65$ (s, 1.68H), 3.63 (s, 3H), 3.47 (d, $J=16.8 \mathrm{~Hz}, 0.72 \mathrm{H}$), $3.36-3.31$ (m, 2H), 2.99 (d, $J=16.3$ $\mathrm{Hz}, 1 \mathrm{H}), 2.87-2.77$ (m, 2.47H), 2.69 (dd, $J=18.9,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~d}, J=20.3 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 217.1,215.9,181.2,180.9,162.3(\mathrm{~d}, J=244.6 \mathrm{~Hz}), 162.0$ (d, $J=244.6 \mathrm{~Hz}$), 141.0, 140.0, 138.3, 138.0, 135.6 (d, $J=3.2 \mathrm{~Hz}$), 134.8 ($\mathrm{d}, J=3.2 \mathrm{~Hz}$), $133.2,132.7,132.0,130.84,130.4(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}), 129.5(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 128.8,126.4$, 125.93, 125.6, 124.4, 123.1, 122.8, 121.9, 121.5, 119.8, 119.7, 119.4, 118.7, 116.1 (d, J = $21.3 \mathrm{~Hz}), 116.0(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 110.7,110.2,109.5(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 109.0(\mathrm{~d}, J=5.9 \mathrm{~Hz})$, 59.5, 58.9, 51.1, 49.0, 42.8, 41.4, 40.3, 40.2(2), 39.0, 29.5(2), 29.2, 25.6;HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{29} \mathrm{H}_{24} \mathrm{FN}_{2} \mathrm{O}_{2}{ }^{+}$Calcd. 451.1816, Found 451.1820.

3-((1R,2R)-3-(4-chlorophenyl)-2-(2-ethyl-1-methyl-1H-indol-3-yl)-4-oxocyclopentyl)indolin-2-one(30)

Following the general procedure, reaction of 4-aminocyclopentenone (2f', $0.027 \mathrm{~g}, 0.1 \mathrm{mmol}$, 1.0 equiv) and indole derivative ($\mathbf{3 h}, 0.028 \mathrm{~g}, 0.1 \mathrm{mmol}, 1.0$ equiv) in presence of AlCl_{3} ($0.027 \mathrm{~g}, 0.2 \mathrm{mmol}$) delivered compound, which was purified by silica gel column chromatography (Hexane/EtOAc 7:3) to furnish the title compound 30 in $65 \%(0.03 \mathrm{~g})$ yield as mixture of diastereomers (dr 1:1). R $\mathrm{R}_{f} 0.2$ (EtOAc: Hexane 4:6); ${ }^{1} \mathbf{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) $\delta 8.94(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 3 \mathrm{H}), 7.33-7.30(\mathrm{~m}$, $4 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 6 \mathrm{H}), 7.19-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.92(\mathrm{~m}, 2 \mathrm{H})$,
$6.90-6.83(\mathrm{~m}, 4 \mathrm{H}), 6.52(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 1 \mathrm{H}), 4.08(\mathrm{~d}, J$ $=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H})$, 3.36-3.32 (m, 2H), $3.00(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.79(\mathrm{~m}, 4 \mathrm{H}), 2.73-2.65(\mathrm{~m}, 1 \mathrm{H}), 2.24$ (d, $J=19.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 216.8,215.5,181.2,180.8,141.0$, $140.0,138.4,138.3,138.0,137.5,133.4,133 .(2), 132.7,132.0,130.8,130.2,129.3$ (2), 128.8, 126.4, 125.9, 125.5, 124.3, 123.1, 122.8, 121.9, 121.6, 119.7 (2), 119.4, 118.6, 110.7, $110.3,109.5$ (2), 109.1, 108.9, 59.6, 59.1, 51.0, 49.0, 42.6, 41.3, 40.3(2), 40.2, 39.0, 29.5 (2), 29.1, 25.6; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{29} \mathrm{H}_{24} \mathrm{CIN}_{2} \mathrm{O}_{2}{ }^{+}$Calcd.467.1521, Found 467.1503.

3-((1R,2R)-2-(2-ethyl-1-methyl-1H-indol-3-yl)-4-oxo-3-(m-tolyl)cyclopentyl)indolin-2one(31)

Following the general procedure, reaction of 4-aminocyclopentenone ($\mathbf{2 h}$ ', $0.026 \mathrm{~g}, 0.1$ mmol, 1.0 equiv) and indole derivative ($3 \mathrm{~h}, 0.028 \mathrm{~g}, 0.1 \mathrm{mmol}, 1.0$ equiv) in presence of $\mathrm{AlCl}_{3}(0.027 \mathrm{~g}, 0.2 \mathrm{mmol})$ delivered compound, which was purified by silica gel column chromatography (Hexane/EtOAc 7:3) to furnish the title compound 31 in $77 \%(0.034 \mathrm{~g})$ yield as mixture of diastereomers (dr 4:1). $\mathrm{R}_{f} 0.2$ (EtOAc: Hexane 4:6); ${ }^{1} \mathrm{H} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$) $\delta 8.97(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 4 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 4 \mathrm{H}), 6.94-6.85$ $(\mathrm{m}, 4 \mathrm{H}), 4.32(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.37-3.33(\mathrm{~m}, 2 \mathrm{H})$, 3.01 (d, $J=16.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.73 (dd, $J=18.9,9.4 \mathrm{~Hz}, 1 \mathrm{H}$), 2.38 ($\mathrm{s}, 3 \mathrm{H}$), 2.25 (dd, $J=18.8$, 2.2 $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 216.4, 181.4, 141.0, 139.8, 138.8, 137.9, 132.5, 130.9, 129.7, 129.2, 129.0, 128.3, 126.5, 125.8, 125.6, 122.8, 121.4, 120.1, 119.2, 110.7, 109.9, 108.9, 60.2, 51.0, 49.0, 42.8, 40.4(2), 29.5, 21.6; HRMS (ESI-TOF) m/z: $[M+H]^{+}$ $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$Calcd.447.2067, Found 447.2067.

Dimethyl
 (3aR,10cS)-6-methyl-2-oxo-1-phenyl-2,3,3a,5,6,10c-hexahydrocyclopenta[c]carbazole-4,4(1H)-dicarboxylate(32)

Following the general procedure, reaction of 4 -aminocyclopentenone ($\mathbf{2 a}$ ', $0.05 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and indole derivative ($3 \mathrm{a}, 0.055 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of AlCl_{3} ($0.053 \mathrm{~g}, 0.4 \mathrm{mmol}$) delivered compound, which was purified by silica gel column chromatography (Hexane/EtOAc 8:2) to furnish the title compound 32 as white solid in 72% $(0.062 \mathrm{~g})$ yield. $\mathrm{R}_{f} 0.30$ (EtOAc: Hexane 3:7); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.47-7.42(\mathrm{~m}$, $4 \mathrm{H}), 7.35$ (d, $J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~s}, 1 \mathrm{H}), 3.87-3.80(\mathrm{~m}, 4 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}$, 3 H), 3.61 (d, $J=17.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.36 (d, $J=17.0 \mathrm{~Hz}, 1 \mathrm{H}$), $2.50(\mathrm{dd}, J=18.5,8.6 \mathrm{~Hz}, 1 \mathrm{H})$,
2.33 (dd, $J=18.6,11.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$) δ 215.8, 170.6, 170.1, 138.6, 138.2, 131.2, 129.2, 128.0, 127.3, 126.1, 121.8, 119.4, 118.7, 109.3, 108.9, 59.7, 56.5, 53.5, 53.4, 40.4, 38.8, 38.5, 29.5, 23.7; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}_{5}{ }^{+}$ Calcd. 432.1805, Found 432.1809.

Diethyl $\quad(3 a \mathrm{R}, 10 \mathrm{cS})$-6-methyl-2-oxo-1-phenyl-2,3,3a,5,6,10c-
hexahydrocyclopenta[c]carbazole-4,4(1H)-dicarboxylate(33)

Following the general procedure, reaction of 4-aminocyclopentenone (2a', $0.05 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and indole derivative ($\mathbf{3 d}, 0.061 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of AlCl_{3} ($0.053 \mathrm{~g}, 0.4 \mathrm{mmol}$) delivered compound, which was purified by silica gel column chromatography (Hexane/EtOAc 8:2) to furnish the title compound 33 as white solid in 70% $(0.064 \mathrm{~g})$ yield.mp:174-177 ${ }^{\circ} \mathrm{C}$; $\mathrm{R}_{f} 0.30$ (EtOAc: Hexane 3:7); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) δ 7.49-7.43 (m, 4H), 7.36 (d, $J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.05(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.27(\mathrm{~m}, 3 \mathrm{H}), 4.24-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.16-4.07(\mathrm{~m}, 1 \mathrm{H}), 3.98$ (s, 1H), 3.87-3.80 (m, 1H), 3.72 (s, 3H), 3.61 (d, J = $17.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.35(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.53 (dd, $J=18.5,8.6 \mathrm{~Hz}, 1 \mathrm{H}$), 2.36 (dd, $J=18.5,11.9 \mathrm{~Hz}, 1 \mathrm{H}$), $1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$), $1.20(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 215.9,170.2,169.6,138.6$, 138.1, 131.4, 129.2, 128.0, 127.3, 126.1, 121.7, 119.4, 118.7, 109.2, 108.9, 62.4, 62.1, 59.9, 56.7, 40.4, 38.8, 38.4, 29.4, 23.7, 14.2, 14.0; HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{NO}_{5}{ }^{+}$Calcd. 460.2118, Found 460.2114.
(1R,3aR,4S,10cR)-6-methyl-1,1',3'-triphenyl-1,3,3a,5,6,10c-hexahydro-2H-spiro[cyclopenta[c]carbazole-4,4'-pyrazole]-2,5'(1'H)-dione(34)

Following the general procedure, reaction of 4 -aminocyclopentenone ($\mathbf{2 a}$ ', $0.025 \mathrm{~g}, 0.1$ $\mathrm{mmol}, 1.0$ equiv) and indole derivative ($\mathbf{3 i}, 0.038 \mathrm{~g}, 0.1 \mathrm{mmol}, 1.0$ equiv) in presence of AlCl_{3} ($0.027 \mathrm{~g}, 0.2 \mathrm{mmol}$) delivered compound, which was purified by silica gel column chromatography (Hexane/EtOAc 8:2) to furnish the title compound 34 as white solid in 53% $(0.029 \mathrm{~g})$ yield as mixture of diastereomers (dr 5:1).mp: $246-245^{\circ} \mathrm{C}$; $\mathrm{R}_{f} 0.40$ (EtOAc: Hexane 3:7); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) $\delta 8.05$ (d, $\left.J=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.47(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.42$ $7.35(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J$ $=4.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=10.7,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}$, 3H), $3.56(\mathrm{~s}, 2 \mathrm{H}), 3.31-3.24(\mathrm{~m}, 1 \mathrm{H}), 2.63-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~d}, J=19.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 216.3,175.4,161.6,139.0,137.9,137.7,132.9,130.9,130.6$, 129.2, 129.1, 129.0(2), 128.0, 127.5, 127.1, 126.4, 126.0, 121.7, 120.1, 119.3, 109.8, 108.8, $60.4, \quad 57.3, \quad 43.2, \quad 40.6, \quad 40.3, \quad 29.7, \quad 27.0 ; H R M S \quad$ (ESI-TOF) $\mathrm{m} / \mathrm{z}: \quad[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{36} \mathrm{H}_{30} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}$Calcd.536.2333, Found 536.2329.

Following the general procedure, reaction of 4 -aminocyclopentenone ($\mathbf{2 b}^{\prime}, 0.026 \mathrm{~g}, 0.1$ $\mathrm{mmol}, 1.0$ equiv) and indole derivative ($3 \mathrm{i}, 0.038 \mathrm{~g}, 0.1 \mathrm{mmol}, 1.0$ equiv) in presence of AlCl_{3} ($0.027 \mathrm{~g}, 0.2 \mathrm{mmol}$) delivered compound, which was purified by silica gel column chromatography (Hexane/EtOAc 8:2) to furnish the title compound 35 as white solid in 56% $(0.031 \mathrm{~g})$ yield as mixture of diastereomers (dr 2:1). R 0.40 (EtOAc: Hexane 3:7); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.96(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, 2H), $7.40-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 7 \mathrm{H}), 7.15-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.04(\mathrm{~m}, 4 \mathrm{H}), 7.04-$ $6.98(\mathrm{~m}, 3 \mathrm{H}), 6.74(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{t}, J=7.4 \mathrm{~Hz}, 0.67 \mathrm{H}), 6.57(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 6.41 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 0.58 \mathrm{H}), 4.12(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.98$ (dd, $J=$ $10.0,7.5 \mathrm{~Hz}, 0.62 \mathrm{H}$), 3.84 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.69 (s, 1.82 H), 3.61 ($\mathrm{s}, 3 \mathrm{H}$), 3.48 ($\mathrm{d}, J=17.6$ $\mathrm{Hz}, 2 \mathrm{H}), 3.37-3.26(\mathrm{~m}, 2 \mathrm{H}), 3.21-3.17$ (m, 0.62H), 2.62 (dd, $J=19.4,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-$ $2.41(\mathrm{~m}, 1.27 \mathrm{H}), 2.36(\mathrm{dd}, J=19.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.25(\mathrm{~s}, 1.71 \mathrm{H}), 2.08(\mathrm{~d}, J=$ $19.2 \mathrm{~Hz}, 0.64 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 216.5,216.4,175.3,174.8,161.60$, $160.7,137.9,137.8,137.7,136.6,135.9,132.9,130.8,130.7,130.6(2)$, 129.8, 129.7(2), 129.2, 129.1,129.0, 128.9(2) 128.7, 128.1,127.1, 126.4, 126.3, 126.0, 121.7, 120.1, 119.7, $119.4,119.2,110.1,110.0,108.8$ (2), 60.0 (2), 57.3, 55.40, 42.9, 42.7, 40.6, 40.3, 39.9, 37.8, 29.7, 29.6, 26.9, 25.8, 21.3;HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ $\mathrm{C}_{37} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}$Calcd.550.2489, Found 550.2481.

Dimethyl
(3S,3aS, 10aR)-5-methyl-2-oxo-3-phenyl-2,3,3a,5,9,10a-hexahydroazuleno[4,5,6-cd]indole-10,10(1H)-dicarboxylate(36)

Following the general procedure, reaction of 4 -aminocyclopentenone (2a', $0.05 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and indole derivative ($3 \mathbf{j}, 0.055 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of $\mathrm{AlCl}_{3}(0.053$ $\mathrm{g}, 0.4 \mathrm{mmol}$) delivered compound, which was purified by silica gel column chromatography (Hexane/EtOAc 8:2) to furnish the title compound 36 as white solid in $63 \%\left(0.054 \mathrm{~g}\right.$) yield. R_{f} 0.35 (EtOAc: Hexane 3:7); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.44-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.12(\mathrm{~d}, \mathrm{~J}=3.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.90(\mathrm{t}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 4.37(\mathrm{t}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{~d}, J=15.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.77$ (s, 3H), 3.74 (s, 3H), $3.73-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.57$ (d, $J=15.1 \mathrm{~Hz}, 1 \mathrm{H})$, 3.21-3.14 (m, 1H), $2.84(\mathrm{dd}, J=18.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{dd}, J=18.7,11.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 214.1,172.0,171.3,137.4,136.5,130.0,129.1,128.7,127.6$, 127.0, 124.7, 122.3, 119.7, 117.3, 108.0, 62.6, 61.7, 53.0, 52.7, 45.6, 43.2, 42.2, 40.1, 32.9; HRMS (ESI-TOF) m/z: [M+H]+ $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}_{5}{ }^{+}$Calcd. 432.1805, Found 432.1812.

Following the general procedure, reaction of 4 -aminocyclopentenone ($\mathbf{2 b}^{\prime}, 0.053 \mathrm{~g}, 0.2$ mmol, 1.0 equiv) and indole derivative ($\mathbf{3 j}, 0.055 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of AlCl_{3} ($0.053 \mathrm{~g}, 0.4 \mathrm{mmol}$) delivered compound, which was purified by silica gel column chromatography (Hexane/EtOAc 8:2) to furnish the title compound 37 as white solid in 67% $(0.060 \mathrm{~g})$ yield. $\mathrm{R}_{f} 0.35$ (EtOAc: Hexane 3:7); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.27-7.22$ (m, $4 \mathrm{H}), 7.11(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 4.33(\mathrm{t}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.03 (d, $J=15.1 \mathrm{~Hz}, 1 \mathrm{H}$), $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.72-3.69(\mathrm{~m}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.20-3.13(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=18.6,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{dd}, J=18.7,11.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.38$ (s, 3H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$) $\delta 214.4,172.0,171.3,137.2,136.4$, 134.3, 130.0, 129.8, 128.5, 127.1, 124.7, 122.2, 119.7, 117.3, 108.0, 62.3, 61.7, 52.9, 52.6, 45.5, 43.1, 42.2, 40.0, 32.9, 21.3;HRMS (ESI-TOF) m/z: [M+H] ${ }^{+} \mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NO}_{5}{ }^{+}$Calcd.432.1962, Found 432.1963.

(3S,3aS, 10aR)-5-methyl-3-phenyl-1,3,3a,5,9,10a-hexahydro-2H-spiro[azuleno[4,5,6-cdJindole-10,3'-indoline]-2,2'-dione(38)

Following the general procedure, reaction of 4 -aminocyclopentenone ($\mathbf{2 a}$ ', $0.05 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and indole derivative ($\mathbf{3 k}, 0.055 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of AlCl_{3} ($0.053 \mathrm{~g}, 0.4 \mathrm{mmol}$) delivered compound, which was purified by silica gel column chromatography (Hexane/EtOAc 7:3) to furnish the title compound 38 as white solid in 61% $(0.053 \mathrm{~g})$ yield. $\mathrm{R}_{f} 0.3$ (EtOAc: Hexane 4:6); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 7.49$ (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, 7.11 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.63$ (s, 1H), 4.86 (t, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.24 (d, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70$ (s, 3H), 3.57 (d, J $=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dd}, J=20.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.39-2.22 (m, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 214.1,180.8,139.4,137.4,136.6,135.0,130.5$, 129.1, 128.8, 128.4, 128.2, 127.5, 124.2, 123.6, 122.9, 122.4, 120.7, 119.8, 109.9, 108.4, 62.6, 55.4, 48.0, 40.9, 40.8, 40.5, 32.9; HRMS (ESI-TOF) m/z: [M+H]+ $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} \mathrm{Calcd}$. 433.1911, Found 433.1912.
(3S,3aS, 10aR)-5-methyl-3-(p-tolyl)-1,3,3a,5,9,10a-hexahydro-2H-spiro[azuleno[4,5,6-cd]indole-10,3'-indoline]-2,2'-dione(39)

Following the general procedure, reaction of 4 -aminocyclopentenone ($\mathbf{2 b} \mathbf{b}, 0.053 \mathrm{~g}, 0.2$ $\mathrm{mmol}, 1.0$ equiv) and indole derivative ($\mathbf{3 k}, 0.055 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of $\mathrm{AlCl}_{3}(0.053 \mathrm{~g}, 0.4 \mathrm{mmol})$ delivered compound, which was purified by silica gel column chromatography (Hexane/EtOAc 7:3) to furnish the title compound 39 as white solid in 62% (0.054 g) yield. $\mathrm{R}_{f} 0.3$ (EtOAc: Hexane 4:6); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.37$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.11(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.84$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J$ $=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{dd}, J=20.4,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.75$ (d, $J=14.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.38(\mathrm{~s}, 3 \mathrm{H}), 2.34-2.21(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 214.4, 180.7, 139.3, 137.2, 136.6, 135.0, 134.3, 130.5, 129.8, 128.6, 128.5, 128.2, 124.2, 123.6, 122.9, 122.4, 120.8, 119.7, 109.9, 108.4, 62.4, 55.4, 48.0, 40.9(2), 40.4, 32.9, 21.3; HRMS (ESI-TOF) m/z: [M+H]+ $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$Calcd. 447.2067, Found 447.2064.

9. General procedure for the preparation of compounds 40-47

In a 10 mL sealed tube, 4-Aminocyclopentenone (2, 1.0 equiv) and 1,1'-dimethyl-1H,1'H-2,2'-biindole (3I, 1.0 equiv) were taken in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$ under N_{2} atmosphere. To this solution were added $p-\mathrm{TsOH} . \mathrm{H}_{2} \mathrm{O}$ (2.0 equiv) and the reaction mixture was stirred at $50^{\circ} \mathrm{C}$ temperature until completion of the reaction as determined by TLC analysis (typical reaction time, $12-14 \mathrm{~h}$). It was then quenched with water ($5-10 \mathrm{~mL}$) and extracted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 10 \mathrm{~mL})$. The combined organic layer was washed with Brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then concentrated under reduced pressure. The crude product was purified by silica gel column chromatography to afford the desired products (40-47).

10. Preparation and characterization of compounds 40-47

(4cS,5S,7aS)-12,13-dimethyl-5-phenyl-4c,5,7,7a,12,13-hexahydro-6H-cyclopenta[c]indolo[2,3-a]carbazol-6-one(40)

Following the general procedure, reaction of 4-aminocyclopentenone (2a, $0.05 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and 1,1 '-dimethyl- $1 \mathrm{H}, 1$ 'H-2,2'-biindole ($31,0.052 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of $p-\mathrm{TsOH} . \mathrm{H}_{2} \mathrm{O}(0.069 \mathrm{~g}, 0.4 \mathrm{mmol})$ delivered compound 40 , which was purified by silica gel column chromatography (Hexane/EtOAc $8: 2$) to furnish the title compound as white solid in $84 \%(0.07 \mathrm{~g})$ yield.mp: $210-213^{\circ} \mathrm{C}$; $\mathrm{R}_{f} 0.25$ (EtOAc: Hexane $2: 8$); ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $400 \mathrm{MHz}) \delta 7.60(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 5 \mathrm{H}), 7.13(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.02-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~s}, 3 \mathrm{H}), 3.93-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{t}$, $J=14.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.06(\mathrm{dd}, J=18.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 216.9$, 140.7, 140.2, 138.6, 130.9, 129.7, 129.2, 128.8, 127.7, 127.5, 127.2, 122.2, 121.1, 120.9, 120.6, 119.0, 118.8, 114.8, 113.3, 110.6, 110.1, 59.2, 46.1, 43.7, 34.8, 34.5, 34.3;HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}^{+}$Calcd.417.1961, Found 417.1954.
(4cS,5S,7aS)-12, 13-dimethyl-5-(p-tolyl)-4c,5,7,7a, 12,13-hexahydro-6H-cyclopenta[c]indolo[2,3-a]carbazol-6-one(41)

Following the general procedure, reaction of 4 -aminocyclopentenone ($\mathbf{2 b}, 0.053 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and 1,1 '-dimethyl- $1 \mathrm{H}, 1$ 'H-2,2'-biindole ($31,0.052 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of $p-\mathrm{TsOH} . \mathrm{H}_{2} \mathrm{O}(0.069 \mathrm{~g}, 0.4 \mathrm{mmol})$ delivered compound 41 , which was purified by silica gel column chromatography (Hexane/EtOAc 8:2) to furnish the title compound as white solid in $86 \%(0.074 \mathrm{~g})$ yield.mp: $206-209^{\circ} \mathrm{C}$; $\mathrm{R}_{f} 0.25$ (EtOAc: Hexane $2: 8$); ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, 2H), 7.03 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.96(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $4.04-4.00$ (m, 4H), 3.97 (s, 3H), 3.63 (dd, $J=15.0,9.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.14 (dd, $J=$ $18.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 217.0,140.6,140.2,136.6$, $135.4,130.9,129.7,129.5,128.9,127.6,127.5,122.1,122.0,120.8,120.5,118.9,118.8$, 114.9, 113.3, 110.5, 110.0, 58.8, 45.8, 43.5, 34.8, 34.5, 34.3, 21.2;HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}^{+}$Calcd.431.2118, Found 431.2117.

Following the general procedure, reaction of 4-aminocyclopentenone ($\mathbf{2 c}, 0.058 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and 1,1 '-dimethyl-1H,1'H-2,2'-biindole ($31,0.052 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of $p-\mathrm{TsOH} . \mathrm{H}_{2} \mathrm{O}(0.069 \mathrm{~g}, 0.4 \mathrm{mmol})$ delivered compound 42 , which was purified by silica gel column chromatography (Hexane/EtOAc 8:2) to furnish the title compound as gummy solid in $89 \%(0.082 \mathrm{~g})$ yield.mp: $232-235^{\circ} \mathrm{C}$; $\mathrm{R}_{f} 0.25$ (EtOAc: Hexane 2:8); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) $\delta 7.70(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 2 \mathrm{H})$, 7.23 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.58$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 4.20 (t, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.04$ (s, 3H), $4.00-3.95(\mathrm{~m}, 4 \mathrm{H}), 3.66$ - 3.61 (m, 2H), 3.14 (dd, $J=18.8,8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.95-2.88 (m, 1H), 1.28 (d, $J=6.9 \mathrm{~Hz}$, $6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 217.1,147.8,140.6,140.2,135.8,130.9,129.7$, 129.0, 127.7, 127.5, 126.8, 122.1, 122.0, 120.8, 120.4, 119.0, 118.9, 114.9, 113.3, 110.54, $110.0,58.8,46.2,43.5,34.8,34.5,34.1,33.9,24.2,24.1 ; H R M S$ (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{32} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}^{+}$Calcd. 459.2431, Found 459.2426.
(4cS,5S,7aS)-5-(4-fluorophenyl)-12,13-dimethyl-4c,5,7,7a,12,13-hexahydro-6H-cyclopenta[c]indolo[2,3-a]carbazol-6-one(43)

Following the general procedure, reaction of 4-aminocyclopentenone ($\mathbf{2 e}, 0.053 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and 1,1 '-dimethyl-1H,1'H-2,2'-biindole ($31,0.052 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of $p-\mathrm{TsOH} . \mathrm{H}_{2} \mathrm{O}(0.069 \mathrm{~g}, 0.4 \mathrm{mmol})$ delivered compound 43 , which was purified by silica gel column chromatography (Hexane/EtOAc 8:2) to furnish the title compound as white solid in 76% (0.066 g) yield. $\mathrm{R}_{f} 0.25$ (EtOAc: Hexane 2:8); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) $\delta 7.68$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.22(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.03(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.92(\mathrm{~m}, 3 \mathrm{H}), 6.62$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{t}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{~s}, 3 \mathrm{H}), 3.92$ (dd, $J=11.9,7.7$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.63 (dd, $J=21.8,15.5 \mathrm{~Hz}, 2 \mathrm{H}$), 3.13 (dd, $J=18.9,8.6 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 216.5,162.1$ (d, $\left.J=243.8 \mathrm{~Hz}\right), 140.7,140.2,134.3(\mathrm{~d}, J=3.2 \mathrm{~Hz})$, $130.9,130.7(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz})$, 129.7, 127.6, 127.5, 122.2 (d, $J=6.9 \mathrm{~Hz}$), 120.9, 120.7, 119.0, 118.5, 115.8, 115.6, 114.5, 113.2, 110.6, 110.1, 58.4, 46.1, 43.5, 34.8, 34.5, 34.3;HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{29} \mathrm{H}_{24} \mathrm{FN}_{2} \mathrm{O}^{+}$Calcd. 435.1867, Found 435.1863.

Following the general procedure, reaction of 4 -aminocyclopentenone ($\mathbf{2 f}, 0.057 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and 1,1 '-dimethyl-1H,1'H-2,2'-biindole ($31,0.052 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of $p-\mathrm{TsOH} . \mathrm{H}_{2} \mathrm{O}(0.069 \mathrm{~g}, 0.4 \mathrm{mmol})$ delivered compound 44 , which was purified by silica gel column chromatography (Hexane/EtOAc 8:2) to furnish the title compound as white solid in $82 \%\left(0.074 \mathrm{~g}\right.$) yield. $\mathrm{R}_{f} 0.25$ (EtOAc: Hexane 2:8); ${ }^{1} \mathbf{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.72$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.22(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.23$ (t, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{~s}, 3 \mathrm{H}), 4.01(\mathrm{~s}, 3 \mathrm{H}), 3.99-3.96(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=25.3,15.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.17(\mathrm{dd}, J=18.9,8.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathbf{N M R}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 216.4,140.6$, $140.1,137.0,133.1,130.8,130.5,129.7,128.9,127.5,127.4,122.3,122.2,120.9,120.8$, 119.0, 118.5, 114.3, 113.1, 110.6, 110.1, 58.5, 45.9, 43.5, 34.9, 34.6, 34.3;HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{29} \mathrm{H}_{24} \mathrm{ClN}_{2} \mathrm{O}^{+}$Calcd. 451.1572, Found 451.1566.
(4cS,5S,7aS)-12,13-dimethyl-5-(m-tolyl)-4c,5,7,7a,12,13-hexahydro-6H-cyclopenta[c]indolo[2,3-a]carbazol-6-one(45)

Following the general procedure, reaction of 4-aminocyclopentenone ($\mathbf{2 h}, 0.05 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and 1,1 '-dimethyl- $1 \mathrm{H}, 1$ 'H-2,2'-biindole ($\mathbf{3 I}, 0.052 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of $p-\mathrm{TsOH} . \mathrm{H}_{2} \mathrm{O}(0.069 \mathrm{~g}, 0.4 \mathrm{mmol})$ delivered compound 45 , which was purified by silica gel column chromatography (Hexane/EtOAc 8:2) to furnish the title compound as white solid in $80 \%(0.069 \mathrm{~g})$ yield. $\mathrm{R}_{f} 0.25$ (EtOAc: Hexane 2:8); ${ }^{1} \mathbf{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) $\delta 7.67$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.43 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.26(\mathrm{~m}, 1 \mathrm{H})$, 7.21 (d, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.88(\mathrm{~m}, 3 \mathrm{H})$, 6.65 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 3 \mathrm{H}), 4.00-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.96(\mathrm{~s}$, 3H), 3.58 (dd, $J=20.9,15.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.12 (dd, $J=18.7,8.5 \mathrm{~Hz}, 1 \mathrm{H}$), $2.27(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 217.0,140.7,140.3,138.5,138.3,131.0,129.9,129.8,128.7$, 128.0, 127.7, 127.6, 126.1, 122.2, 122.1, 120.9, 120.6, 119.0, 118.9, 115.1, 113.4, 110.6, 110.0, 59.1, 46.0, 43.8, 34.8, 34.6, 34.4, 21.6;HRMS (ESI-TOF) m/z: [M+H]+ $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}^{+}$ Calcd. 431.2118, Found 431.2114.

Following the general procedure, reaction of 4 -aminocyclopentenone ($\mathbf{2 j}, 0.057 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and 1,1 '-dimethyl- $1 \mathrm{H}, 1$ 'H-2,2'-biindole ($31,0.052 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of $p-\mathrm{TsOH} . \mathrm{H}_{2} \mathrm{O}(0.069 \mathrm{~g}, 0.4 \mathrm{mmol})$ delivered compound 46 , which was purified by silica gel column chromatography (Hexane/EtOAc 8:2) to furnish the title compound as white solid in $71 \%(0.064 \mathrm{~g})$ yield. $\mathrm{R}_{f} 0.25$ (EtOAc: Hexane $2: 8$); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.68$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.24-7.15(\mathrm{~m}, 4 \mathrm{H}), 7.11(\mathrm{~s}, 1 \mathrm{H}), 6.95(\mathrm{dd}, J=13.3,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.18(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 4.01-3.93(\mathrm{~m}, 4 \mathrm{H}), 3.62(\mathrm{dd}, J=27.7,15.4 \mathrm{~Hz}, 2 \mathrm{H})$, 3.14 (dd, $J=18.9,8.6 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 216.0,140.5(2), 140.1$, $134.5,130.8,130.0,129.7,129.2,127.5,127.4$ (3), 122.3, 122.2, 120.9, 120.8, 119.0, 118.5, 114.2, 113.0, 110.6, 110.1, 58.7, 45.9, 43.5, 34.9, 34.5, 34.4;HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{29} \mathrm{H}_{24} \mathrm{CIN}_{2} \mathrm{O}^{+}$Calcd.451.1572, Found 451.1572.
(4cS,5R,7aS)-12,13-dimethyl-5-(3,4,5-trimethoxyphenyl)-4c,5,7,7a,12,13-hexahydro-6H-cyclopenta[c]indolo[2,3-a]carbazol-6-one(47)

Following the general procedure, reaction of 4 -aminocyclopentenone ($\mathbf{2 l}, 0.068 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and 1,1 '-dimethyl- $1 \mathrm{H}, 1$ 'H-2,2'-biindole ($\mathbf{3 I}, 0.052 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of $p-\mathrm{TsOH} . \mathrm{H}_{2} \mathrm{O}(0.069 \mathrm{~g}, 0.4 \mathrm{mmol})$ delivered compound 47 , which was purified by silica gel column chromatography (Hexane/EtOAc 3:7) to furnish the title compound as white solid in $69 \%(0.071 \mathrm{~g})$ yield. $\mathrm{R}_{f} 0.30$ (EtOAc: Hexane $4: 6$); ${ }^{1} \mathbf{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 7.67$ (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.43 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}$), $7.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.21(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 6.26(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}), 3.97-3.93(\mathrm{~m}, 4 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H})$, $3.68(\mathrm{~s}, 6 \mathrm{H}), 3.62-3.47(\mathrm{~m}, 2 \mathrm{H}), 3.14(\mathrm{dd}, J=18.8,8.6 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ MHz) 216.7, 153.4, 140.7, 140.3, 137.4, 134.1, 130.9, 129.7, 127.7, 127.5, 122.3 (2), 120.9, 120.7, 119.0, 118.9, 114.9, 113.2, 110.6, 110.1, 106.4, 61.0, 59.1, 56.2, 46.0, 43.7, 34.9, 34.6, 34.2;HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{32} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+}$Calcd. 507.2278, Found 507.2285.

11. General procedure for compounds(48-54)

In a 10 mL sealed tube, 4-Aminocyclopentenone (2, 1.0 equiv) and 1,1'-dimethyl-1H,1'H-2,2'-biindole (3I, 1.0 equiv) were taken in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{M})$ under N_{2} atmosphere. To this solution were added AlCl_{3} (2.0 equiv) and the reaction mixture was stirred at $50^{\circ} \mathrm{C}$ temperature until completion of the reaction as determined by TLC analysis (typical reaction time, $16-24 \mathrm{~h}$). It was then quenched with water ($5-10 \mathrm{~mL}$) and extracted in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10$ mL). The combined organic layer was washed with Brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and then concentrated under reduced pressure. The crude product was purified by silica gel column chromatography to afford the desired products (48-54).

12. Preparation and characterization data for compounds(48-54)

1-(11,12-dimethyl-11,12-dihydroindolo[2,3-a]carbazol-5-yl)-3-phenylpropan-2-one(48)

Following the general procedure, reaction of 4-aminocyclopentenone (2a, $0.05 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and 1,1 '-dimethyl-1H,1'H-2,2'-biindole ($31,0.052 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of $\mathrm{AlCl}_{3}(0.053 \mathrm{~g}, 0.4 \mathrm{mmol})$ delivered compound 48 , which was purified by silica gel column chromatography (Hexane/EtOAc 8:2) to furnish the title compound as white solid in $53 \%\left(0.044 \mathrm{~g}\right.$) yield.mp: 167-170; $\mathrm{R}_{f} 0.25$ (EtOAc: Hexane 2:8); ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) ठ 8.12 (d, J= $7.8 \mathrm{~Hz}, 1 \mathrm{H}$), 7.99 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.71$ (s, 1H), $7.53-7.50$ (m, 4H), 7.35 (t, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.11(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.46(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{~s}, 3 \mathrm{H}), 4.16$ (s, 3H), 3.76 (s, 2H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 207.3,144.3,143.8,134.3,130.3$, 129.8, 129.2, 128.6, 127.0, 125.7, 125.2, 124.8, 124.5, 123.5, 122.1, 121.9, 121.7, 120.3, 120.2, 119.9, 115.5, 110.4, 110.1, 49.0, 48.8, 36.8, 36.6;HRMS (ESI-TOF) m/z: [M+H] ${ }^{+}$ $\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}^{+}$Calcd. 417.1961, Found 417.1951.

1-(11,12-dimethyl-11,12-dihydroindolo[2,3-a]carbazol-5-yl)-3-(4-isopropylphenyl)propan-2-one(49)

Following the general procedure, reaction of 4-aminocyclopentenone (2c, $0.058 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and 1,1 'dimethyl- $1 \mathrm{H}, 1$ 'H-2,2'-biindole ($31,0.052 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of $\mathrm{AlCl}_{3}(0.053 \mathrm{~g}, 0.4 \mathrm{mmol})$ delivered compound 49 , which was purified by silica gel column chromatography (Hexane/EtOAc 8:2) to furnish the title compound as white solid in $46 \%(0.042 \mathrm{~g})$ yield. $\mathrm{R}_{f} 0.25$ (EtOAc: Hexane 2:8); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.10(\mathrm{~d}, \mathrm{~J}$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 1 \mathrm{H})$, $7.22(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 4.21$ (s, 3H), 4.19 (s, 3H), $3.72(\mathrm{~s}, 2 \mathrm{H}), 2.91-2.84(\mathrm{~m}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (CDCl3, 100 MHz) $\delta 207.7,147.5,144.3,143.8,131.5,130.3,129.7,129.2,126.7,125.7$, 125.2, 124.8, 124.5, 123.5, 122.1, 121.9, 121.7, 120.3, 120.2, 120.0, 115.5, 110.4, 110.1, 48.9, 48.4, 36.8, 36.6, 33.8, 24.1;HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{32} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}^{+} \mathrm{Calcd} .459 .2431$, Found 459.2426.

1-(11,12-dimethyl-11,12-dihydroindolo[2,3-a]carbazol-5-yl)-3-(4-fluorophenyl)propan-2one(50)

Following the general procedure, reaction of 4 -aminocyclopentenone ($\mathbf{2 e}, 0.053 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and 1,1 'dimethyl- $1 \mathrm{H}, 1$ 'H-2,2'-biindole ($\mathbf{3 I}, 0.052 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of $\mathrm{AlCl}_{3}(0.053 \mathrm{~g}, 0.4 \mathrm{mmol})$ delivered compound 50 , which was purified by silica gel column chromatography (Hexane/EtOAc 8:2) to furnish the title compound as white solid in $57 \%(0.049 \mathrm{~g})$ yield.mp: $175-178^{\circ} \mathrm{C}$; R 0.25 (EtOAc: Hexane $2: 8$); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 8.12(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 4 \mathrm{H})$, $7.36-7.33$ (m, 1H), $7.29-7.23$ (m, 1H), $6.96-6.93(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.45$ (s, 2H), 4.21 (s, 3H), 4.19 (s, 3H), 3.69 (s, 2H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$) ס 207.3, $161.9(\mathrm{~d}, J=243.5 \mathrm{~Hz}) 144.3,143.8,131.2(2), 130.4,129.8(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 129.3,125.8$, $125.3,124.8,124.5,123.6,122.2,121.9,121.6,120.4(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 120.0,115.4(\mathrm{~d}, J=$ 9.7 Hz), 115.2, 110.5, 110.2, 49.4, 47.6, 36.8, 36.6;HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{29} \mathrm{H}_{24} \mathrm{FN}_{2} \mathrm{O}^{+}$Calcd.435.1867, Found 435.1863.

1-(4-chlorophenyl)-3-(11,12-dimethyl-11,12-dihydroindolo[2,3-a]carbazol-5-yl)propan-2-one(51)

Following the general procedure, reaction of 4 -aminocyclopentenone ($\mathbf{2 f}, 0.057 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and 1,1 '-dimethyl- $1 \mathrm{H}, 1$ 'H-2,2'-biindole ($\mathbf{3 I}, 0.052 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of $\mathrm{AlCl}_{3}(0.053 \mathrm{~g}, 0.4 \mathrm{mmol})$ delivered compound 51 , which was purified by silica gel column chromatography (Hexane/EtOAc 8:2) to furnish the title compound as white solid in $54 \%(0.059 \mathrm{~g})$ yield. $\mathrm{R}_{f} 0.25$ (EtOAc: Hexane 2:8); ${ }^{1} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.12(\mathrm{~d}, \mathrm{~J}$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.32(\mathrm{~m}$, $1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 4.20$ (s, 3H), 4.18 (s, 3H), 3.68 (s, 2H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$) δ 207.0, 144.3, 143.8, 132.7, 132.5, 131.0, 130.3, 129.3, 128.5, 125.8, 125.3, 124.8, 124.4, 123.5, 122.2, 121.9, 121.5, 120.4, 120.3, 120.0, 115.5, 110.5, 110.2, 49.5, 47.7, 36.8, 36.6;HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{29} \mathrm{H}_{24} \mathrm{CIN}_{2} \mathrm{O}^{+}$Calcd. 451.1572, Found 451.1565.

1-(4-bromophenyl)-3-(11,12-dimethyl-11,12-dihydroindolo[2,3-a]carbazol-5-yl)propan-2-one(52)

Following the general procedure, reaction of 4 -aminocyclopentenone ($\mathbf{2 g}, 0.065 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and 1,1 '-dimethyl- $1 \mathrm{H}, 1$ 'H-2,2'-biindole ($\mathbf{3 I}, 0.052 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of $\mathrm{AlCl}_{3}(0.053 \mathrm{~g}, 0.4 \mathrm{mmol})$ delivered compound 52 , which was purified by silica gel column chromatography (Hexane/EtOAc 8:2) to furnish the title compound as white solid in $53 \%(0.052 \mathrm{~g})$ yield. mp: $177-180^{\circ} \mathrm{C}$; $\mathrm{R}_{f} 0.25$ (EtOAc: Hexane 2:8); ${ }^{\mathbf{H}} \mathbf{H}$ NMR ($\mathrm{CDCl}_{3}, 400$ $\mathrm{MHz}) \delta 8.12(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.51(\mathrm{~m}, 4 \mathrm{H})$, $7.36-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 3 \mathrm{H}), 6.81$ (d, J=8.1 Hz, 2H), 4.44 (s, 2H), 4.21 (s, 3H), 4.19 (s, 3H), 3.66 (s, 2H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$) ס 206.9, 144.3, 143.7, 133.0, $131.4,131.3,130.3,129.3,125.8,125.3,124.7,124.4,123.5,122.1,121.8,121.5,120.8$, 120.3, 120.2, 119.9, 115.5, 110.5, 110.2, 49.5, 47.8, 36.8, 36.6;HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{29} \mathrm{H}_{24} \mathrm{BrN}_{2} \mathrm{O}^{+}$Calcd.495.1067, Found 495.1066.

1-(11,12-dimethyl-11,12-dihydroindolo[2,3-a]carbazol-5-yl)-3-(m-tolyl)propan-2-one(53)

Following the general procedure, reaction of 4 -aminocyclopentenone ($\mathbf{2 h}, 0.053 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and $1,1^{\prime}$-dimethyl-1H, 1 'H-2,2'-biindole ($\mathbf{3 I}, 0.052 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of $\mathrm{AlCl}_{3}(0.053 \mathrm{~g}, 0.4 \mathrm{mmol})$ delivered compound 53 , which was purified by silica gel column chromatography (Hexane/EtOAc 8:2) to furnish the title compound as white solid in $51 \%(0.044 \mathrm{~g})$ yield. $\mathrm{R}_{f} 0.25$ (EtOAc: Hexane 2:8); ${ }^{\mathbf{H}} \mathbf{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.12$ (d, J $=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.96(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.32(\mathrm{~m}$, $1 \mathrm{H}), 7.27-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 2 \mathrm{H}$), 4.45 (s, 2H), 4.19 (s, 3H), 4.17 (s, 3H), 3.72 (s, 2H), 2.25 (s, 3H); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$) 207.5 , 144.2, 143.7, 138.3, 134.1, 130.5, 130.2, 129.2, 128.5, 127.7, 126.7, 125.7, 125.2, 124.7, 124.4, 123.4, 122.1, 121.9, 121.7, 120.3, 120.2, 119.9, 115.5, 110.4, 110.1, 48.9,48.8, 36.8, 36.6, 21.4; HRMS (ESI-TOF) m/z: [M+H]+ $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}^{+}$Calcd. 431.2118, Found 431.2117.

1-(3-chlorophenyl)-3-(11,12-dimethyl-11,12-dihydroindolo[2,3-a]carbazol-5-yl)propan-2-one(54)

Following the general procedure, reaction of 4 -aminocyclopentenone ($2 \mathrm{j}, 0.057 \mathrm{~g}, 0.2 \mathrm{mmol}$, 1.0 equiv) and 1,1 'dimethyl-1H,1'H-2,2'-biindole ($\mathbf{3 I}, 0.052 \mathrm{~g}, 0.2 \mathrm{mmol}, 1.0$ equiv) in presence of $\mathrm{AlCl}_{3}(0.053 \mathrm{~g}, 0.4 \mathrm{mmol})$ delivered compound 54 , which was purified by silica gel column chromatography (Hexane/EtOAc 8:2) to furnish the title compound as white solid in $56 \%(0.050 \mathrm{~g})$ yield. $\mathrm{R}_{f} 0.25$ (EtOAc: Hexane 2:8); ${ }^{\mathbf{H}} \mathbf{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 8.13(\mathrm{~d}, J$ $=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.36-7.32(\mathrm{~m}, 1 \mathrm{H})$, $7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 6.89(\mathrm{~d}, \mathrm{~J}=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H})$, $\left.4.21(\mathrm{~s}, 3 \mathrm{H}), 4.19(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 206.9,144.2$, 143.7, 136.0, 134.1, 130.2, 129.8, 129.6, 129.3, 127.9, 127.0, 125.8, 125.3, 124.7, 124.3, 123.5, 122.1, 121.8, 121.4, 120.4, 120.3, 120.0, 115.5, 110.4, 110.2, 49.5, 47.9, 36.9, 36.7;HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+} \mathrm{C}_{29} \mathrm{H}_{24} \mathrm{CIN}_{2} \mathrm{O}^{+}$Calcd.451.1572, Found 451.1573.

13. Spectral data for new compounds

(300

HMBC data of compound 39

COSY data of compound 39

16. Crystallographic Data

Compound 14:

Crystal structures of 14 was obtained using a Bruker D8 Quest equipped with a micro-focus source for generating Mo Ka radiation ($\lambda=0.71073 \AA$) and a PHOTON II CMOS detector. Data were recorded at 298 K . Integration and scaling of the recorded data were performed by SAINT ${ }^{5}$ and SADABS program ${ }^{6}$ respectively. Molecular structures were solved by direct methods using SHELXT-2018 and refined by full-matrix least-squares on F^{2} using SHELXL2018/3 version. ${ }^{7}$ All non-hydrogen atoms in the compounds were refined anisotropically and hydrogen atoms were placed at calculated positions using riding models.

ORTEP diagram of 14 (CCDC No 2119664): Atoms are shown with 30% probability of thermal ellipsoids

Table S3. Crystal data and refinement parameters

Empirical formula	$\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{~N}_{1} \mathrm{O}_{7}, \mathrm{CHCl}_{3}$
Formula weight	610.89
Wavelength $\AA \AA$	0.71073
Crystal system	Monoclinic
Space group	$P 2{ }_{1} / c$
Crystal size $\left(\mathrm{mm}^{3}\right)$	$0.48 \times 0.23 \times 0.12$
a / \AA	$13.518(2)$
b / \AA	$8.3005(13)$
c / \AA	$25.702(4)$
$\alpha /\left(^{\circ}\right)$	90
$\beta /\left(^{\circ}\right)$	$93.195(5)$
$\gamma /\left(^{\circ}\right)$	90

V / \AA^{3}	$2879.4(8)$
Z	4
$D_{\text {cal }} / \mathrm{g} \mathrm{cm}^{-3}$	1.409
$\mathrm{~T} / \mathrm{K}$	$298(2)$
μ / mm^{-1}	0.366
F_{000}	1272
Theta ranges for data collection	2.1° to 28.4°
Index ranges	$-18=<\mathrm{h}=<\quad 18, \quad-11=<\mathrm{k}=<11, \quad-34$ $=<1=<32$
Reflections measured	68765
Unique reflections	7206
Observed reflections	5484
Parameters	394
Data completeness	99.5%
$R_{\text {int }}$	0.052
final $R(\mathrm{I}>2 \sigma(\mathrm{I}))$	0.0670
final $R($ all data $)$	0.0889
final w $R_{2}(\mathrm{I}>2 \sigma(\mathrm{I}))$	0.1542
final w $R_{2}($ all data $)$	0.1665
GOF on F^{2}	1.051
Highest peak and deepest hole	0.40 and $-0.45 \mathrm{e} / \AA^{3}$
CCDC No	$\mathbf{2 1 1 9 6 6 4}$

Compound 26:

Crystal structures of $\mathbf{2 2}$ was determined using similar method as was used for compound 14, described above.

ORTEP diagram of 22 (CCDC No 2119665): Atoms are shown with 30% probability of thermal ellipsoids

Table S4. Crystal data and refinement parameters

Empirical formula	$\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{1} \mathrm{O}_{2}$
Formula weight	419.50
Wavelength/ \AA	0.71073
Crystal system	Monoclinic
Space group	$P 2{ }_{1} / n$
Crystal size (mm^{3})	$0.21 \times 0.16 \times 0.08$
a / \AA A	11.9836(17)
b/Å	8.6160(12)
c / \AA ¢	21.720(3)
$\alpha /\left({ }^{\circ}\right.$)	90
$\beta /\left({ }^{\circ}\right.$)	98.210(4)
$\gamma /{ }^{\circ}$)	90
V/ \AA^{3}	2219.6(5)
Z	4
$D_{\text {cal }} / \mathrm{g} \mathrm{cm}^{-3}$	1.255
T/K	298(2)
μ / mm^{-1}	0.078
F_{000}	888
Theta ranges for data collection	2.9° to 28.3°
Index ranges	$\begin{aligned} & -16=<\mathrm{h}=<16, \quad-11=<\mathrm{k}=<11, \quad-28=<1=< \\ & 27 \end{aligned}$
Reflections measured	66706
Unique reflections	5501
Observed reflections	4459
Parameters	291
Data completeness	99.5\%
$R_{\text {int }}$	0.048
final $R(\mathrm{I}>2 \sigma(\mathrm{I})$)	0.0507
final R (all data)	0.0635
final $\mathrm{w} R_{2}(\mathrm{I}>2 \sigma(\mathrm{I})$)	0.1331
final w R_{2} (all data)	0.1425
GOF on F^{2}	1.057
Highest peak and deepest hole	0.30 and -0.23 e/ \AA^{3}
CCDC No	2119665

ORTEP diagram of 27 (CCDC No 2119666): Atoms are shown with 30\% probability of thermal ellipsoids

Table S5. Crystal data and refinement parameters

Empirical formula	$\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$
Formula weight	432.50
Wavelength/ \AA	0.71073
Crystal system	Triclinic
Space group	P-1
Crystal size (mm ${ }^{3}$	$0.36 \times 0.19 \times 0.06$
a / \AA ¢	10.0315(17) 13.014(2)
b/ \AA	10.8177(17)
c / \AA	13.014(2)
$\alpha /\left({ }^{\circ}\right)$	97.315(5)
$\beta /{ }^{\circ}$)	97.743(6)
$\gamma /\left({ }^{\circ}\right.$)	111.251(5)
V / \AA^{3}	1280.3(4)
Z	2
$D_{\text {cal }} / \mathrm{g} \mathrm{cm}^{-3}$	1.122
T/K	298(2)
μ / mm^{-1}	0.071
F_{000}	456
Theta ranges for data collection	2.3° to 28.4°
Index ranges	$\begin{aligned} & -13=<\mathrm{h}=<13, \quad-14=<\mathrm{k}=<14, \quad-17=<1=< \\ & 17 \end{aligned}$

Reflections measured	57585
Unique reflections	6377
Observed reflections	4877
Parameters	304
Data completeness	99.2%
$R_{\text {int }}$	0.045
final $R(\mathrm{I}>2 \sigma(\mathrm{I}))$	0.0661
final $R($ all data $)$	0.0819
final $w R_{2}(\mathrm{I}>2 \sigma(\mathrm{I}))$	0.2069
final $w R_{2}($ all data $)$	0.2241
GOF on F^{2}	1.045
Highest peak and deepest hole	0.27 and $-0.27 \mathrm{e} / \AA^{3}$
CCDC No	$\mathbf{2 1 1 9 6 6 6}$

17. References

1. (a)see reference 7b-c from the main text; (b) A. B. Gade and N. T. Patil, Synlett. 2017, 28, 1096-1100;
2. see reference 11 from the main text
3. Song, L.; Ni, D.;Jia, S.; Pi, R.; Dong, S.; Yang, F.;Tang, J.; Liu, S.; C(sp2)-H Bond Multiple Functionalization in Air for Construction of Tetrahydrocarbazoles with Continuous Quaternary Carbons and Polycyclic Diversification. Org. Lett. 2020, 22, 1846-1851.
4. Fortes, M. P.; Bassaco, M. M.; Kaufman, T. S., Silveira, C.C. A convenient eco-friendly system for the synthesis of 5-sulfenyl tetrazole derivatives of indoles and pyrroles employing $\mathrm{CeCl}_{3}, 7 \mathrm{H} 2 \mathrm{O}$ in PEG-400. RSC Adv.2014, 4, 34519-34530.
5. SAINT, Version 6.45; Bruker AXS Inc.: Madison, WI, 2003.
6. SADABS, Version 2.05; Bruker AXS Inc.: Madison, WI, 2002.
7. G. M. Sheldrick, Acta Cryst. Sect. A. 2015, 71, 3-8.
