SUPPORTING INFORMATION

Synthesis of *Bis*(2-pyridylthio)methyl Zinc Hydride and Catalytic Hydrosilylation and Hydroboration of CO₂

Daniel G. Shlian, Erika Amemiya and Gerard Parkin,*

Department of Chemistry,

Columbia University,

New York, New York 10027, USA.

Received xxxx xx, 2021.

Experimental Section

All manipulations were performed using a combination of glovebox, high vacuum, and Schlenk techniques under an argon atmosphere unless otherwise specified.¹ Solvents were purified and degassed by using standard procedures. ¹H NMR spectra were measured on Bruker AVIII 300, Bruker 400 Cyber-enabled Avance III and Bruker 500 DMX spectrometers. ¹H chemical shifts are reported in ppm relative to SiMe₄ ($\delta = 0$) and were referenced internally with respect to the protio solvent impurity (δ 7.16 for C₆D₅H).² ¹³C NMR spectra are reported in ppm relative to SiMe₄ ($\delta = 0$) and were referenced internally with respect to the solvent (δ 128.06 for C₆D₆).² Coupling constants are given in hertz. Mesitylene is added to NMR samples as an internal standard when deemed appropriate. Infrared spectra were recorded on a Perkin Elmer Spectrum Two spectrometer in attenuated total reflectance (ATR) mode, and are reported in reciprocal centimeters. [Bptm]H was prepared by the literature method.³

X-ray Structure Determinations

X-ray diffraction data were collected on a Bruker Apex II diffractometer. The structures were solved by using direct methods and standard difference map techniques, and were refined by full-matrix least-squares procedures on F^2 with SHELXTL (Version 2014/7).⁴ Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre (CCDC 2127030-2127039).

Synthesis of [Bptm]ZnN(SiMe₃)₂

A solution of [Bptm]H (500 mg, 2.13 mmol) in benzene (*ca.* 2 mL) was treated with $Zn[N(SiMe_3)_2]_2$ (900 mg, 2.36 mmol). The solution was heated at 60°C overnight and then lyophilized to remove volatile components to give [Bptm]ZnN(SiMe_3)_2 (980 mg, 99% yield). Large colorless crystals suitable for X-ray diffraction were obtained by (i) diffusion of pentane into a solution of [Bptm]ZnN(SiMe_3)_2 in benzene and (ii) evaporation of a solution in pentane. ¹H NMR (C₆D₆): 0.34 [s, 18H,

2

 $(C_{5}H_{4}NS)_{2}HCZnN(Si\underline{Me}_{3})_{2}], 3.28 [s, 1H, (C_{5}H_{4}NS)_{2}HCZnN(SiMe_{3})_{2}], 6.15 [m, 2H, (C_{5}H_{4}NS)_{2}HCZnN(SiMe_{3})_{2}], 6.42 [m, 2H, (C_{5}H_{4}NS)_{2}HCZnN(SiMe_{3})_{2}], 6.60 [dt, {}^{2}J_{H-H} = 1 Hz, {}^{3}J_{H-H} = 8 Hz, 2H, (C_{5}H_{4}NS)_{2}HCZnN(SiMe_{3})_{2}], 8.24 [m, 2H, (C_{5}H_{4}NS)_{2}HCZnN(SiMe_{3})_{2}]. {}^{13}C{}^{1}H} NMR (C_{6}D_{6}): 6.5 [6H, (C_{5}H_{4}NS)_{2}HCZnN(Si\underline{Me}_{3})_{2}], 19.3 [1C, (C_{5}H_{4}NS)_{2}HCZnN(SiMe_{3})_{2}], 119.1 [2C, (C_{5}H_{4}NS)_{2}HCZnN(SiMe_{3})_{2}], 122.7 [2C, (C_{5}H_{4}NS)_{2}HCZnN(SiMe_{3})_{2}], 137.4 [2C, (C_{5}H_{4}NS)_{2}HCZnN(SiMe_{3})_{2}], 146.8 [2C, (C_{5}H_{4}NS)_{2}HCZnN(SiMe_{3})_{2}], 165.3 [2C, (C_{5}H_{4}NS)_{2}HCZnN(SiMe_{3})_{2}]. IR Data (ATR, cm⁻¹): 2953 (w), 1589 (s), 1553 (m), 1453 (s), 1414 (vs), 1280 (w), 1250 (w), 1180 (w), 1128 (s), 1089 (w), 1044 (w), 1009 (w), 930 (m), 881 (m), 840 (m), 754 (vs), 721 (s), 669 (w), 643 (w), 618 (w), 483 (s).$

Figure S1. Molecular Structure of [Bptm]ZnN(SiMe₃)₂

Synthesis of [Bptm]ZnOSiPh₃

A solution of [Bptm]ZnN(SiMe₃)₂ (400 mg, 0.87 mmol) in benzene (*ca.* 2 mL) was treated with Ph₃SiOH (240 mg, 0.87 mmol). The solution was lyophilized to remove volatile components after 5 minutes at room temperature to give [Bptm]ZnOSiPh₃ (430 mg, 86% yield). Colorless crystals suitable for X-ray diffraction were obtained *via* diffusion of

pentane into a solution of [Bptm]ZnOSiPh₃ in benzene. Anal. Calcd. for [Bptm]ZnOSiPh₃: C, 60.7%; H, 4.2%; N, 4.9%. Found: C, 59.9%; H, 4.3%; N, 4.6%. ¹H NMR (C₆D₆): 3.24 [s, 1H, (C₅H₄NS)₂HCZnOSiPh₃], 6.06 [m, 2H, (C₅H₄NS)₂HCZnOSiPh₃], 6.43 [m, 2H, (C₅H₄NS)₂HCZnOSiPh₃], 6.55 [m, 2H, (C₅H₄NS)₂HCZnOSiPh₃], 7.19-7.25 [m, 9H, (C₅H₄NS)₂HCZnOSiPh₃], 7.99 [m, 6H, (C₅H₄NS)₂HCZnOSiPh₃], 8.12 [m, 2H, (C₅H₄NS)₂HCZnOSiPh₃]. ¹³C{¹H} NMR (C₆D₆): 16.24 [1C, (C₅H₄NS)₂HCZnOSiPh₃], 119.18 [2C, (C₅H₄NS)₂HCZnOSiPh₃], 121.83 [2C, (C₅H₄NS)₂HCZnOSiPh₃], 127.80 [6C, (C₅H₄NS)₂HCZnOSiPh₃], 128.83 [3C, (C₅H₄NS)₂HCZnOSiPh₃], 135.69 [6C, (C₅H₄NS)₂HCZnOSiPh₃], 137.85 [2C, (C₅H₄NS)₂HCZnOSiPh₃], 142.45 [3C, (C₅H₄NS)₂HCZnOSiPh₃], 147.10 [2C, (C₅H₄NS)₂HCZnOSiPh₃], 164.49 [2C, (C₅H₄NS)₂HCZnOSiPh₃]. IR Data (ATR, cm⁻¹): 3060 (w), 2996 (w), 2216 (vw), 1962 (vw), 1892 (vw), 1834 (vw), 1590 (m), 1556 (w), 1457 (w), 1418 (m), 1283 (w), 1256 (w), 1130 (w), 1109 (m), 1032 (w), 1006 (m), 889 (w), 751 (m), 703 (s), 673 (w), 645 (w), 548 (w), 510 (s), 468 (w), 429 (w).

Figure S2. Molecular Structure of [Bptm]ZnOSiPh₃

Synthesis of [Bptm]ZnH

(*i*) A solution of [Bptm]ZnN(SiMe₃)₂ (297 mg, 0.647 mmol) in C₆H₆ (5 mL) was treated with HBpin (125 mg, 0.977 mmol). The solution was lyophilized to remove volatile components after a period of 5 minutes and the solid obtained was washed with pentane (5 mL) and dried *in vacuo* to give [Bptm]ZnH as a white solid (165 mg, 64% yield). Crystals suitable for X-ray diffraction were obtained by evaporation from a solution in pentane (monoclinic) or benzene (orthorhombic). ¹H NMR (C₆D₆): 3.48 [s, 1H, (C₅H₄NS)₂HCZnH], 6.45 [m, 2H, (C₅H₄NS)₂HCZnH], 6.66 [m, 2H, (C₅H₄NS)₂HCZnH], 8.16 [m, 2H, (C₅H₄NS)₂HCZnH], 6.45 [m, 2H, (C₅H₄NS)₂HCZnH], 6.66 [m, 2H, (C₅H₄NS)₂HCZnH], 118.83 [2C, (C₅H₄NS)₂HCZnH], 121.67 [2C, (C₅H₄NS)₂HCZnH], 137.19 [2C, (C₅H₄NS)₂HCZnH], 146.80 [2C, (C₅H₄NS)₂HCZnH], 166.08 [2C, (C₅H₄NS)₂HCZnH]. IR Data (ATR, cm⁻¹): 3038 (vw), 2922 (w), 2852 (w), 1742 (m), 1588 (s), 1555 (m), 1459 (m), 1416 (s), 1128 (s), 1009 (w), 890 (w), 756 (vs), 722 (m), 546 (m), 525 (m), 486 (s), 411 (m). (*ii*) A solution of [Bptm]ZnOSiPh₃ (10 mg, 0.017 mmol) in C₆D₆ (*ca*. 0.5 mL) was treated with PhSiH₃ (30 mg, 0.278 mmol). The solution was lyophilized to remove volatile

components after 5 minutes at room temperature to give [Bptm]ZnH, as identified by ¹H NMR spectroscopy.

(*iii*) A solution of [Bptm]ZnOSiPh₃ (1.5 mg, 0.003 mmol) in C_6D_6 (*ca.* 0.5 mL) was treated with HBpin (15 mg, 0.118 mmol) and monitored by ¹H NMR spectroscopy, thereby demonstrating the formation of [Bptm]ZnH.

Figure S3. Molecular Structure of [Bptm]ZnH (Orthorhombic Form)

Figure S4. Molecular Structure of [Bptm]ZnH (Monoclinic Form)

Synthesis of [Bptm]ZnO₂CH

A solution of [Bptm]ZnH (20 mg, 0.065 mmol) in C_6D_6 (ca. 0.5 mL) was treated with CO_2 (1 atm). The solution was lyophilized to remove volatile components after 5 minutes at room temperature to give [Bptm]ZnO₂CH as a white solid (15 mg, 67% yield). Colorless crystals suitable for X-ray diffraction were obtained *via* vapor diffusion of pentane into a solution of [Bptm]ZnO₂CH in benzene. ¹H NMR (C_6D_6): 3.30 [s, 1H, (C_5H_4NS)₂HCZnO₂CH], 6.13 [m, 2H, (C_5H_4NS)₂HCZnO₂CH], 6.42 [m, 2H,

 $(C_{5}H_{4}NS)_{2}HCZnO_{2}CH], 6.57 [m, 2H, (C_{5}H_{4}NS)_{2}HCZnO_{2}CH], 8.93 [m, 2H, (C_{5}H_{4}NS)_{2}HCZnO_{2}CH], 8.98 [s, 1H, (C_{5}H_{4}NS)_{2}HCZnO_{2}CH]. ^{13}C{^{1}H} NMR (C_{6}D_{6}): 15.02 [1C, (C_{5}H_{4}NS)_{2}HCZnO_{2}CH], 119.33 [2C, (C_{5}H_{4}NS)_{2}HCZnO_{2}CH], 121.81 [2C, (C_{5}H_{4}NS)_{2}HCZnO_{2}CH], 138.00 [2C, (C_{5}H_{4}NS)_{2}HCZnO_{2}CH], 148.66 [2C, (C_{5}H_{4}NS)_{2}HCZnO_{2}CH], 165.25 [2C, (C_{5}H_{4}NS)_{2}HCZnO_{2}CH], 170.03 [1C, (C_{5}H_{4}NS)_{2}HCZnO_{2}CH]. Anal. Calcd. for [Bptm]ZnO_{2}CH: C, 41.9\%; H, 2.9\%; N, 8.2\%. Found: C, 42.9\%; H, 3.2\%; N, 7.5\%. IR Data (ATR, cm⁻¹): 2970 (vw), 2838 (w), 1614 (vs), 1592 (s), 1553 (m), 1457 (m), 1415 (s), 1359 (w), 1311 (m), 1283 (m), 1132 (m), 1092 (w), 1045 (w), 1013 (w), 907 (w), 758 (vs), 721 (m), 669 (w), 647 (w), 484 (w), 444 (w), 408 (m).$

Figure S5. Molecular Structure of [Bptm]ZnO₂CH

Synthesis of [Bptm]ZnNCO

(*i*) A solution of [Bptm]ZnN(SiMe₃)₂ (10 mg, 0.022 mmol) in C₆D₆ (*ca*. 0.5 mL) was treated with CO₂ (1 atm). The sample was monitored by ¹H NMR spectroscopy over 2 weeks and lyophilized to remove volatile components to give *inter alia* [Bptm]ZnNCO. Colorless crystals of [Bptm]ZnNCO were obtained *via* vapor diffusion of pentane into a solution in benzene. (*ii*) A suspension of [Bptm]ZnH (5 mg, 0.017 mmol) in C₆D₆ was treated with Me₃SiNCO (15 mg, 0.130 mmol). The sample was monitored by ¹H NMR spectroscopy, thereby demonstrating the formation of [Bptm]ZnNCO over a period 2 weeks at room temperature. The sample was lyophilized to remove volatile components to give [Bptm]ZnNCO as a white solid (2 mg) which includes some [Bptm]H impurity. ¹H NMR (C₆D₆): 3.10 [s, 1H, (C₅H₄NS)₂C<u>H</u>ZnNCO], 6.09 [m, 2H, (C₃H₄NS)₂CHZnNCO], 6.43 [m, 2H, (C₅H₄NS)₂CHZnNCO], 6.51 [m, 2H, (C₅H₄NS)₂CHZnNCO], 7.95 [m, 2H, (C₅H₄NS)₂CHZnNCO]. ¹³C{¹H} NMR (C₆D₆): 16.38 [s, 1C, (C₅H₄NS)₂CHZnNCO], 119.46 [s, 2C, (C₅H₄NS)₂CHZnNCO], 121.83 [s, 2C, (C₅H₄NS)₂CHZnNCO], not observed [s, 2C, (C₅H₄NS)₂CHZnNCO], 138.08 [s, 2C, (C₅H₄NS)₂CHZnNCO], 146.59 [s, 2C, (C₅H₄NS)₂CHZnNCO], 164.70 [s, 2C, (C₅H₄NS)₂CHZnNCO].

Figure S6. Molecular Structure of [Bptm]ZnNCO

Synthesis of [Bptm]ZnCl

(*i*) A solution of $[Bptm]ZnN(SiMe_3)_2$ (21 mg, 0.045 mmol) in C₆D₆ (ca. 0.5 mL) was treated with Me₃SnCl (9 mg, 0.045 mmol), thereby resulting in the deposition of

colorless crystals over a period of 1 week at room temperature. The crystals were isolated, washed with pentane (1 mL) and dried to give [Bptm]ZnCl as a white solid (14 mg, 93% yield).

(*ii*) A solution of [Bptm]ZnN(SiMe₃)₂ (6 mg, 0.013 mmol) in C_6D_6 (*ca*. 0.5 mL) was treated with Me₃SiCl (15 mg, 0.138 mmol), resulting in the deposition of colorless crystals of [Bptm]ZnCl over a period of two weeks.

(*iii*) A suspension of [Bptm]ZnH (3.5 mg, 0.012 mmol) in C_6D_6 (*ca*. 0.5 mL) was treated with Me₃SnCl (2.5 mg, 0.013 mmol), and monitored by ¹H NMR spectroscopy, thereby demonstrating the formation of [Bptm]ZnCl.

¹H NMR (C₆D₆): 3.27 [s, 1H, (C₅H₄NS)₂HCZnCl], 6.10 [m, 2H, (C₅H₄NS)₂HCZnCl], 6.43 [m, 2H, (C₅H₄NS)₂HCZnCl], 6.53 [dt, ²J_{H-H} = 1 Hz, ³J_{H-H} = 8 Hz, 2H, (C₅H₄NS)₂HCZnCl], 8.32 [m, 2H, (C₅H₄NS)₂HCZnCl]. ¹³C{¹H} NMR (C₆D₆): 17.11 [1C, (C₅H₄NS)₂HCZnCl], 119.37 [2C, (C₅H₄NS)₂HCZnCl], 121.77 [2C, (C₅H₄NS)₂HCZnCl], 138.10 [2C, (C₅H₄NS)₂HCZnCl], 146.97 [2C, (C₅H₄NS)₂HCZnCl], 164.76 [2C, (C₅H₄NS)₂HCZnCl]. Anal. Calcd. for [Bptm]ZnCl: C, 39.4%; H, 3.0%; N, 8.4%. Found: C, 39.4%; H, 2.8%; N, 8.1%. IR Data (ATR, cm⁻¹): 3084 (w), 3057 (w), 3012 (w), 2944 (w), 2743 (w), 1590 (vs), 1552 (vs), 1475 (m), 1460 (vs), 1415 (vs), 1285 (vs), 1252 (m), 1188 (m), 1155 (m), 1129 (vs), 1090 (s), 1045 (s), 1012 (vs), 993 (s), 874 (vs), 755 (vs), 720 (vs), 666 (vs), 646 (vs), 536 (m), 482 (s), 441 (s), 409 (vs).

Figure S7. Molecular Structure of [Bptm]ZnCl

Synthesis of [Bptm]ZnBr

(*i*) A solution of [Bptm]ZnN(SiMe₃)₂ (26 mg, 0.057 mmol) in C₆H₆ (*ca.* 0.5 mL) was treated with Me₃SiBr (15 mg, 0.098 mmol), resulting in the deposition of colorless crystals over a period of two weeks. The crystals were isolated, washed with pentane (1 mL) and dried to give [Bptm]ZnBr as a white solid (6 mg, 28% yield). ¹H NMR (C₆D₆): 3.29 [s, 1H, (C₅H₄NS)₂<u>H</u>CZnBr], 6.10 [m, 2H, (C₅<u>H</u>₄NS)₂HCZnBr], 6.41 [m, 2H, (C₅<u>H</u>₄NS)₂HCZnBr], 6.51 [dt, ²J_{H+H} = 1 Hz, ³J_{H+H} = 8 Hz, 2H, (C₅<u>H</u>₄NS)₂HCZnBr], 8.33 [m, 2H, (C₅<u>H</u>₄NS)₂HCZnBr], 1³C{¹H} NMR (C₆D₆): 17.61 [1C, (C₃H₄NS)₂HCZnBr], 119.39 [2C, (C₅H₄NS)₂HCZnBr], 121.76 [2C, (C₅H₄NS)₂HCZnBr], 138.10 [2C, (C₅H₄NS)₂HCZnBr], 146.94 [2C, (C₅H₄NS)₂HCZnBr], 164.89 [2C, (C₅H₄NS)₂HCZnBr]. Anal. Calcd. for [Bptm]ZnBr: C, 34.9%; H, 2.4%; N, 7.4%. Found: C, 35.4%; H, 2.3%; N, 7.3%. IR Data (ATR, cm⁻¹): 3084 (w), 1591 (vs), 1554 (m), 1459 (s), 1416 (vs), 1286 (m), 1255 (w), 1213 (w), 1191 (w), 1152 (m), 1132 (s), 1095 (w), 1044 m), 1014 (m), 991 (w), 960 (w), 882 (m), 848 (w), 758 (vs), 722 (s), 698 (w), 666 (m), 647 (m), 617 (w), 532 (w), 498 (w), 482 (m), 462 (w), 444 (w), 409 (s). (*ii*) A solution of [Bptm]ZnN(SiMe₃)₂ (7 mg, 0.015 mmol) in C₆D₆ (*ca*. 0.5 mL) was treated with Me₃SnBr (15 mg, 0.062 mmol), resulting in the deposition of colorless crystals over 1 week, which were isolated *via* decantation and dried to give [Bptm]ZnBr. (*iii*) A suspension of [Bptm]ZnH (6 mg, 0.020 mmol) in C₆D₆ (*ca*. 0.5 mL) was treated with Me₃SiBr (15 mg, 0.098 mmol) and monitored by ¹H NMR spectroscopy, thereby demonstrating the formation of [Bptm]ZnBr. The solution was lyophilized to remove volatile components to give [Bptm]ZnBr as a white solid (5 mg, 66% yield).

Figure S8. Molecular Structure of [Bptm]ZnBr

Synthesis of [Bptm]ZnI

(*i*) A solution of $[Bptm]ZnN(SiMe_3)_2$ (26 mg, 0.057 mmol) in C₆D₆ (*ca*. 0.5 mL) was treated with Me₃SnI (20 mg, 0.069 mmol), resulting in the deposition of colorless crystals over a period of one week. The crystals were isolated, washed with pentane (1 mL) and dried to give [Bptm]ZnI as a white solid (11 mg, 45% yield).

¹H NMR (C₆D₆): 3.32 [s, 1H, (C₅H₄NS)₂HCZnI], 6.09 [m, 2H, (C₅H₄NS)₂HCZnI], 6.38 [m, 2H, (C₅H₄NS)₂HCZnI], 6.50 [dt, ²J_{H-H} = 1 Hz, ³J_{H-H} = 8 Hz, 2H, (C₅H₄NS)₂HCZnI], 8.35 [m, 2H, (C₅H₄NS)₂HCZnI]. ¹³C{¹H} NMR (C₆D₆): 18.60 [1C, (C₅H₄NS)₂HCZnI], 119.40 [2C, (C₅H₄NS)₂HCZnI], 121.75 [2C, (C₅H₄NS)₂HCZnI], 138.09 [2C, (C₅H₄NS)₂HCZnI], 146.85 [2C, (C₅H₄NS)₂HCZnI], 165.04 [2C, (C₅H₄NS)₂HCZnI]. Anal. Calcd. for [Bptm]ZnI: C, 31.0%; H, 2.1%; N, 6.6%. Found: C, 31.3%; H, 2.2%; N, 6.5%. IR Data (ATR, cm⁻¹): 3071 (w), 3054 (w), 3011 (w), 2945 (w), 1593 (vs), 1553 (s), 1480 (m), 1457 (s), 1416 (vs), 1280 (s), 1188 (m), 1153 (m), 1130 (s), 1094 (m), 1044 (s), 1015 (s), 963 (m), 887 (m), 878 (s), 761 (vs), 720 (vs), 665 (s), 647 (s), 538 (m), 482 (s), 443 (m), 412 (s).

(*ii*) A solution of $[Bptm]ZnN(SiMe_3)_2$ (11 mg, 0.024 mmol) in C₆D₆ (*ca.* 0.5 mL) was treated with Me₃SiI (15 mg, 0.075 mmol), resulting in the deposition of colorless crystals over 2 weeks.

(*iii*) A suspension of [Bptm]ZnH (4 mg, 0.013 mmol) in C_6D_6 (*ca*. 0.5 mL) was treated with Me₃SnI (10 mg, 0.034 mmol) and monitored by ¹H NMR spectroscopy, thereby demonstrating the formation of [Bptm]ZnI.

Figure S9. Molecular Structure of [Bptm]ZnI

Synthesis of [Bptm]ZnMe

A solution of [Bptm]H (53 mg, 0.226 mmol) in C_6D_6 (*ca*. 0.5 mL) was treated with Me₂Zn (20 mg, 0.209 mmol). The solution was heated at 100°C for 40 days and then lyophilized to remove volatile components to give [Bptm]ZnMe as a brown solid. Colorless crystals were obtained *via* diffusion of pentane into benzene. ¹H NMR (C_6D_6): 0.00 [s, 3H, (C_5H_4NS)₂CHZnCH₃], 3.47 [s, 1H, (C_5H_4NS)₂CHZnCH₃], 6.15 [m, 2H, (C_5H_4NS)₂CHZnCH₃], 6.50 [m, 2H, (C_5H_4NS)₂CHZnCH₃], 6.69 [m, 2H, (C_5H_4NS)₂CHZnCH₃], 8.00 [m, 2H, (C_5H_4NS)₂CHZnCH₃]. ¹³C{¹H} NMR (C_6D_6): -14.44 [s, 1C, (C_5H_4NS)₂CHZnCH₃], 20.86 [s, 1C, (C_5H_4NS)₂CHZnCH₃], 118.83 [s, 2C, (C_5H_4NS)₂CHZnCH₃], 121.58 [s, 2C, (C_5H_4NS)₂CHZnCH₃], 137.12 [s, 2C, (C_5H_4NS)₂CHZnCH₃], 146.48 [s, 2C, (C_5H_4NS)₂CHZnCH₃], 165.85 [s, 2C, (C_5H_4NS)₂CHZnCH₃].

Figure S10. Molecular Structure of [Bptm]ZnMe

Hydrosilylation of CO₂ by (MeO)₃SiH as catalyzed by [Bptm]ZnH

A mixture of [Bptm]ZnH (0.3 mg, 0.001 mmol), (MeO)₃SiH (21 mg, 0.172 mmol), and mesitylene (10 mg, 0.083 mmol) in C_6D_6 (*ca*. 0.5 mL) was treated with CO₂ (1 atm), heated at 60°C, and monitored by ¹H NMR spectroscopy over the course of 23 hours, thereby demonstrating the formation of (MeO)₃SiO₂CH (Table S1).

Hydrosilylation of CO₂ by (EtO)₃SiH as catalyzed by [Bptm]ZnH

A mixture of [Bptm]ZnH (0.3 mg, 0.001 mmol), (EtO)₃SiH (28 mg, 0.170 mmol), and mesitylene (10 mg, 0.083 mmol) in C_6D_6 (*ca*. 0.5 mL) was treated with CO₂ (1 atm), heated at 80°C, and monitored by ¹H NMR spectroscopy over the course of 2 days, thereby demonstrating the formation of (EtO)₃SiO₂CH (Table S1).

Hydroboration of CO₂ by HBpin as catalyzed by [Bptm]ZnH

A mixture of [Bptm]ZnH (1.5 mg, 0.005 mmol), HBpin (22 mg, 0.172 mmol), and mesitylene (10 mg, 0.083 mmol) in C_6D_6 (*ca*. 0.5 mL) was treated with CO_2 (1 atm) and monitored by ¹H NMR spectroscopy over the course of 2 days, thereby demonstrating the formation of pinBO₂CH (Table S1).

Hydrosilylation of Ph₂CO by PhSiH₃ as catalyzed by [Bptm]ZnH

A mixture of Ph₂CO (95 mg, 0.521 mmol), PhSiH₃ (56 mg, 0.517 mmol) and mesitylene (15 mg, 0.125 mmol) in C₆D₆ (*ca.* 0.5 mL) was treated with [Bptm]ZnOSiPh₃ (3 mg, 0.005 mmol), as a precursor to [Bptm]ZnH, and monitored by ¹H NMR spectroscopy over the course of 10.5 hours, thereby demonstrating the consumption of PhSiH₃ accompanied by the formation of PhSiH₂(OCHPh₂)⁵ (3%) and PhSiH(OCHPh₂)₂ (97%); Table S1.⁶ Selected ¹H NMR signals for PhSiH(OCHPh₂)₂: 5.33 [s, 1H, PhSiH(OCHPh₂)₂], 5.92 [s, 2H, PhSiH(OC<u>HPh₂)₂].</u>

Hydrosilylation of PhC(O)Me by PhSiH₃ as catalyzed by [Bptm]ZnH

A mixture of PhC(O)Me (63 mg, 0.525 mmol), PhSiH₃ (56 mg, 0.517 mmol) and mesitylene (15 mg, 0.125 mmol) in C_6D_6 (*ca.* 0.5 mL) was treated with [Bptm]ZnOSiPh₃ (3 mg, 0.005 mmol), as a precursor to [Bptm]ZnH, and monitored by ¹H NMR spectroscopy over the course of 9 hours, thereby demonstrating the consumption of $PhSiH_3$ accompanied by the formation of $PhSiH_2[OCH(Ph)Me]$ (3%) and $PhSiH[OCH(Ph)Me]_2$ (97%); Table S1.⁵

Hydroboration of Ph₂CO by HBpin as catalyzed by [Bptm]ZnH

A mixture of Ph_2CO (35 mg, 0.192 mmol) and HBpin (25 mg, 0.195 mmol) in C_6D_6 (*ca*. 0.5 mL) was treated with [Bptm]ZnH (0.4 mg, 0.001 mmol) and monitored by ¹H NMR spectroscopy over 8 hours, thereby demonstrating the formation of pinBOCHPh₂⁷ (Table S1).

Hydroboration of PhC(O)Me by HBpin as catalyzed by [Bptm]ZnH

A mixture of PhC(O)Me (25 mg, 0.208 mmol) and HBpin (24 mg, 0.188 mmol) in C_6D_6 (*ca*. 0.5 mL) was treated with [Bptm]ZnH (0.4 mg, 0.001 mmol) and monitored by ¹H NMR spectroscopy over 5 hours, thereby demonstrating the formation of pinBOCHPhMe⁷ (Table S1).

Hydroboration of PhCHO by HBpin as catalyzed by [Bptm]ZnH

A mixture of PhCHO (36 mg, 0.339 mmol) and HBpin (45 mg, 0.352 mmol) in C_6D_6 (*ca*. 0.5 mL) was treated with [Bptm]ZnH (0.3 mg, 0.001 mmol) and monitored by ¹H NMR spectroscopy over 15 hours, thereby demonstrating the formation of pinBOCH₂Ph⁷ (Table S1).

Reduction of HCO₂Bpin to MeOBpin by HBpin

A mixture of [Bptm]ZnH (2 mg, 0.007 mmol) and HBpin (20 mg, 0.156 mmol) in C₆D₆ (*ca*. 0.5 mL) was treated with CO₂ (1 atm) and monitored by ¹H NMR spectroscopy over a period of 2 days, thereby demonstrating the partial formation of HCO₂Bpin (TON = 6.5, TOF = 0.14 h⁻¹). The sample was degassed and placed under N₂. After standing at room temperature for 2 days, the sample was heated at 60°C for 3 days and monitored

by ¹H NMR spectroscopy, thereby demonstrating the formation of MeOBpin accompanied by $O(Bpin)_2^{\ 8}$ (TON = 4.2, TOF = 0.06 h⁻¹).

Reaction of [Bptm]ZnO₂CH with HBpin to form MeOBpin

A solution of [Bptm]ZnO₂CH (2.5 mg, 0.007 mmol) in C₆D₆ (*ca*.0.5 mL) was treated with HBpin (15 mg, 0.117 mmol) and monitored by ¹H NMR spectroscopy over the course of 4 days, thereby demonstrating the formation of MeOBpin accompanied by O(Bpin)₂.

Competition of hydrosilylation and hydroboration of Ph₂CO as catalyzed by [Bptm]ZnH

A mixture of Ph_2CO (40 mg, 0.220 mmol), HBpin (28 mg, 0.219 mmol), and $PhSiH_3$ (24 mg, 0.222 mmol) in C_6D_6 (*ca.* 0.5 mL) was treated with [Bptm]ZnH (0.3 mg, 0.001 mmol) and monitored by ¹H NMR spectroscopy over 2 days, thereby demonstrating that formation of pinBOCHPh₂ (TON = 104, TOF = 2.2 h⁻¹) was more facile than that of PhSiH(OCHPh₂)₂ (TON = 17, TOF = 0.35 h⁻¹).⁵

Competition of hydrosilylation and hydroboration of PhC(O)Me as catalyzed by [Bptm]ZnH

A mixture of [Bptm]ZnH (0.3 mg, 0.001 mmol), HBpin (33 mg, 0.258 mmol), and PhSiH₃ (24 mg, 0.259 mmol) in C₆D₆ (*ca.* 0.5 mL) was treated with PhC(O)Me (37 mg, 0.308 mmol) and monitored by ¹H NMR spectroscopy over 2 hours, thereby demonstrating that formation of pinBOCH(Ph)Me (TON = 40, TOF = 20 h⁻¹) was more facile than that of PhSiH[OCH(Ph)Me]₂ (TON = 25, TOF = 12 h⁻¹).⁵

Silane or	Substrate	Temp.	Catalyst	Products	TON	TOF
borane		(°C)	loading			(h ⁻¹)
			(%)			
(MeO) ₃ SiH	CO ₂	60	0.5	(MeO) ₃ SiO ₂ CH	97	4.2
(EtO)₃SiH	CO ₂	80	0.5	(EtO) ₃ SiO ₂ CH	114	2.4
HBpin	CO ₂	rt	3	HCO ₂ Bpin	11	0.43
PhSiH ₃	Ph ₂ CO	rt	1	PhSiH ₂ (OCHPh ₂)	53	5
				(3%)		
				PhSiH(OCHPh ₂) ₂		
				(97%)		
PhSiH ₃	PhC(O)Me	rt	1	PhSiH ₂ [OCH(Ph)Me]	54	6
				(3%)		
				PhSiH[OCH(Ph)Me] ₂		
				(97%)		
HBpin	Ph ₂ CO	rt	0.5	pinBOCHPh ₂	77	10
HBpin	PhC(O)Me	rt	0.5	pinBOCH(Ph)Me	43	9
HBpin	PhCHO	rt	0.3	pinBOCH ₂ Ph	328	22

Table S1. Catalytic reduction of CO_2 and R_2CO .

Figure S11. ¹H NMR spectrum of [Bptm]ZnN(SiMe₃)₂ in C_6D_6 .

Figure S12. ¹³C{¹H} NMR spectrum of [Bptm]ZnN(SiMe₃)₂ in C_6D_6 .

Figure S13. ¹H NMR spectrum of [Bptm]ZnMe in C_6D_6 .

Figure S14. 1 H NMR spectrum of [Bptm]ZnOSiPh₃ in C₆D₆.

Figure S15. ${}^{13}C{}^{1}H$ NMR spectrum of [Bptm]ZnOSiPh₃ in C₆D₆.

Figure S16. ¹H NMR spectrum of [Bptm]ZnH in C₆D₆.

Figure S17. ¹³C{¹H} NMR spectrum of [Bptm]ZnH in C_6D_6 .

Figure S18. ¹H NMR spectrum of [Bptm]ZnCl in C_6D_6 .

Figure S19. ${}^{13}C{}^{1}H$ NMR spectrum of [Bptm]ZnCl in C₆D₆.

Figure S20. ¹H NMR spectrum of [Bptm]ZnBr in C_6D_6 .

Figure S22. ¹H NMR spectrum of [Bptm]ZnI in C_6D_6 .

Figure S23. ${}^{13}C{}^{1}H$ NMR spectrum of [Bptm]ZnI in C_6D_6 .

Figure S25. ¹H NMR spectrum of [Bptm]ZnO₂CH in C_6D_6 .

Figure S27. ¹H NMR spectrum demonstrating hydroboration of CO_2 by HBpin in the presence of [Bptm]ZnH in C_6D_6 at room temperature (mesitylene as an internal standard is indicated *).

Figure S28. ¹H NMR spectrum demonstrating hydrosilylation of CO_2 by (MeO)₃SiH in the presence of [Bptm]ZnH in C_6D_6 at 60°C (mesitylene as an internal standard is indicated *).

Figure S29. ¹H NMR spectrum demonstrating hydrosilylation of Ph_2CO by $PhSiH_3$ in the presence of [Bptm]ZnH in C_6D_6 (mesitylene as an internal standard is indicated *).

Figure S30. ¹H NMR spectrum demonstrating hydrosilylation of PhC(O)Me by PhSiH₃ in the presence of [Bptm]ZnH in C₆D₆ (mesitylene as an internal standard is indicated *).

Figure S31. ¹H NMR spectroscopic evidence demonstrating hydroboration of HCO₂Bpin by HBpin in the presence of [Bptm]ZnH in C₆D₆.

Figure S32. ¹H NMR spectroscopic evidence demonstrating the reaction of [Bptm]ZnO₂CH with HBpin to form MeOBpin in C₆D₆.

Figure S33. ¹H NMR spectroscopic evidence for more facile hydroboration than hydrosilylation of Ph₂CO catalyzed by [Bptm]ZnH in C₆D₆.

Figure S34. ¹H NMR spectrum demonstrating hydroboration of PhCHO by HBpin in the presence of [Bptm]ZnH in C₆D₆.

Figure S35. ¹H NMR spectrum demonstrating hydroboration of Ph₂CO by HBpin in the presence of [Bptm]ZnH in C₆D₆.

Figure S36. ¹H NMR spectrum demonstrating hydroboration of PhC(O)Me by HBpin in the presence of [Bptm]ZnH in C₆D₆.

Figure S37. ¹H NMR spectroscopic evidence for more facile hydroboration than hydrosilylation of PhC(O)Me catalyzed by [Bptm]ZnH in C₆D₆.

REFERENCES

- (1) (a) McNally, J. P.; Leong, V. S.; Cooper, N. J. in *Experimental Organometallic* Chemistry, Wayda, A. L.; Darensbourg, M. Y., Eds.; American Chemical Society: Washington, DC, 1987; Chapter 2, pp 6-23.
 (b) Burger, B.J.; Bercaw, J. E. in Experimental Organometallic Chemistry; Wayda, A. L.; Darensbourg, M. Y., Eds.; American Chemical Society: Washington, DC, 1987; Chapter 4, pp 79-98.
 (c) Shriver, D. F.; Drezdzon, M. A.; The Manipulation of Air-Sensitive Compounds, 2nd Edition; Wiley-Interscience: New York, 1986.
- (2) Gottlieb, H. E.; Kotlyar, V.; Nudelman, A. J. Org. Chem. **1997**, 62, 7512-7515.
- (3) de Castro, V. D.; de Lima, G. M.; Filgueiras, C. A. L.; Gambardella, M. T. P. "The molecular structure and spectral studies of mercaptopyridyl-based ligands" *J. Mol. Struct.* 2002, 609, 199-203.
- (4) (a) Sheldrick, G. M. SHELXTL, An Integrated System for Solving, Refining, and Displaying Crystal Structures from Diffraction Data; University of Göttingen, Göttingen, Federal Republic of Germany, 1981.
 (b) Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.
 (c) Sheldrick, G. M. Acta Cryst. 2015, A71, 3-8.
- (5) Sattler, W.; Ruccolo, S.; Chaijan, M. R.; Allah, T. N.; Parkin, G. Organometallics
 2015, 34, 4717-4731.
- (6) For other examples of competitive mono and di-insertion of ketones into Si–H bonds, see reference 5 and
 (a) Findlay, A. E.; Leelasubcharoen, S.; Kuzmina, L. G.; Howard, J. A. K.; Nikonov, G. I. *Dalton Trans.* 2010, *39*, 9264-9269.
 (b) McLeod, N. A.; Kuzmina, L. G.; Korobkov, I.; Howard, J. A. K.; Nikonov, G. I. *Dalton Trans.* 2016, *45*, 2554-2561.

- (7) Anga, S.; Acharya, J.; Chandrasekhar, V. J. Org. Chem. 2021, 86, 2224-2234.
- Sokolovicz, Y. C. A.; Faza, O. N.; Specklin, D.; Jacques, B.; Lopez, C. S.; dos
 Santos, J. H. Z.; Schrekker, H. S.; Dagorne, S. *Catal. Sci. Technol.* 2020, 10, 2407-2414.