Supporting Information

Hidden Silylium-Type Reactivity of a Siloxane-Based Phosphonium–Hydroborate Ion Pair

Nicolò Fontana, Noel Angel Espinosa-Jalapa, Michael Seidl, and Jonathan O. Bauer*

Institut für Anorganische Chemie, Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany

Corresponding Author: jonathan.bauer@ur.de

Table of Contents

1.	Gen	neral Remarks	2	
2.	Syn	thetic Procedures	3	
2.	1.	Synthesis of <i>t</i> Bu ₂ PCH ₂ Li (4)	3	
2.2	2.	Synthesis of <i>t</i> BuPhSi(H)CI	3	
2.3	3.	Synthesis of <i>t</i> BuPhSi(H)OH	5	
2.4	4.	Synthesis of <i>t</i> BuPhSi(H)(OLi) (2)	7	
2.	5.	Synthesis of Ph ₂ Si(Cl)OSiPh(H) <i>t</i> Bu (3)	9	
2.0	6.	Synthesis of (<i>t</i> Bu) ₂ PCH ₂ SiPh ₂ OSiPh(H) <i>t</i> Bu (5)	12	
2.	7.	Synthesis of (<i>t</i> Bu) ₂ P(S)CH ₂ SiPh ₂ OSiPh(H) <i>t</i> Bu (6)	15	
2.8	8.	Synthesis of [(<i>t</i> Bu) ₂ P(S)CH ₂ SiPh ₂ OSiPhtBu][HB(C ₆ F ₅) ₃] { 7 [HB(C ₆ F ₅) ₃]}	18	
2.9	9.	Synthesis of [(<i>t</i> Bu) ₂ P(S)CH ₂ SiPh ₂ OSiPh <i>t</i> Bu][B(C ₆ F ₅) ₄] { 7 [B(C ₆ F ₅) ₄]}	22	
2.	10.	Synthesis of $(tBu)_2P(S)CH_2SiPh_2OSi(F)PhtBu (8)$ and $(C_6F_5)_2(C_6F_4H)B(OH_2)$ (9)).28	
3.	X-R	ay Crystallographic Details	36	
3.	1.	Compound 6	38	
3.2	2.	Compound 7 [B(C ₆ F ₅) ₄]	39	
3.3	3.	Compound 9·H ₂ O·(THF) ₂	40	
4.	Qua	antum Chemical Calculations	41	
5.	5. References			

1. General Remarks

All experiments were performed in an inert atmosphere of purified nitrogen by using standard Schlenk techniques or an MBraun Unilab 1200/780 glovebox. Glassware was heated at 140°C prior to use. Diethyl ether (Et₂O), dichloromethane (DCM), hexane, pentane, tetrahydrofuran (THF), and toluene were dried and degassed with an MBraun SP800 solvent purification system. n-Butyllithium (2.5 M or 1.6 M solution in hexane, Merck KGaA), dichlorophenylsilane (97 %, Merck KGaA), di-tert-butyl (methyl) phosphine (97%, Merck KGaA), tert-butyllithium (1.9 M solution in pentane, Merck KGaA), sulphur (99%, Merck KGaA) and hydrogen chloride (2.0 M solution in diethyl ether, Merck KGaA) were used as received without any further purification. Tris(pentafluorophenyl)borane [BCF, $B(C_6F_5)_3]^{[1]}$ and $[H(OEt_2)_2]^+[B(C_6F_5)_4]^{-[2]}$ were synthesized following reported procedures. C_6D_6 and CD_2Cl_2 used for NMR spectroscopy were dried over Na/K amalgam and CaH₂, respectively. NMR spectra were either recorded using a Bruker Avance 400 (400.13 MHz) or a Bruker Avance III HD 400 (400.13 MHz) at 25 °C. Chemical shifts (δ) are reported in parts per million (ppm). ¹H and ¹³C{¹H} NMR spectra are referenced to tetramethylsilane (SiMe₄, $\delta = 0.0$ ppm) as external standard, with the deuterium signal of the solvent serving as internal lock and the residual solvent signal as an additional reference. ¹¹B{¹H}, ¹⁹F{¹H}, ²⁹Si{¹H}, and ³¹P{¹H} NMR spectra are referenced to BF₃·OEt₂, CFCl₃, SiMe₄, and H₃PO₄, respectively. For the assignment of the multiplicities, the following abbreviations are used: s = singlet, d = doublet, t = triplet m = multiplet. For simplicity, multiplets of order higher than one are described approximating them to the closest first-order type. High-resolution mass spectrometry was carried out on a Jeol AccuTOF GCX and an Agilent Q-TOF 6540 UHD spectrometer. Elemental analyses were performed on a Vario MICRO cube apparatus.

2. Synthetic Procedures

2.1. Synthesis of tBu₂PCH₂Li (4)

Compound **4** was synthesized according to a procedure by Lerner *et al.*^[3] In a glovebox, a Schlenk flask was loaded with pure di-*tert*-butylmethylphosphine (2.0 g, 12.5 mmol, 1.0 equiv.). After connecting the flask to a Schlenk line, *tert*-butyllithium (7.3 ml of a 1.9 M solution in pentane, 13.8 mmol, 1.1 equiv.) was added carefully. The resulting clear solution was stirred during 15 min at room temperature. Afterwards, a distillation bridge with a receiving Schlenk flask was connected and the Schlenk containing the mixture was gradually heated up to 65°C while gently stirring. The system was allowed to react under these conditions for 16 h during which the solvent was slowly distilled off and the oily residue turned into a pale-yellow solid. The distillation bridge with the receiving Schlenk flask was removed while flowing nitrogen from both ends to prevent possible flames. The solid was washed with dry pentane (3 x 5 ml) and carefully dried in vacuum giving pure compound **4** as a white solid (1.41 g, 8.5 mmol, 68%). Spectroscopic data were in accordance with those reported in the literature.^[3]

2.2. Synthesis of tBuPhSi(H)Cl

A two-necked Schlenk flask featuring a dropping funnel was filled with pentane (80 mL) and PhHSiCl₂ (4.57 g, 25.8 mmol, 1.0 equiv.). The whole mixture was cooled down to -68°C. *tert*-butyllithium (15.2 mL of a 1.7 M solution in pentane, 25.8 mmol, 1.0 equiv.) was loaded in the dropping funnel and diluted with additional pentane (35 mL). The diluted *tert*-butyllithium solution was added dropwise to the solution of PhHSiCl₂ in pentane at -68°C over a period of 1h under vigorous stirring. The clear solution was then allowed to slowly warm up to room temperature and stirred overnight at room temperature. The obtained white suspension was transferred by means of PTFE tubing to a fritted column layered with Celite®, filtered and the remaining solids washed with more pentane (2 x 20 mL). The clear colorless filtrates were collected, and all volatiles removed under vacuum yielding pure *t*BuPhSi(H)Cl as a clear colourless oil (4.84 g, 24.3 mmol, 88%).

¹**H NMR** (400.13 MHz, C₆D₆, 298 K): δ = 0.92 [s, 9H, C(CH₃)₃], 5.01 [s with ²⁹Si satellites, ¹J_{H-Si} = 223.6, 1H, Si*H*], 7.08–7.14 [m, 3H, *H*_{Ph}], 7.51–7.54 [m, 2H, *H*_{Ph}]. ¹³C{¹H} NMR (100.62 MHz, C₆D₆, 298 K): δ = 19.4 [s, C(CH₃)₃], 25.4 [s, C(CH₃)₃], 128.3 [s, *C*_{Ph}], 131.0 [s, *C*_{Ph}], 131.7 [s, *C*_{Ph}], 134.8 [s, *C*_{Ph}]. ²⁹Si{¹H} NMR (79.49 MHz, C₆D₆, 298 K): δ 11.5. HR-MS (EI+), calculated m/z for C₁₀H₁₅SiCl [M]⁺: 198.06261; found: 198.06276.

Figure S2. $^{13}C\{^{1}H\}$ NMR spectrum (C_6D_6, 298 K) of $t\!BuPhSi(H)Cl.$

50 45 40 35 30 25 20 15 10 5 0 -5 -10 -15 -20 -25 -30 Figure S3. ²⁹Si{¹H} NMR spectrum (C₆D₆, 298 K) of *t*BuPhSi(H)Cl.

2.3. Synthesis of *t*BuPhSi(H)OH

To a stirred solution of *t*BuPhSi(H)Cl (3.68 g, 18.55 mmol) in diethyl ether (60 ml) at -30°C, H₂O (2 ml, 111.11 mmol) was added followed by an excess of NaHCO₃. The resulting suspension was then allowed to slowly warm up to room temperature and reacted overnight under vigorous stirring. Afterwards, the reaction mixture was dried with MgSO₄, the white suspension filtered, and the remaining solids washed with diethyl ether (2 x 20 ml). The clear colorless filtrates were collected and all the volatiles were gently removed under vacuum, without an external source of heating, to yield pure *t*BuPhSi(H)OH as a clear colorless oil (3.08 g, 17.08 mmol, 92%). Batches of freshly prepared silanol, dissolved in hexane and stored at -30°C are stable over a period of months, otherwise the neat isolated silanol slowly converts to the respective siloxane at room temperature.

¹H NMR (400.13 MHz, C₆D₆, 298 K): δ= 0.97 [s, 9H, C(CH₃)₃], 2.59 [s, 1H, OH], 5.05 [s with ²⁹Si satellites, ¹J_{HSi} = 204.6, 1H, SiH], 7.17–7.18 [m, 3H, H_{Ph}], 7.56–7.57 [m, 2H, H_{Ph}]. ¹³C{¹H} NMR (100.62 MHz, C₆D₆, 298 K): δ= 17.7 [s, C(CH₃)₃], 25.2 [s, C(CH₃)₃], 127.7 [s, C_{Ph}], 129.9 [s, C_{Ph}], 134.1 [s, C_{Ph}], 135.0 [s, C_{Ph}]. ²⁹Si{¹H} NMR (79.49 MHz, C₆D₆, 298 K): δ= 0.9. HR-MS (EI+), calculated. m/z for C₁₀H₁₆OSi [M]⁺: 180.09649; found: 180.09652. CHN Analysis C₁₀H₁₆OSi; calculated: C 66.61; H 8.94; found: C 65.34; H 8.31.

Figure S5. $^{13}C\{^{1}H\}$ NMR spectrum (C₆D₆, 298 K) of *t*BuPhSi(H)OH.

2.4. Synthesis of tBuPhSi(H)(OLi) (2)

n-Butyllithium (6.8 ml, 2.5 M in hexane, 17.08 mmol, 1.0 equiv.) was added dropwise to a solution of *t*BuPhSiH(OH) (3.08 g, 17.08 mmol, 1.0 equiv.) in pentane (40 ml) at -30°C. The resulting clear pale-yellow solution was then allowed to slowly warm up to room temperature under vigorous stirring. After additional 2 h of stirring at room temperature, the Schlenk flask containing the whole mixture was sealed and stored at -30°C leading to the precipitation of the lithiated silanolate **2** as a clear colorless crystalline solid over a period of three days. Afterwards, the cold mother-liquor (-30°C) was removed *via* suction filtration and the solid dried under vacuum affording pure silanolate **2** as a white solid (2.48 g, 13.32 mmol, 78%).

¹H NMR (400.13 MHz, THF-*d*₈, 298 K): δ= 0.82 [s, 9H, C(C*H*₃)₃], 4.83 [s with ²⁹Si satellites, ¹*J*_{HSi} = 180.4, 1H, Si*H*], 7.17 [m, 3H, *H_{Ph}*], 7.56 [m, 2H, *H_{Ph}*]. ¹³C{¹H} NMR (100.62 MHz, THF-*d*₈, 298 K): δ= 18.9 [s, *C*(CH₃)₃], 26.2 [s, C(*C*H₃)₃], 126.2 [s, *C_{Ph}*], 127.1 [s, *C_{Ph}*], 134.1 [s, *C_{Ph}*], 144.6 [s, *C_{Ph}*]. ²⁹Si{¹H} NMR (79.49 MHz, THF-*d*₈, 298 K): δ = -14.8. ⁷Li{¹H} NMR (155.50 MHz, THF-*d*₈, 298 K): δ = 0.3. HR-MS (ESI+), calculated. m/z for C₂₀H₃₀O₂Si₂ [2M + Li]⁺: 379.2264; found: 379.2252. CHN Analysis C₁₀H₁₅LiOSi: calculated: C 64.49, H 8.12; found: C 64.36; H 8.08.

Figure S8. ¹³C{¹H} NMR spectrum (THF-*d*₈, 298 K) of *t*BuPhSi(H)(OLi) (2).

2.5. Synthesis of Ph₂Si(Cl)OSiPh(H)*t*Bu (3)

Lithium silanolate **2** (9.68 g, 52.0 mmol, 1.0 equiv.) was suspended in diethyl ether (100 ml) and the solution was cooled down to -80° C. Ph₂SiCl₂ **1** (13.2 g, 52.0 mmol, 1.0 equiv.) was added *via* syringe in one portion. The reaction mixture was stirred vigorously without further cooling for 15 h during which a white precipitate was formed. The solids were filtered off and rinsed three times with pentane (3 x 30 ml). All volatiles were removed under reduced pressure. The crude mixture was purified *via* Kugelrohr distillation (165 °C oven temperature, 1.0 x 10⁻³ mbar) affording pure product **3** as a colourless oil (13.2 g, 33.3 mmol, 64%).

¹**H NMR** (400.13 MHz, C₆D₆, 298 K): δ =1.00 [s, 9H, SiC(CH₃)₃], 5.18 [s, 1H, SiH], 7.08–7.14 [m, 9H, H_{Ph}], 7.60–7.62 [m, 2H, H_{Ph}], 7.74–7.76 [m, 4H, H_{Ph}]. ¹³C{¹H} NMR (100.61 MHz, C₆D₆, 298 K): δ = 18.5 [s, SiCH₂(CH₃)₃], 25.5 [s, SiCH₂(CH₃)₃], 128.2 [s, C_{Ph}], 128.4 [s, C_{Ph}], 130.5 [s, C_{Ph}], 131.2 [s, C_{Ph}], 134.0 [s, C_{Ph}], 134.1 [s, C_{Ph}], 134.6 [s, C_{Ph}]. ²⁹Si{¹H} NMR (79.49 MHz, C₆D₆, 298 K): δ = -19.1 [s, CISiO*Si*H], -3.3 [s, CI*Si*OSiH]. CHN Analysis C₂₂H₂₅CIOSi₂: calculated: C 66.55, H 6.35; found C 69.90, H 6.45. HR-MS (ESI+), calculated. m/z for C₁₈H₁₆CIOSi₂+ [M-C₄H₉]⁺: 339.0428; found: 339.0426.

Figure S13. $^{29}\text{Si}\{^{1}\text{H}\}$ NMR spectrum (C_6D_6, 298 K) of compound 3.

2.6. Synthesis of (tBu)2PCH2SiPh2OSiPh(H)tBu (5)

Siloxane **3** (3.85 g, 9.7 mmol, 1.0 equiv.) was dissolved in pentane (20 ml) and the solution was cooled down to -80 °C. Freshly prepared tBu_2PCH_2Li (**4**) (1.61 g, 9.7 mmol, 1.0 equiv.) was added by the means of a PTFE cannula as a THF solution (10 ml). The reaction mixture was stirred for 15 h without further cooling. Afterwards, all volatiles were removed in vacuum yielding a colourless solid which was extracted with DCM (3 x 5 ml). The solids were filtered off by cannula filtration and the clear filtrates collected and dried under vacuum. The crude mixture was purified *via* Kugelrohr distillation (190°C oven temperature, 1.0 x 10⁻³ mbar) affording the desired compound **5** as a colourless oil (2.92 g, 5.6 mmol 58%).

¹**H NMR** (400.30 MHz, CD₂Cl₂, 298 K): δ =0.90 [s, 9H, SiC(CH₃)₃], 0.96 [d, ³J_{P-H}= 2.4 Hz, 9H, PC(CH₃)₃], 0.98 [d, ³J_{P-H}= 2.4 Hz, 9H, PC(CH₃)₃], 1.25 [b, 2H, SiCH₂P], 4.92 [s,1H, SiH], 7.28–7.39 [m, 9H, H_{Ph}], 7.60–7.63 [m, 2H, H_{Ph}], 7.66 [m, 2H, H_{Ph}], 7.68 [m, 2H, H_{Ph}]. ¹³C{¹H} **NMR** (100.66 MHz, C₆D₆, 298 K): δ = 6.8 [d, ¹J_{P-C}= 44.5 Hz, SiCH₂P], 18.8 [s, SiCH₂(CH₃)₃], 25.9 [s, SiCH₂(CH₃)₃], 29.6 [d, ²J_{P-C}= 2.2 Hz, PC(CH₃)₃], 29.7 [d, ²J_{P-C}= 2.3 Hz, PC(CH₃)₃], 31.7 [d, ¹J_{P-C}= 2.9 Hz, PC(CH₃)₃], 31.9 [d, ¹J_{P-C}= 3.0 Hz, PC(CH₃)₃], 127.8 [s, C_{Ph}], 127.9 [s, C_{Ph}], 127.9 [s, C_{Ph}], 130.0 [s, C_{Ph}], 130.0 [s, C_{Ph}], 130.1 [s, C_{Ph}], 134.9 [s, C_{Ph}], 135.4 [m, C_{Ph}], 135.6 [s, C_{Ph}], 137.4 [dd, J_{P-C}= 1.8 Hz, J_{P-C}= 7.0 Hz, C_{Ph}]. ²⁹Si{¹H} NMR (79.49 MHz, CD₂Cl₂, 298 K): δ = -12.6 [d, ²J_{Si-P}= 23.9 Hz, PCSiOSiH], -5.6 [s, PCSiOSiH]. ³¹P{¹H} NMR (162.04 MHz, CD₂Cl₂, 298 K): δ = 15.3 [s]. CHN Analysis C₃₁H₄₅OPSi₂: calculated: C 71.49, H 8.71; found C 71.96, H 8.81. HR-MS (ESI+), calculated. m/z for C₃₁H₄₅OPSi₂+ [M+H]⁺: 521.2819; found: 521.2777.

Figure S17. $^{31}\mathsf{P}\{^{1}\mathsf{H}\}$ NMR spectrum (CD₂Cl₂, 298 K) of compound 5.

2.7.Synthesis of (tBu)2P(S)CH2SiPh2OSiPh(H)tBu (6)

Siloxane **5** (3.27 g, 6.3 mmol, 1.0 equiv.) was dissolved in DCM (20 ml) and the solution was cooled down to 0°C. Pre-dried elemental sulphur (201 mg, 6.3 mmol, 1.0 equiv.) was added as a solid in one portion. The mixture was stirred without further cooling for 2 h during which the proceeding of the reaction could also be monitored by the disappearing of the solids. The solvent was removed in vacuum and the oily residue purified *via* Kugelrohr distillation (190°C oven temperature, 1.0 x 10^{-3} mbar). Compound **6** was obtained as a colourless oil (1.9 g, 3.5 mmol, 56 %). After two weeks, the oil spontaneously crystallized affording crystals suitable for single-crystal X-ray diffraction analysis.

¹**H NMR** (400.30 MHz, CD₂Cl₂, 298 K): δ =0.90 [s, 9H, SiC(CH₃)₃], 1.12 [d, ³*J*_{P-H}= 4.5 Hz, 9H, PC(CH₃)₃], 1.16 [d, ³*J*_{P-H}= 4.6 Hz, 9H, PC(CH₃)₃], 1.86 [d, 2H, ¹*J*_{P-H}= 12.8 Hz, SiCH₂P], 4.96 [s, 1H, Si*H*], 7.29–7.40 [m, 10H, *H_{Ph}*], 7.55–7.57 [m, 2H, *H_{Ph}*], 7.75–7.76 [m, 3H, *H_{Ph}*]. ¹³C{¹H} NMR (100.66 MHz, CD₂Cl₂, 298 K): δ = 13.1 [d, ¹*J*_{C-P}= 37.2 Hz SiC(CH₃)₃], 25.8 [s, SiC(CH₃)₃], 27.6 [dd, ²*J*_{C-P}= 1.8 Hz, ²*J*_{C-P}= 1.8 Hz PC(CH₃)₃], 38.6 [d, ¹*J*_{C-P}= 42.1 Hz PC(CH₃)₃], 18.7 [s, SiCH₂(CH₃)₃], 127.7 [d, *J*_{C-P}= 3.3 Hz, C_{Ph}], 128.0 [s, C_{Ph}], 130.2 [s, C_{Ph}], 134.6 [s, C_{Ph}], 134.9 [s, C_{Ph}], 135.9 [s, C_{Ph}], 135.9 [s, C_{Ph}], 136.0 [s, C_{Ph}], 136.3 [s, C_{Ph}], 136.4 [s, C_{Ph}]. ²⁹Si{¹H} NMR (79.49 MHz, CD₂Cl₂, 298 K): δ = -15.2 [d, ²*J*_{Si-P}= 5.6 Hz PCS*i*OSiH], -4.2 [s, PCSiOS*i*H]. ³¹P{¹H} NMR (162.04 MHz, CD₂Cl₂, 298 K): δ = 73.9 [s]. CHN Analysis C₃₁H₄₅OPSSi₂: calculated: C 67.3, H 8.2; found C 67.73, H 7.33. HR-MS (ESI+), calculated. m/z for C₃₁H₄₆OPSSi₂+ [M+H]⁺: 553.2540; found: 553.2541.

Figure S19. $^{13}C\{^{1}H\}$ NMR spectrum (C_6D_6, 298 K) of compound 6.

Figure S21. $^{31}\text{P}\{^{1}\text{H}\}$ NMR spectrum (CD_2Cl_2, 298 K) of compound 6.

2.8. Synthesis of [(tBu)2P(S)CH2SiPh2OSiPhtBu][HB(C6F5)3] {7[HB(C6F5)3]}

Siloxane **6** (757 mg, 1.37 mmol, 1.0 equiv.) was dissolved in DCM (5 ml) and the solution was cooled down to -80°C. BCF (701 mg, 1.37 mmol, 1.0 equiv.) was added as a DCM solution (~5 ml). The mixture was stirred without further cooling for 12 h. The solvent was concentrated down to 1 ml and the compound was precipitated adding pentane (~10 ml). The upper liquid phase was removed using a PTFE cannula and the cloudy oil was further rinsed with pentane (2 ml). After removing all the volatiles in vacuum, the desired product **7**[HB(C₆F₅)₃] was obtained as a foamy solid (1.1 g, 1.0 mmol, 75%), which can be stored for several months at room temperature under an inert atmosphere without noticeable decomposition.

¹**H** NMR (400.30 MHz, CD₂Cl₂, 298 K): δ =1.06 [s, 9H, SiC(CH₃)₃], 1.22 [d, ³*J*_{P-H}= 17.6 Hz, 9H, PC(CH₃)₃], 1.5 [d, ³*J*_{P-H}= 17.7 Hz, 9H, PC(CH₃)₃], 2.08 [ddd(ABX), *J*₁= 13.2 Hz, *J*₂= 14.8 Hz, *J*₃= 57,1 Hz, 2H, SiCH₂P], 3.66 [bq, ¹*J*_{B-H}= 80.3 Hz 1H, BH], 7.41–7.60 [m, 11H, *H_{Ph}*], 7.69–7.70 [m, 4H, *H_{Ph}*]. ¹¹**B**{¹**H**} NMR (128.43 MHz, CD₂Cl₂, 298 K): δ = 25.56 [s, *B*H]. ¹³C{¹H} NMR (100.66 MHz, CD₂Cl₂, 298 K): δ = 0.9 [d, ¹*J*_{C-P}= 24.5 Hz, SiCH₂P], 23.2 [s, SiC(CH₃)₃], 24.9 [s, SiC(CH₃)₃], 26.7 [s], 26.8 [s], 27.9 [s], 27.1 [s], 41.2 [dd, ¹*J*_{C-P}= 30.6 Hz, ¹*J*_{C-P}], 23.2 [s, SiC(CH₃)₃], 24.9 [s, SiC(CH₃)₃], 26.7 [s], 26.8 [s], 27.9 [s], 27.1 [s], 41.2 [dd, ¹*J*_{C-P}= 30.6 Hz, ¹*J*_{C-P}], 134.3 [s, C_{*Ph*}], 129.4 [s, C_{*Ph*}], 129.6 [s, C_{*Ph*}], 129.8 [s, C_{*Ph*}], 132.5 [t, *J*= 9.5 Hz C_{*Ph*}], 134.3 [s, C_{*Ph*}], 134.4 [s, C_{*Ph*}], 134.8 [s, C_{*Ph*}], 137.1 [bd, ¹*J*_{C-F}= 250.0 Hz, C_{*Ar-borate*], 140.0 [bd, ¹*J*_{C-F}= 243.0 Hz, C_{*Ar-borate*], 148.1 [bd, ¹*J*_{C-F}= 247.1 Hz, C_{*Ar-borate*]. ¹⁹F{¹H} NMR (376.66 MHz, CD₂Cl₂, 298 K): δ = -167.6 [t, ³*J*_{F-F}= 20.2 Hz, 6F], -164.9 [t, ³*J*_{F-F}= 20.3 Hz, 3F], -133.5 [bd, 6F]. ²⁹Si{¹H} NMR (79.49 MHz, CD₂Cl₂, 298 K): δ = -166.6 [d, ²*J*_{Si-P}= 8.8 Hz, PC*Si*OSiS], -2.7 [d, ²*J*_{Si-P}= 5.6 Hz, PCSiOS*i*S]. ³¹P{¹H} NMR (162.04 MHz, CD₂Cl₂, 298 K): δ = 87.2 [s]. CHN Analysis C₄₉H₄₅BF₁₅OPSSi₂: calculated: C, 55.27; H, 4.26; found C 54.51, H 4.26. HR-MS (LIFDI+), calculated. m/z for C₃₁H₄₄OPSSi₂+ [M]⁺: 551.2384; found: 551.2405.}}}

According to a method introduced by Müller,^[4] the Lewis acidity of **7**[HB(C₆F₅)₃] was experimentally investigated using *para*-fluorobenzonitrile (FBN) as a probe. Compound **7**[HB(C₆F₅)₃] (70 mg, 0.066 mmol, 1.0 equiv.) and FBN (8.0 mg, 0.066 mmol, 1.0 equiv.) were dissolved in CD_2Cl_2 (0.5 ml), loaded into a Young-type NMR tube, and subjected to NMR measurement. The diagnostic spectroscopic parameters show no interaction between cation **7** of hydroborate **7**[HB(C₆F₅)₃] and FBN:

¹³C{¹H} NMR (100.66 MHz, CD₂Cl₂, 298 K): δ = 165.5 [d, ¹J_{C-F} = 257.9 Hz].

¹⁹F{¹H} NMR (376.66 MHz, CD₂Cl₂, 298 K): δ = -103.38 [s].

93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 75 74 73 72 71 70 Figure S25. ${}^{31}P{}^{1}H{}$ NMR spectrum (CD₂Cl₂, 298 K) of compound **7**[HB(C₆F₅)₃].

2.9. Synthesis of [(tBu)2P(S)CH2SiPh2OSiPhtBu][B(C6F5)4] {7[B(C6F5)4]}

Compound **7**[HB(C₆F₅)₃] (100 mg, 0.094 mmol, 1.0 equiv.) was dissolved in toluene (5 ml) and the solution was cooled down to -80°C. [H(OEt₂)₂]⁺[B(C₆F₅)₄]⁻ (77.8 mg, 0.094 mmol, 1.0 equiv.) was added dropwise as a DCM solution (~5 ml). The solution was stirred without further cooling for 3 h during which gas evolution was observed. An aliquot was dried directly in a Young-type NMR tube and the foamy solid was dissolved in CD₂Cl₂. Multinuclear NMR showed full conversion and complete selectivity towards the desired product. The solvent was concentrated down to ~1 ml and the compound was precipitated adding pentane (~10 ml). The upper liquid phase was removed using a PTFE cannula and the cloudy oil was further rinsed with pentane (2 ml). After removing all the volatiles in vacuum, the desired product **7**[B(C₆F₅)₄] was obtained as a foamy solid (52 mg, 0.043 mmol, 46%). Crystals suitable for X-ray diffraction analysis were obtained by vapour diffusion of pentane into a toluene solution of compound **7**[B(C₆F₅)₄].

¹**H** NMR (400.30 MHz, CD₂Cl₂, 298 K): δ =1.05 [s, 9H, SiC(CH₃)₃], 1.20 [d, ³*J*_{P-H}= 18.3 Hz, 9H, PC(CH₃)₃], 1.45 [d, ³*J*_{P-H}= 17.8 Hz, 9H, PC(CH₃)₃], 2.02 [ddd(ABX), *J*₁= 12.9 Hz, *J*₂= 14.8 Hz, *J*₃= 58,9 Hz, 2H, SiCH₂P], 7.41–7.49 [m, 6H, *H*_{Ph}], 7.51–7.62 [m, 5H, *H*_{Ph}], 7.64–7.68 [m, 4H, *H*_{Ph}]. ¹¹**B**{¹**H**} NMR (128.43 MHz, CD₂Cl₂, 298 K): δ = -16.9 [s]. ¹³C{¹**H**} NMR (100.66 MHz, CD₂Cl₂, 298 K): δ = 0.8 [d, ¹*J*_{C-P}= 24.5 Hz, SiCH₂P], 23.1 [s, SiC(CH₃)₃], 24.9 [s, SiC(CH₃)₃], 27.1 [dd, ²*J*_{C-P}= 0.8 Hz, ²*J*_{C-P}= 5.5 Hz, PC(CH₃)₃], 41.1 [dd, ¹*J*_{C-P}= 30.3 Hz, ¹*J*_{C-P}= 32.2 Hz, PC(CH₃)₃], 128.6 [s, C_{Ph}], 129.0 [s, C_{Ph}], 129.2 [s, C_{Ph}], 129.4 [s, C_{Ph}], 132.2 [s, C_{Ph}], 132.5 [t, *J*= 9.8 Hz C_{Ph}], 134.3 [d, *J*_{C-P}= 4.8 Hz, C_{Ph}], 134.8 [s, C_{Ph}], 135.5 [bs, C_{Ar-borate}], 137.4 [bs, C_{Ar-borate}], 137.9 [bs, C_{Ar-borate}], 147.4 [bs, C_{Ar-borate}], 149.8 [bs, C_{Ar-borate}]. ¹⁹F{¹H} NMR (376.66 MHz, CD₂Cl₂, 298 K): δ = -167.4 [t, ³*J*_{F-F}= 17.9 Hz, 8F], -163.6 [t, ³*J*_{F-F}= 19.4 Hz, 4F], -133.0 [bs, 8F]. ²⁹Si{¹H} NMR (79.49 MHz, CD₂Cl₂, 298 K): δ = -16.5 [d, ²*J*_{SI-P}= 8.8 Hz PC*Si*OSiS], -2.7 [d, ²*J*_{SI-P}= 6.4 Hz PCSiO*Si*S]. ³¹P{¹H</sup> NMR (162.04 MHz, CD₂Cl₂, 298 K): δ = 87.2 [s]. HR-MS (FD+), calculated. m/z for C₃₁H₄₄OPSSi₂* [M]*: 551.2384; found: 551.2407.

Figure S29. $^{31}\mbox{P}\{^1\mbox{H}\}$ NMR spectrum (CD2Cl2, 298 K) of the crude reaction mixture.

Figure S31. $^{11}B\{^{1}H\}$ NMR spectrum (CD_2Cl_2, 298 K) of the crude reaction mixture.

Figure S35. ³¹P{¹H} NMR spectrum (CD₂Cl₂, 298 K) of isolated compound 7[B(C₆F₅)₄].

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 Figure S37. ¹¹B{¹H} NMR spectrum (CD₂Cl₂, 298 K) of isolated compound $7[B(C_6F_5)_4]$.

2.10. Synthesis of (tBu)₂P(S)CH₂SiPh₂OSi(F)PhtBu (8) and (C₆F₅)₂(C₆F₄H)B(OH₂) (9)

Compound $7[HB(C_6F_5)_3]$ (200 mg, 0.188 mmol) was loaded in a Schlenk flask suitable for high pressure reactions (50 ml volume) and sealed under nitrogen atmosphere. The flask was heated up to 120°C for 3 h using an oil bath during which the solid melted while bubbling and turning into a yellow liquid. During the process, thin needles crystallized on the upper part of the flask in a web-like motif (see Figure S38). After 3 h, the vessel was cooled down to room temperature and two thin PTFE cannulas were carefully inserted all the way through the upper layer of the flask, which was covered with the delicate white crystals, to reach the lower half of the flask. Following, DCM was used to extract the yellow residue at the bottom of the flask. After three washings (~10 ml) of the lower part, the organic fractions were collected, dried, and the residue was distilled via Kugelrohr distillation (190-200°C oven temperature, 1.0 x 10^{-3} mbar) to yield fluorodisiloxane 8 as a pale-yellow oil (62 mg, 0.109 mmol, 56%). The crystalline compound on the upper part, free of the yellow residue, was extracted with DCM (3 x 5 ml), the extracts were collected and fully dried under vacuum yielding compound 9 as a white solid (86 mg, 0.132 mmol, 70%). Then, the solid was dissolved in the minimum amount of THF, a few drops of water were added and the mixture was stirred for 10 min. After removing all volatiles, the solid residue was suspended in pentane and brought into solution with a few drops of THF. The mixture was stirred over 30 min, then the reaction vessel was sealed and stored overnight at -30°C affording a few co-crystals of 9.H2O (THF)2/BCF (1:1) suitable for single-crystal X-ray diffraction analysis (6 mg, 9.14 x 10⁻³ mmol, 4%).

Figure S38. Spontaneous separation of the two product species 8 and 9 under the reaction conditions: Hydrodefluorinated borane 9 (white crystalline solid on the upper part of the vessel) and fluorodisiloxane 8 (yellow oily residue on the bottom part of the vessel).

Characterization of 8:

¹H NMR (400.30 MHz, CD₂Cl₂, 298 K): δ =0.95 [d, ⁴*J*_{H-F}= 0.9 Hz 9H, SiC(C*H*₃)₃], 2.22 [d, ³*J*_{P-H}= 12.2 Hz, 9H, PC(C*H*₃)₃], 1.87 [dd, *J*₁= 4.2 Hz, *J*₂= 12.8 Hz, 2H, SiC*H*₂P], 7.31–7.34 [m, 6H, *H*_{Ph}], 7.38–7.42 [m, 3H, *H*_{Ph}], 7.58 [m, 2H, *H*_{Ph}], 7.77–7.80 [m, 4H, *H*_{Ph}]. ¹³C{¹H} NMR (100.66 MHz, CD₂Cl₂, 298 K): δ = 13.4 [d, ¹*J*_{C-P}= 37.8 Hz, SiC*H*₂P], 18.6 [d, ²*J*_{C-F}= 16.5 Hz, SiC(CH₃)₃], 25.6 [s, SiC(CH₃)₃], 27.6 [m, PC(CH₃)₃], 38.6 [d, ¹*J*_{C-P}= 43.2 Hz PC(CH₃)₃], 127.7 [d, ⁴*J*_{C-F}= 3.7 Hz, C_{Ph}], 128.17 [s, C_{Ph}], 130.4 [d, ⁵*J*_{C-F}= 0.9 Hz, C_{Ph}], 130.9 [s, C_{Ph}], 131.8 [d, ²*J*_{C-F}= 19.5 Hz, CP₂], 134.8 [d, ⁵*J*_{C-F}= 2.6 Hz, C_{Ph}], 135.6 [d, ⁴*J*_{C-F}= 3.4 Hz, C_{Ph}], 136.0 [d, ³*J*_{C-F}= 5.6 Hz, C_{Ph}]. ¹⁹F{¹H} NMR (376.66 MHz, CD₂Cl₂, 298 K): δ = -151.0 [s with satellites, ¹*J*_{F-Si}= 298.5 Hz]. ²⁹Si{¹H} NMR (79.49 MHz, CD₂Cl₂, 298 K): δ = 73.4 [s]. CHN Analysis C₃₁H₄₄FOPSSi₂: calculated: C 65.22; H 7.77; found C 64.42, H 7.45. HR-MS (ESI+), calculated. m/z for C₃₂H₄₄FOPSSi₂⁺ [M+H]⁺: 571.2451; found: 571.2469.

Figure S41. ¹⁹F{¹H} NMR spectrum (CD₂Cl₂, 298 K) of compound 8.

Characterization of 9·H₂O·(THF)₂:

-6.79

¹H NMR (400.30 MHz, CD₂Cl₂, 298 K): δ =2.06 [s, 8H, OCH₂CH₂], 4.15 [s, 8H, OCH₂CH₂], 7.02 [m, 1H, B(C₆F₄H)], 10.24 [bs, 1H BOH₂]. ¹¹B{¹H} NMR (128.43 MHz, CD₂Cl₂, 298 K): δ = -2.4 [bs]. ¹³C{¹H} NMR (100.66 MHz, CD₂Cl₂, 298 K): δ = 25.2 [s, OCH₂CH₂], 75.2 [s, OCH₂CH₂], 105.6 [bs, B(C₅F₄CH)], 137.6 [bd, ¹J_{C-F} = 237.7 Hz, C_{Ar-borate}], 139.6 [bs, C_{Ar-borate}], 143.6 [bd, ¹J_{C-F} = 290.8 Hz, C_{Ar-borate}], 148.2 [d, ¹J_{C-F} = 250.0 Hz C_{Ar-borate}]. ¹⁹F{¹H} NMR (376.66 MHz, CD₂Cl₂, 298 K): δ = -164.5 [bm, 6F], -157.9 [bm, 1F], -157.7 [bm, 2F], -141.6 [bm, 1F], -135.1 [bm, 1F], -135.1 [bm, 6F]. CHN Analysis C₂₆H₁₉BF₁₄O₃: calculated: C 47.59; H 2.92; found C 47.19, H 2.79. HR-MS (ESI-), calculated. m/z for C₁₈HBF₁₄O [M, -H]: 510.9981; found: 510.9993.

B(C₆F₅)₂

Figure S44. ¹H NMR spectrum (CD₂Cl₂, 298 K) of the isolated crystalline sublimate.

Figure S46. ¹H NMR spectrum (CD₂Cl₂, 298 K) of compound 9·H₂O·(THF)₂.

Figure S49. ¹⁹F{¹H} NMR spectrum (CD₂Cl₂, 298 K) of compound $9 \cdot H_2O \cdot (THF)_2$.

3. X-Ray Crystallographic Details

The crystals were selected and measured on a SuperNova Dualflex diffractometer equipped with a TitanS2 detector $\{6, 7[B(C_6F_5)_4]\}$ or on a XtaLAB Synergy R, DW system equipped with a HyPix-Arc 150 detector (9). The crystals were kept at T = 123(1) K during data collection. Data collection and reduction were performed with **CrysAlisPro** (Version 1.171.41.90a).^[5] An analytical numeric absorption correction using a multifaceted crystal model based on expressions derived by R. C. Clark & J. S. Reid^[6] and an empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm, was applied for all compounds. Using **Olex2**,^[7] the structures were solved with **ShelXT**^[8] and a least-square refinement on F^2 was carried out with **ShelXL**^[9] or **olex2.refine**^[10], respectively. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms at the carbon atoms were located in idealized positions and refined isotropically according to the riding model. Figures were created with **Olex2**^[7] and **Mercury 4.1.0**.^[11]

Compound 6: The asymmetric unit contains one molecule of $(tBu)_2P(S)CH_2Si(Ph)_2OSi(H)PhtBu$. The hydrogen atom on the Si atom was located from the difference Fourier map and refined without restraints. The *t*Bu group at the Si atom shows a disorder over two positions with an occupancy of 0.6 for the main part and 0.4 for the minor part. To describe this disorder the SIMU restraint was applied.

Compound 7[**B**(C_6F_5)₄]: The asymmetric unit contains one molecule of the cation $[(tBu)_2P(S)CH_2Si(Ph)_2OSiPhtBu]^+$ and one molecule of the anion $[B(C_6F_5)_4]^-$.

Compound 9-H₂O-(THF)₂: The asymmetric unit contains one molecule of $B(C_6F_5)_2(C_6HF_4)\cdot(H_2O)$ and two THF solvent molecules. The hydrogen atom located in para position at the C_6HF_4 substituent is only partly occupied (0.5) and distributed over the para positions of the three phenyl substituents (0.1:0.2:0.2). Consequently $B(C_6F_5)_2(C_6HF_4)\cdot(H_2O)$ co-crystalizes with $B(C_6F_5)_3\cdot(H_2O)$ in a 1:1 ratio. Additionally, the two THF molecules are disordered over two positions, which were described using the restraints SADI and SIMU.

CCDC-2107143 (6), CCDC-2107144 {7[B(C6F5)4]}, and CCDC-2107145 [9·H₂O·(THF)₂] contain the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: + 44-1223-336-033; E-mail: deposit@ccdc.cam.ac.uk).

Structural details concerning compound 7[B(C₆F₅)₄]:

The Si2 atom in cation **7** exhibits an almost ideal tetrahedral coordination geometry. In comparison with the same bonds in siloxane **6**, the Si1–O1 bond in cation **7** is slightly elongated and the Si2–O1 bond slightly shortened. The Si–O–Si angle decreases from $156.83(16)^{\circ}$ in **6** to $139.60(11)^{\circ}$ in **7**, while the heterocyclic Si–S–P angle with $107.86(3)^{\circ}$ is close to the tetrahedral angle.
Table S1. Crystallographic data for compounds 6, $7[B(C_6F_5)_4]$, and $9 \cdot H_2O \cdot (THF)_2$.

Compound	6	7[B(C6F5)4]	9·H2O·(THF)2
Data set	nf 719 2h GV	nf 693 1	nf 771 subl thf 2
(internal naming)	m_/1/_20_0 (m_0/0_1	m_//1_5ubi_tim_2
CCDC number	2107143	2107144	2107145
Formula	$C_{31}H_{45}OPSSi_2$	$C_{55}H_{44}BF_{20}OPSSi_2$	$C_{26}H_{18.5}BF_{14.5}O_3$
Dcalc	1.167	1.528	1.666
μ/mm^{-1}	2.276	2.247	0.175
Formula Weight	552.913	1230.92	665.236
Colour	colourless	colourless	colourless
Shape	block-shaped	block-shaped	plate-shaped
Size/mm ³	0.12×0.10×0.08	0.35×0.24×0.21	0.44×0.12×0.08
T/K	123.0(1)	123.0(1)	123.01(10)
Crystal System	monoclinic	triclinic	monoclinic
Space Group	$P2_{1}/n$	$P\overline{1}$	$P2_{1}/c$
a/Å	8.3897(2)	9.9141(2)	9.2436(3)
$b/ m \AA$	35.0632(6)	14.3805(2)	29.8297(7)
$c/\text{\AA}$	11.2062(2)	19.1892(3)	9.9706(3)
$\alpha/^{\circ}$	90	101.2990(10)	90
$eta/^{\circ}$	107.304(2)	90.3210(10)	105.288(3)
$\gamma/^{\circ}$	90	93.8460(10)	90
V/Å ³	3147.32(11)	2676.24(8)	2651.94(14)
Ζ	4	2	4
Z'	1	1	1
Wavelength/Å	1.54184	1.54184	0.71073
Radiation type	Cu Ka	Cu Ka	Mo K_{α}
$ heta_{min}/^{\circ}$	4.32	4.278	2.22
$ heta_{max}/^{\circ}$	66.60	66.647	32.62
Measured Refl's.	35994	41863	44425
Indep't Refl's	5524	9402	9629
Refl's I $\geq 2 \sigma(I)$	5124	8248	7025
$R_{ m int}$	0.0563	0.0812	0.0289
Parameters	359	739	436
Restraints	42	0	59
Largest Peak	0.5996	0.640	0.6516
Deepest Hole	-0.4918	-0.605	-0.5345
GooF	1.0223	1.024	1.0261
wR_2 (all data)	0.1286	0.1342	0.1263
wR_2	0.1267	0.1286	0.1156
R_1 (all data)	0.0623	0.0561	0.0690
R_1	0.0588	0.0491	0.0463

3.1. Compound 6

Selected Bond Lengths in Å		Selected Bond Angles in °		
P1-S1	1.9671(12)	S1-P1-C1	114.38(11)	
P1-C1	1.818(3)	P1-C1-Si1	125.15(18)	
C1–Si1	1.891(3)	C1-Si1-01	115.52(14)	
Si1–01	1.614(2)	Si1–01–Si2	156.83(16)	
Si2–O1	1.644(2)			

3.2. Compound 7[B(C₆F₅)₄]

Selected Bond Lengths in Å		Selected Bond Angles in °		
P1-S1	2.0678(9)	S1-P1-C1	114.11(9)	
P1-C1	1.803(2)	P1–C1–Si1	124.60(13)	
C1–Si1	1.899(2)	C1-Si1-O1	106.42(10)	
Si1–01	1.6381(18)	Si1–O1–Si2	139.60(11)	
01–Si2	1.6265(18)	01–Si2–S1	109.26(7)	
Si2–S1	2.1940(8)	Si2–S1–P1	107.86(3)	

3.3. Compound 9·H₂O·(THF)₂

Selected Bond Lengths in Å		Selected Bond Angles in °		
B1–O1	1.5502(15)	O1-B1-C1	104.01(9)	
B1–C1	1.6365(17)	O1–B1–C7	106.18(9)	
B1–C7	1.6383(18)	O1-B1-C13	107.70(9)	
B1–C13	1.6359(17)	C1–B1–C7	116.35(10)	
		C1-B1-C13	109.74(9)	
		C7–B1–C13 112.14(9)		

4. Quantum Chemical Calculations

Optimization and additional harmonic vibrational frequency analyses were performed with the software package Gaussian 09 (Revision E.01) either at the B3LYP/6-311+G(d,p) or the B3LYP/6-31G(d) level of theory without symmetry restrictions.^[12] The GJF input files and the figures of the optimized structures were created with the program GaussView version 5.0.9.^[13] For the ground state structures, the vibrational frequency analysis showed no imaginary frequency in the harmonical approximation. Natural bond orbital (NBO) analysis has been performed at the B3LYP/6-311+G(d,p) level of theory with the Gaussian NBO Version 3.1. The total (SCF) and zero-point-corrected (ZPE) energies of the calculated systems can be found in Table S2. The results of the NBO analysis can be found in Table S3. A mechanistic proposal is given in Scheme S50. The optimized structures can be found in Tables S4–S18. The Hartree units can be converted as follows:^[14] 1 Hartree = 2625.4995 kJ·mol⁻¹, 1 cal = 4.184 J.

Optimized structure	Method/Basis	SCF [Hartree]	ZPE [Hartree]
6	B3LYP/6-311+G(d,p)	-2602.77036406	-2602.087217
7-Cat-S	B3LYP/6-311+G(d,p)	-2601.98833969	-2601.311959
7-Cat-Ar	B3LYP/6-311+G(d,p)	-2601.92295396	-2601.246927
7-Cat-free	B3LYP/6-311+G(d,p)	-2601.92048049	-2601.245066
6-C	B3LYP/6-311+G(d,p)	-2566.76138254	-2566.055163
7-C-Cat-S	B3LYP/6-311+G(d,p)	-2565.98204034	-2565.282543
7-C-Cat-Ar	B3LYP/6-311+G(d,p)	-2565.92074226	-2565.221776
7[HB(C ₆ F ₅) ₃]	B3LYP/6-31G(d)	-4810.55379635	-4809.707548
Int-1	B3LYP/6-31G(d)	-4810.50524685	-4809.660073
Int-2	B3LYP/6-31G(d)	-4810.55774210	-4809.711035
Int-3	B3LYP/6-31G(d)	-2108.81960768	-2108.663675
Int-3	B3LYP/6-311+G(d,p)	-2109.48067241	-2109.325350
8	B3LYP/6-31G(d)	-2701.64176243	-2700.957034
9	B3LYP/6-31G(d)	-2109.01278044	-2108.850989
9	B3LYP/6-311+G(d,p)	-2109.67379911	-2109.512775

Table S2. Total (SCF) and zero-point-corrected (ZPE) energies of the optimized structures.

Table S3. Results of the natural bond orbital (NBO) calculations [B3LYP/6-311+G(d,p)]

Property	6	7-Cat-S	7-Cat-Ar	7-Cat-free	6-C	7-C-Cat-S	7-C-Cat-Ar
İSi2S ^[a]	_	0.506	_	_	_	0.496	_
<i>İ</i> SP ^[a]	0.026	0.128	0.039	0.034	0.030	0.129	0.036
<i>İ</i> PC1 ^[a]	0.256	0.221	0.271	0.277	0.251	0.226	0.271
<i>İ</i> C1Si1 ^[a]	0.500	0.527	0.489	0.496	0.493	0.520	0.471
İSi1C2 ^[a]	—	_	_	_	0.455	0.469	0.491
İC2Si2 ^[a]	_	_	_	_	0.459	0.491	0.497
Q _{Si1} ^[b]	2.004	1.999	2.020	2.020	1.768	1.765	1.783
$Q_O^{[b]}$	-1.266	-1.280	-1.296	-1.286	_	—	—
Q _{Si2} ^[b]	1.759	1.978	2.226	2.256	1.483	1.747	2.003

Qs ^[b]	-0.629	-0.451	-0.611	-0.604	-0.632	-0.431	-0.597
$Q_{P}^{[b]}$	1.421	1.519	1.439	1.434	1.426	1.526	1.429
Q _{C1} ^[b]	-1.275	-1.271	-1.288	-1.288	-1.252	-1.258	-1.260
Q _{C2} ^[b]	—	—	—	—	-1.410	-1.444	-1.451
<i>h</i> o (% s) ^[c]	sp ^{0.08} (92.5)	sp ^{0.14} (87.7)	sp ^{0.25} (80.1)	sp ^{0.14} (87.3)	—	—	—
<i>h</i> si₂ (% s) ^[c]	sp ^{8.39} (10.6)	sp ^{9.17} (9.7)	sp ^{10.0} (9.0)	sp ^{7.57} (11.5)	sp ^{2.85} (25.8)	sp ^{2.57} (27.8)	sp ^{2.18} (31.2)
<i>h</i> c2 (% s) ^[c]	—	—	—	—	sp ^{2.49} (28.7)	sp ^{2.35} (29.9)	sp ^{2.47} (28.8)
occ. no' ^[d]	1.916	1.914	1.923	1.930	—	—	—
occ. no" ^[d]	1.907	1.904	1.900	1.841	—	—	—
hc loss n _O ^[e]	0.177	0.182	0.177	0.229	—	—	—
rel. hc loss no ^[f]	0 %	2.8 %	0 %	29.4 %	—	—	—
$\begin{array}{l} E^{(2)} \\ (n_0^{\prime\prime} \rightarrow p_{Si2})^{[g]} \end{array}$	_	_	_	-29.98	_	_	_

[a] Bond ionicities (i_{AB}) of the A–B bonds ($i_{AB} = |c_A^2 - c_B^2|$ with c_A and c_B being NBO polarization coefficients). [b] Natural atomic charges (Q_A) at atoms A. [c] Natural hybrid types (h_0 , h_{Si2} , h_{C2}) and their % s character at atoms O, Si2, and C2 in the O–Si2 and C2–Si2 bonds, respectively (h_0 corresponds to the lone electron pair-like natural hybrid at oxygen that makes the greatest contribution to the O–Si2 bond). [d] Oxygen lone electron pair occupancies (occ. n_0' , occ. n_0''). [e] Net hyperconjugative electronic loss of oxygen lone electron pairs (hc loss n_0). [f] hc loss n_0 relative to compound **6** (rel. hc loss n_0). [g] Hyperconjugative stabilization energy estimates ($E^{(2)}$ in kcal mol⁻¹) from the second order perturbation theory analysis for the $n_0'' \rightarrow p_{Si2}$ interaction.

Details on bond polarity parameters:

The formal exchange of the siloxane oxygen atom by a CH₂ group led to the analogous cations **7-C-Cat-S** and **7-C-Cat-Ar**, the latter being 38.2 kcal mol⁻¹ higher in energy. The Si–O–Si linkage leads to an increased Lewis acidity in comparison to the Si–CH₂–Si system. The O–Si2 σ bonds of all calculated disiloxane species have a high s character in the lone electron pair-like natural hybrids at oxygen (*h*₀) and a high p character in *h*_{Si2} in accordance with Bent's rule (Table S3).^[15] The consistently higher positive charge on the Si2 atom of the disiloxane-based cations (**7-Cat-S**: $Q_{Si2} = 1.978$; **7-Cat-Ar**: $Q_{Si2} = 2.226$; **7-Cat-free**: $Q_{Si2} = 2.256$) compared to the respective methylene-bridged analogs (**7-C-Cat-S**: $Q_{Si2} = 1.747$; **7-C-Cat-Ar**: $Q_{Si2} = 2.003$) also reflects the high ionicity in the O–Si σ bonds (Table S3). The C2–Si2 bonds can be classified as polar covalent σ bonds.

Further mechanistic considerations on the ion pair reaction:

An alternative route starting from intermediate **Int-1** *via* fluoride abstraction with the formation of a free zwitterionic intermediate (**Int-3**) appears unlikely in view of the additional energy of 24.6 kcal mol⁻¹ required for this step (Figure S50). Intermolecular mechanisms might explain the traces of tris(pentafluorophenyl)borane (BCF) found in the cocrystals of compound **9** (for details, see chapter 3).

It should also be noted that electrostatically-driven, attractive σ -hole-type C(phenyl)–H…F–C(aryl) interactions between the phenyl groups of the cation and the perfluorinated aryl groups of the counterion could play an important role for the formation of a reactive encounter complex.^[16] This is strongly suggested by the optimized structures **7[HB(C₆F₅)₃]** (Figure S58), **Int-1** (Figure S59), and **Int-2** (Figure S62).

Figure S50. Conceivable reaction paths for the *para*-C(sp²)–F hydrodefluorination calculated on the B3LYP/6-31G(d) level of theory. Formal charges, except for product **8** and intermediate **Int-3**, are omitted for clarity. The zwitterion **Int-3** is 117.6 kcal mol⁻¹ higher in energy than borane **9**. The suitability of the moderate DFT level for an appropriate thermodynamic description of the reaction was confirmed by the fact that the energy difference between zwitterion **Int-3** and borane **9** was exactly the same based on the structures optimized at the B3LYP/6-311+G(d,p) level of theory.

Figure S51. Optimized structure of compound 6 [B3LYP/6-311+G(d,p)]. Selected bond lengths [Å] and angles [°]: P–S 1.996, Si1–O 1.649, Si2–O 1.669, Si1–O–Si2 152.9.

Table S4. Standard orientation of 6 [B3LYP/6-311+G(d,p)].
--	-----

Atomic symbol	Х	у	Z
С	-0.69870100	3.18636900	4.58302800
С	0.45819600	3.52036700	3.87927000
С	-1.60631200	2.28678800	4.02853900
С	0.70045600	2.95523500	2.62882600
С	-1.35794400	1.72594100	2.77540000
С	-0.20276000	2.04780400	2.04732900

С	3.08394100	-2.55619300	2.21621600
С	-3.41971300	-3.56542700	1.51219300
С	-3.02380200	-2.31699100	1.03616700
С	-3.50612400	-4.64984100	0.63930300
С	0.70301400	-2.54251800	1.42733900
С	5.02935100	-0.22512100	0.71910000
С	2.17524000	-2.61138900	0.97498000
С	1.82309500	0.33583800	0.66929300
С	2.38928300	-3.94721400	0.23836800
С	0.06966100	3.90339900	-0.70867000
С	-2.70583000	-2.11973200	-0.31793400
С	-3.18993300	-4.47896200	-0.70697300
С	4.30428700	-0.76360100	-0.53030900
С	0.38291700	2.55614000	-0.95701700
С	0.20677700	4.87293000	-1.70185200
С	-2.79285200	-3.22711300	-1.17645000
С	5.02149800	-2.02473700	-1.04509500
С	-3.76394100	0.68404900	-1.25218000
С	4.36439200	0.31594100	-1.63166200
С	0.83711900	2.21415700	-2.24379000
С	0.65891300	4.51325600	-2.96960500
С	-4.74719000	-0.06615900	-2.17817800
С	0.97218600	3.18134400	-3.23823600
Н	-0.89023900	3.62503400	5.55617300
Н	1.16904500	4.22131700	4.30353900
Н	-2.50835200	2.02238000	4.57000700
Н	1.60652700	3.23684000	2.09995300
н	-3.65914500	-3.69379400	2.56253800
Н	2.75333200	-3.32548500	2.92215800
Н	3.03456700	-1.59807000	2.73966400
Н	-2.07135600	1.02703700	2.35447400
Н	4.12680100	-2.76759100	1.97544000
Н	-2.95129000	-1.48991600	1.73503500
Н	1.87863300	0.11160300	1.73802400
Н	-3.81370400	-5.62251200	1.00773500
Н	0.47897700	-3.43599300	2.01881700
Н	5.07556200	-0.94754700	1.53207700
н	0.49804000	-1.67570100	2.05881800
н	4.57860300	0.69211200	1.10376000
н	6.06049200	0.01790900	0.44102400
н	-0.28949400	4.20443400	0.26954600

Н	2.55879700	1.12752700	0.49912600
н	2.12989300	-4.76466200	0.91931400
н	0.01742100	-2.52298500	0.58096100
Н	3.42335000	-4.09238100	-0.07587600
н	5.14403400	-2.77814000	-0.26457600
Н	-0.04198100	5.90643900	-1.48560800
Н	-3.24583200	-5.32005300	-1.38964300
Н	1.75269500	-4.01747300	-0.64392200
Н	3.85994600	1.24143500	-1.34176000
Н	6.02289600	-1.74821100	-1.39135100
Н	5.41497700	0.55978200	-1.82211300
Н	4.48602000	-2.47243800	-1.88470900
Н	-2.53515700	-3.11597100	-2.22514600
Н	-5.11146100	-0.99305000	-1.72628500
Н	3.91476000	-0.03708100	-2.55953600
Н	-1.61572500	-0.63883800	-2.34804500
Н	1.08161400	1.18114100	-2.47245800
Н	-5.61919700	0.56611800	-2.38691200
Н	0.76481900	5.26534700	-3.74405000
Н	-4.29183600	-0.31800400	-3.14181200
Н	1.32116000	2.89344600	-4.22419700
0	-1.13450700	0.26904300	0.03324600
Р	2.44377100	-1.15166000	-0.24013000
S	1.53331400	-1.51509400	-1.97922300
Si	0.15594600	1.23778200	0.37540400
Si	-2.22884800	-0.43378200	-1.01326500
С	-3.34276100	2.00149900	-1.93600800
С	-4.46943700	1.00454100	0.07986900
Н	-3.81809900	1.55769900	0.76229400
н	-5.35308500	1.62925300	-0.10386700
Н	-4.81184400	0.09959200	0.59065000
Н	-2.84924600	1.82383100	-2.89634700
н	-4.22727300	2.62169500	-2.12974300
н	-2.65969700	2.58839900	-1.31713200

Figure S51. Optimized structure of compound 7-Cat-S [B3LYP/6-311+G(d,p)]. Selected bond lengths [Å] and angles [°]: P–S 2.108, Si1–O 1.663, Si2–O 1.647, Si1–O–Si2 144.5, Si2–S 2.259.

Table S5. Standard orientation of 7	-Cat-S [B3LYP/6-311+G(d,p)].
-------------------------------------	------------------------------

Atomic symbol	х	У	Z
Si	-1.04309400	1.12388600	-0.21645900
0	0.08144400	0.84073500	0.97601000
Si	1.38221900	-0.07576000	1.40185400
С	-1.01843700	-0.42487400	-1.37261000
С	-2.71859100	1.37230500	0.57318800
Р	-0.45501200	-2.10197500	-0.89541400
С	-0.57798200	2.59138500	-1.28541800
С	1.53590000	-0.24143700	3.28812400
С	2.93065900	0.53455400	0.55142700
S	0.93841900	-2.17104500	0.68459500
С	-1.95406500	-3.09028100	-0.25987600
С	0.43981400	-2.81506200	-2.42213000
С	-1.51200900	-4.42232700	0.37682800
С	-2.62631400	-2.22248400	0.82236200
С	-2.95514900	-3.36699200	-1.39929700
С	1.73309600	-1.99873300	-2.62969900
С	-0.44538500	-2.68115100	-3.67890100
С	0.81015600	-4.29135100	-2.19037000
С	-3.87401600	1.47774100	-0.22181900
С	-5.12572800	1.68240400	0.35348900
С	-5.24489800	1.79498500	1.73877300
С	-4.11033100	1.70592300	2.54258200
С	-2.85941300	1.49574100	1.96387200
С	0.46958000	2.53272900	-2.22222200
С	0.81769900	3.64223600	-2.98729500

С	0.12358900	4.84170200	-2.82959500
С	-0.91348900	4.92570200	-1.90352400
С	-1.26061800	3.81189100	-1.14059600
С	3.05758200	1.90050700	0.24447500
С	4.23775600	2.40443700	-0.29972600
С	5.31227800	1.55268200	-0.54705300
С	5.20457100	0.19418100	-0.25047200
С	4.02555000	-0.30880800	0.29378900
С	0.23118100	-0.76294800	3.92181600
С	1.84503900	1.17382700	3.83589300
С	2.70008600	-1.19123200	3.64556500
н	-0.40216600	-0.14647700	-2.22962200
н	-2.40367400	-4.91135800	0.77892700
н	-1.05892200	-5.10787300	-0.33781000
н	-0.81908800	-4.26973900	1.20439000
н	-3.44947100	-2.79897800	1.25331400
Н	-3.04818900	-1.29911100	0.42629200
н	-1.93880200	-1.97440200	1.63261500
н	-2.58100500	-4.10317400	-2.11134600
Н	-3.86375700	-3.78160400	-0.95404300
Н	-3.25077900	-2.46803100	-1.94512800
н	2.22846300	-2.37955000	-3.52701000
н	2.42515600	-2.10010400	-1.79455900
Н	1.54603800	-0.93557500	-2.79570800
н	0.12295300	-3.06574400	-4.53040400
Н	-1.36564100	-3.25996700	-3.61756100
Н	-0.70133400	-1.64502100	-3.90739800
н	1.36296400	-4.43926800	-1.26040100
н	-0.06378800	-4.94329900	-2.19167800
Н	1.45679400	-4.61570900	-3.01039000
Н	-3.80470700	1.41448600	-1.30449600
Н	-6.00480400	1.76245800	-0.27577100
Н	-6.21774800	1.95855100	2.18795400
Н	-4.19891500	1.80227100	3.61874600
Н	-1.98370600	1.43276300	2.59943300
Н	1.04170000	1.61930100	-2.35346800
Н	1.62856600	3.57363900	-3.70356900
н	0.39121300	5.70610600	-3.42646000
Н	-1.45425400	5.85641600	-1.77590100
н	-2.07463700	3.89649900	-0.42935500
н	2.23200100	2.57917900	0.42741400

	Н	4.31722200	3.46114700	-0.52803300
	Н	6.23133900	1.94503100	-0.96714900
	н	6.03906300	-0.47114100	-0.44066200
	Н	3.96446500	-1.36932400	0.51593700
	Н	0.33632700	-0.77973400	5.01204900
	Н	-0.00223800	-1.78104500	3.60027800
	Н	-0.62426200	-0.12572100	3.68545700
	Н	1.95867700	1.12206000	4.92421500
	Н	2.77475000	1.58074400	3.42954100
	Н	1.04002400	1.88288500	3.62338800
	Н	2.52631300	-2.21280800	3.29300300
	Н	3.65495600	-0.84594500	3.24131500
	Н	2.80655900	-1.24138700	4.73457400
	н	-2.03114800	-0.55825000	-1.76632900

Figure S53. Optimized structure of compound 7-Cat-Ar [B3LYP/6-311+G(d,p)]. Selected bond lengths [Å] and angles [°]: P–S 2.012, Si1–O 1.721, Si2–O 1.638, Si1–O–Si2 124.3, Si2–C5 2.285, O–Si2–C3 116.2, O–Si2–C4 110.6, C3–Si2–C4 118.4 (Σ angles around Si2: 345.2°).

Table S6. Standard orientation of 7-Cat-Ar [B3LYP/6-311+G(d,p)].

Atomic symbol	x	У	Z
С	-1.37590900	5.09961900	-1.48368600
С	-1.94295900	4.57391300	-0.32369200
С	-0.49863700	4.32356700	-2.23831900
С	-1.63952200	3.27573000	0.08011200
С	-0.18232000	3.03026900	-1.82710600
С	-0.74838800	2.48130500	-0.66139300
С	-2.68086400	-3.73618400	-0.53381700
С	3.13001600	-3.35904000	-2.53692600
С	2.67661700	-2.14539000	-2.02543100
С	4.18180700	-4.02952800	-1.91514700

С	-1.70206400	-2.96605900	1.64008900
С	-4.49128600	-1.41066100	-2.20055000
С	-2.88077100	-2.78342000	0.66108200
С	-1.33973900	-0.68550000	-0.80626400
С	-4.18801200	-3.12915400	1.39804300
С	0.43168400	1.43998700	2.59492800
С	3.28148000	-1.57472700	-0.89000000
С	4.78413200	-3.48443500	-0.78145300
С	-4.34639300	-0.45597500	-1.00195700
С	0.53781000	0.54083700	1.53457600
С	1.25129000	1.32417100	3.71840700
С	4.34128200	-2.26591100	-0.27506300
С	-5.65836000	-0.41358800	-0.19521400
С	3.87231100	1.48822000	-0.06342900
С	-4.05443600	0.96761000	-1.51914100
С	1.53299300	-0.48592700	1.63560000
С	2.21008900	0.30768300	3.82336000
С	5.09035100	1.08996600	0.79352500
С	2.33615800	-0.61286600	2.79895300
н	-1.61910900	6.10774200	-1.79939300
н	-2.63025200	5.17241700	0.26345400
н	-0.05869300	4.72458000	-3.14441200
н	-2.12022400	2.86846900	0.96149500
н	2.66417800	-3.78001000	-3.42045100
н	-2.56644900	-4.75352100	-0.14672100
н	-1.78066000	-3.51190000	-1.11136200
н	0.51146000	2.44393100	-2.41940000
н	-3.52850600	-3.74658600	-1.21642400
н	1.85672300	-1.63156200	-2.51442700
н	-0.74380200	-1.60014200	-0.75825200
н	4.53226000	-4.97509100	-2.31243700
н	-1.70174800	-4.00313400	1.98814900
н	-4.88303500	-2.38497000	-1.90866500
н	-0.73412400	-2.78788300	1.16342300
н	-3.55532700	-1.56058300	-2.74544700
н	-5.20653900	-0.97563800	-2.90519400
н	-0.29520000	2.24100700	2.55269400
н	-1.55610300	-0.52033500	-1.86549700
н	-4.08330200	-4.11671400	1.85709100
н	-1.78968700	-2.31007600	2.50588600
Н	-5.04096300	-3.17703000	0.72009300

Н	-5.98287400	-1.40053200	0.13311400
Н	1.14561500	2.03933000	4.52690000
Н	5.60025400	-4.00654900	-0.29579600
Н	-4.40803300	-2.41295600	2.19225000
Н	-3.16877500	1.01824700	-2.15578300
Н	-6.44535000	-0.00578600	-0.83657600
Н	-4.90575800	1.29134000	-2.12492500
Н	-5.56840400	0.23063000	0.68062600
Н	4.82884700	-1.86155600	0.60482300
Н	5.65060400	0.25865500	0.36054200
Н	-3.93529400	1.67818800	-0.70150700
Н	1.40016700	-1.39699000	1.05013100
Н	5.77547200	1.94213700	0.85213300
Н	2.82384500	0.22901400	4.71248700
Н	4.80995300	0.82943000	1.81760300
Н	3.02140800	-1.44845500	2.88864300
Р	-2.90061000	-0.93635100	0.15286000
S	-2.84599700	0.25736900	1.77176700
Si	-0.24950900	0.74235500	-0.19583900
Si	2.64071300	0.06237200	-0.28580600
С	3.20519100	2.74557000	0.52495100
С	4.34175700	1.78337300	-1.51598700
Н	3.52101400	2.11640400	-2.15660300
Н	5.08147900	2.59048900	-1.48517400
Н	4.82047800	0.91992500	-1.98598400
Н	2.90521900	2.59941200	1.56381200
Н	3.92375300	3.57193900	0.50312100
Н	2.32935600	3.06108200	-0.04600900
0	1.22781600	0.43676200	-1.02431200

Figure S54. Optimized structure of compound **7-Cat-free** [B3LYP/6-311+G(d,p)]. Selected bond lengths [Å] and angles [°]: P–S 2.001, Si1–O 1.767, Si2–O 1.582, Si1–O–Si2 157.0, O–Si2–C3 122.1, O–Si2–C4 113.5, C3–Si2–C4 124.4 (Σ angles around Si2: 360.0°).

Atomic symbol	Х	У	Z
С	0.34765400	-3.86822200	-3.35071400
С	1.08151800	-4.06009200	-2.18194600
С	-0.41407600	-2.71148900	-3.50279600
С	1.05552400	-3.10301200	-1.16958100
С	-0.45031600	-1.76366700	-2.48203200
С	0.27876700	-1.93877300	-1.29117100
С	3.06785800	3.43929100	0.94747200
С	-3.07990100	4.21620700	-1.04253200
С	-2.66274900	2.91373900	-0.80163100
С	-4.43861900	4.53225300	-0.99594900
С	2.97148200	1.61027100	2.65806900
С	3.72804300	2.37329100	-2.21639200
С	3.56923900	2.02464100	1.29733700
С	1.20373000	0.94965400	-0.19059500
С	5.10452600	2.02573500	1.41799600
С	0.13705900	-2.47666700	2.27588100
С	-3.60540400	1.90320600	-0.51253300
С	-5.38432200	3.54657200	-0.71043900
С	3.81458100	0.92521500	-1.70433800
С	-0.07062800	-1.16274100	1.83050700
С	-0.10910100	-2.83431400	3.59968200
С	-4.97491800	2.24078100	-0.47159800
С	5.28431900	0.46448400	-1.66347300
С	-4.11500500	-1.27833600	0.12634500
С	3.05129300	-0.00310200	-2.67084500
С	-0.53783100	-0.22006200	2.76388200

Table S7. Standard orientation of 7-Cat-free [B3LYP/6-311+G(d,p)].

С	-0.56734400	-1.88390600	4.51049400
С	-4.91702900	-1.01192500	1.42761200
С	-0.78192400	-0.57255600	4.09049400
Н	0.37604600	-4.60977200	-4.14082400
н	1.68669400	-4.95124100	-2.06079600
н	-0.97500500	-2.54531300	-4.41577800
Н	1.67386500	-3.25096500	-0.29432000
Н	-2.35097500	4.98590200	-1.26631500
Н	3.36642300	4.11829300	1.75232000
Н	1.97882800	3.49475400	0.87435800
Н	-1.04619700	-0.86911000	-2.63204500
н	3.49218700	3.82846400	0.02370000
Н	-1.60770300	2.67080300	-0.83870500
Н	0.86146600	1.67806100	0.54905200
Н	-4.76197200	5.54969600	-1.18321000
Н	3.27715600	2.34762500	3.40668700
Н	4.40029700	3.04329000	-1.67956200
Н	1.87884700	1.58713000	2.64914400
н	2.71525800	2.78289000	-2.16588600
Н	4.03045000	2.39037700	-3.26816200
Н	0.49882000	-3.23298000	1.59099200
Н	0.99240700	1.37993100	-1.17324700
Н	5.38895000	2.63013100	2.28465600
Н	3.32625400	0.62883800	2.97157700
Н	5.58853700	2.46485900	0.54425100
Н	5.91211000	1.11161400	-1.05193800
н	0.06341700	-3.85492700	3.92167200
н	-6.43755200	3.79760600	-0.67555000
н	5.49824900	1.01884100	1.57167500
Н	2.01732700	0.30910300	-2.83208400
н	5.68224500	0.48676300	-2.68270600
н	3.55170100	0.02687500	-3.64330100
Н	5.37073400	-0.55555200	-1.28672100
Н	-5.72470000	1.49061900	-0.25291200
н	-5.55464000	-0.12713500	1.36697100
н	3.05279700	-1.03642300	-2.32279600
н	-0.70354600	0.81238500	2.46695500
н	-5.56929700	-1.87194000	1.61090200
н	-0.75091700	-2.16202500	5.54191800
н	-4.26524100	-0.90713300	2.29910400
н	-1.12884600	0.17504300	4.79515700

0	-1.42504300	0.07483800	-0.27832400
Ρ	3.02897000	0.69700500	0.02786200
S	3.35231900	-1.15204100	0.72213700
Si	0.16543300	-0.62409200	0.04681800
Si	-3.00044200	0.20590100	-0.20605100
С	-3.26608000	-2.55578000	0.29276500
С	-5.08208300	-1.44993900	-1.07483900
Н	-4.55012100	-1.66432400	-2.00584700
Н	-5.73378600	-2.30538800	-0.86998800
Н	-5.72461800	-0.58258800	-1.23997900
Н	-2.58414800	-2.49087600	1.14215900
Н	-3.94234900	-3.39776100	0.47210900
Н	-2.68021300	-2.78542900	-0.59975300

Figure S55. Optimized structure of compound 6-C [B3LYP/6-311+G(d,p)]. Selected bond lengths [Å] and angles [°]: P–S 1.999, Si1–C2 1.886, Si2–C2 1.902, Si1–C2–Si2 123.4.

Table S8. Star	ndard orientation	of 6-C [B3L`	YP/6-311+G(d,p)].
----------------	-------------------	---------------------	-------------------

Atomic symbol	x	У	Z
С	-0.33336400	4.79838200	-2.98942500
С	-1.04211000	4.83558500	-1.78918000
С	0.42804600	3.67492800	-3.30168800
С	-0.98420600	3.75551100	-0.91063700
С	0.48057200	2.59800000	-2.41604400
С	-0.21838800	2.61086900	-1.19888700
С	-3.99383000	-1.27888100	-2.65892200
С	3.79555200	-4.03523600	-1.24965100
С	3.30707000	-2.73669500	-1.11566500
С	4.37652700	-4.67814100	-0.15750900

С	-1.55723700	-1.84755900	-2.47156800
С	-5.29577100	0.18655300	0.12541500
С	-2.93367600	-1.97546600	-1.78683700
С	-2.09169600	0.50085400	-0.32661300
С	-3.26639900	-3.47510800	-1.66935900
С	0.43655800	2.92904400	2.08636800
С	3.38724500	-2.04477600	0.10456700
С	4.46250200	-4.01544500	1.06508600
С	-4.44806700	-0.89993000	0.81607900
С	-0.10544800	1.67483500	1.75836000
С	0.59464600	3.32683300	3.41390300
С	3.97259100	-2.71575300	1.19074900
С	-5.24517900	-2.21488100	0.88335600
С	4.05722400	0.97242200	-0.37971200
С	-4.14012700	-0.44085200	2.25652100
С	-0.47501200	0.82789900	2.81869400
С	0.21505700	2.47439800	4.44841400
С	5.39385700	0.70155100	0.34508600
С	-0.31792000	1.22239700	4.14631800
н	-0.37485500	5.63802100	-3.67447000
н	-1.63813100	5.70610700	-1.53676200
н	0.98385100	3.63630800	-4.23239900
н	-1.54297600	3.81191200	0.01843800
н	3.71946300	-4.54689700	-2.20329600
н	-3.91807300	-1.66910600	-3.67953000
н	-3.85635300	-0.19634900	-2.71771000
н	1.08276000	1.73743100	-2.68600800
н	-5.00868700	-1.48078700	-2.31376600
Н	2.85102800	-2.26265100	-1.97958900
Н	-2.35163200	0.77718200	-1.35227900
Н	4.75363000	-5.69005300	-0.25781000
н	-1.60220400	-2.35607300	-3.44023400
Н	-5.58257300	-0.07745600	-0.89127800
н	-1.27850000	-0.80911800	-2.66240000
н	-4.79534000	1.15645400	0.09752800
н	-6.21903800	0.31887000	0.69960100
н	0.74428600	3.60960900	1.30051900
н	-2.68000500	1.16852900	0.30826500
н	-3.22453400	-3.92084700	-2.66885200
н	-0.77277300	-2.31946500	-1.87883300
н	-4.26559000	-3.65382600	-1.27149700

Н	-5.63106300	-2.51297400	-0.09340200
Н	1.01498200	4.30147300	3.63832200
Н	4.90523200	-4.51167000	1.92214900
Н	-2.54767500	-3.99039600	-1.03117500
Н	-3.55775000	0.48345400	2.28964300
Н	-6.10657900	-2.07395100	1.54458600
Н	-5.08818900	-0.25063000	2.77047400
Н	-4.64041500	-3.02918500	1.28740200
Н	4.04068100	-2.22016200	2.15425800
Н	5.76881500	-0.30674900	0.15084600
Н	-3.59265100	-1.20507400	2.80820400
Н	2.63835400	-0.02578600	1.76786500
Н	-0.87618900	-0.15853500	2.60781600
Н	6.15668300	1.41211900	0.00176800
Н	0.33711100	2.78173000	5.48147100
Н	5.29916400	0.82265500	1.42893100
Н	-0.60821300	0.54786500	4.94480400
Р	-2.75053700	-1.20494400	-0.03669600
S	-1.59595400	-2.37721500	1.09857100
Si	-0.27263700	1.09921600	-0.04131600
Si	2.74967500	-0.26902400	0.30408800
С	3.62727700	2.42402500	-0.08680600
С	4.26894300	0.79209600	-1.89570900
Н	3.35585500	0.98693200	-2.46634600
Н	5.03139900	1.49396000	-2.25735100
Н	4.61158400	-0.21733200	-2.14079200
Н	3.46596300	2.59066700	0.98235600
Н	4.41090400	3.12010200	-0.41363600
Н	2.71053300	2.70139600	-0.61280700
С	1.02687900	-0.18925800	-0.49761300
н	1.12760300	-0.23591500	-1.58788100
Н	0.57217000	-1.14410400	-0.20318100

Figure S56. Optimized structure of compound 7-C-Cat-S [B3LYP/6-311+G(d,p)]. Selected bond lengths [Å] and angles [°]: P–S 2.104, Si1–C2 1.890, Si2–C2 1.880, Si1–C2–Si2 121.6, Si2–S 2.257.

Table S9. Standard	d orientation	of 7-C-Cat-S	[B3LYP/6-31	1+G(d,p)].
--------------------	---------------	--------------	-------------	------------

Atomic symbol	Х	У	Z
Si	-1.20929000	1.02389100	0.14401600
Si	1.65108700	-0.07633900	1.34580300
С	-1.00193500	-0.37951800	-1.17575700
С	-2.99181100	1.02768700	0.76621400
Р	-0.33669300	-2.05635400	-0.90177900
С	-0.91831200	2.63580300	-0.79706200
С	2.47163300	-0.53729400	3.02172400
С	2.82957400	0.85983500	0.22197300
S	1.25533800	-2.11974800	0.47183900
С	-1.68076100	-3.18877100	-0.16832400
С	0.37143900	-2.61557100	-2.58656400
С	-1.08426900	-4.53942200	0.27632000
С	-2.25293400	-2.47652500	1.07292300
С	-2.81236200	-3.42457600	-1.18792500
С	1.62259000	-1.76250800	-2.88161500
С	-0.66433600	-2.38339300	-3.70765800
С	0.78412300	-4.09827500	-2.54600400
С	-4.04831900	1.06972400	-0.16215100
С	-5.37697100	1.10537800	0.25291300
С	-5.68145600	1.11041200	1.61413900
С	-4.65230000	1.08417500	2.55202400
С	-3.32310600	1.04290600	2.13029600
С	-0.00818400	2.76791000	-1.85900900
С	0.17658100	3.98631300	-2.50922600
С	-0.54250200	5.10906400	-2.10422100

С	-1.44476500	5.00612300	-1.04736500
С	-1.63267000	3.78323000	-0.40633400
С	2.78677300	2.26410200	0.17411800
С	3.73328400	2.98958100	-0.54749200
С	4.74208300	2.32487200	-1.24063700
С	4.80186100	0.93182100	-1.20938900
С	3.85748600	0.20995000	-0.48413000
С	1.49081600	-1.28945600	3.94446200
С	2.88215200	0.79324500	3.69809600
С	3.73395200	-1.39867300	2.80584200
н	-0.36194900	0.04187800	-1.95403200
н	-1.88304300	-5.11363800	0.75406900
н	-0.70680900	-5.13561400	-0.55219400
н	-0.28628600	-4.41366800	1.00901100
Н	-2.97501500	-3.14997600	1.54293000
Н	-2.78198700	-1.55649000	0.82740200
Н	-1.48034100	-2.26104300	1.81329500
н	-2.49847400	-4.05322900	-2.02120900
н	-3.62247500	-3.95052700	-0.67515300
Н	-3.23523300	-2.49764300	-1.58167400
Н	1.99120300	-2.04171100	-3.87247000
н	2.41932300	-1.94321600	-2.16185400
Н	1.41781700	-0.69022100	-2.90691500
Н	-0.21099300	-2.70027300	-4.65113200
н	-1.57659800	-2.96384000	-3.57809100
Н	-0.93332400	-1.33165100	-3.81921400
н	1.44476900	-4.32317500	-1.70599700
н	-0.07446200	-4.76917300	-2.51288700
н	1.33473400	-4.32499600	-3.46322200
н	-3.83948900	1.09495800	-1.22818700
Н	-6.17322200	1.13885700	-0.48209300
Н	-6.71466700	1.14231300	1.94022400
Н	-4.88225400	1.09884100	3.61136300
н	-2.54321300	1.02739300	2.88418500
н	0.58585700	1.92186100	-2.18867000
н	0.88189700	4.05890600	-3.32933900
н	-0.40210800	6.05725500	-2.61045700
н	-2.00914700	5.87459600	-0.72733100
н	-2.35565200	3.72366800	0.40010800
н	2.01004000	2.80933800	0.69875600
н	3.67996000	4.07196900	-0.56806500

ł	4	5.48010300	2.88824800	-1.80010000
ł	4	5.58715100	0.40979600	-1.74440600
ł	4	3.92743100	-0.87231600	-0.46722000
ł	4	1.98738200	-1.52122400	4.89303400
ł	4	1.15725200	-2.23612100	3.51145100
ł	4	0.60699100	-0.69189200	4.18492600
ł	4	3.35450700	0.57694400	4.66268000
ł	4	3.60294000	1.35695000	3.10058700
ł	4	2.02304800	1.44060200	3.89979800
ł	4	3.50269100	-2.37340700	2.36599200
ł	4	4.46909900	-0.90084600	2.16881800
ł	4	4.21547500	-1.58827000	3.77162000
ł	4	-1.98026300	-0.52624900	-1.64476700
(C	-0.00656500	0.77860500	1.58171000
ł	4	0.18739600	1.76625000	2.01786700
ł	4	-0.52496500	0.20481900	2.35701200

Figure S57. Optimized structure of compound **7-C-Cat-Ar** [B3LYP/6-311+G(d,p)]. Selected bond lengths [Å] and angles [°]: P–S 2.007, Si1–C2 1.915, Si2–C2 1.882, Si1–C2–Si2 109.9, Si2–C5 2.219, C2–Si2–C3 114.2, C2–Si2–C4 114.2, C3–Si2–C4 114.7 (Σ angles around Si2: 343.1°).

Table S10. Standard orientation of 7-C-Cat-Ar [B3LYP/6-311+G(d,p)].

Atomic symbol	Х	У	Z
С	-2.66061000	4.99794700	-1.25060200
С	-2.90661900	4.28615000	-0.07744600
С	-1.75588700	4.49867800	-2.18465700
С	-2.25092000	3.08080200	0.16201300
С	-1.09064300	3.29890800	-1.93780800
С	-1.32162800	2.56558800	-0.76055300
С	-1.99121400	-3.89825800	-0.82098300

С	3.64422400	-3.11250900	-2.47472900
С	3.10803700	-1.88034400	-2.10401000
С	4.41868700	-3.83680200	-1.57216900
С	-0.90479000	-3.17930800	1.31382000
С	-4.47318200	-1.90228800	-1.90257800
С	-2.20943400	-3.12309600	0.49347000
С	-1.30004900	-0.65158300	-0.91828000
С	-3.33153300	-3.78433200	1.31523900
С	0.33276200	1.87713700	2.25857700
С	3.34321500	-1.33935200	-0.82677000
С	4.66148200	-3.32225300	-0.29898500
С	-4.30098100	-0.99580500	-0.67093700
С	0.43918000	0.90478200	1.26237100
С	1.12501700	1.81948900	3.40333200
С	4.13332900	-2.08741200	0.06635600
С	-5.45687800	-1.22767200	0.32151900
С	3.98772200	1.69581800	-0.07739900
С	-4.34336700	0.47850600	-1.11775600
С	1.45658400	-0.09829100	1.41993100
С	2.06282900	0.79333000	3.59835600
С	5.06740900	1.25750300	0.92999700
С	2.21413700	-0.17393700	2.62723900
н	-3.17430500	5.93401900	-1.43743600
н	-3.61628200	4.66571500	0.64907400
н	-1.56564800	5.04253700	-3.10289500
н	-2.48461100	2.52209100	1.06150400
н	3.45682500	-3.50402800	-3.46792800
н	-1.66338800	-4.91214500	-0.57086200
н	-1.21234800	-3.45804000	-1.44842600
н	-0.38907900	2.93683500	-2.68231600
н	-2.89598700	-3.99184400	-1.41799200
н	2.51296500	-1.33905100	-2.83095400
Н	-0.54272900	-1.43635600	-0.99894600
н	4.83394500	-4.79594700	-1.85875900
н	-0.69003600	-4.22550200	1.55043700
н	-4.64504600	-2.94365400	-1.62958500
н	-0.04702700	-2.80053100	0.75024500
н	-3.62470700	-1.85788400	-2.59051600
н	-5.35429400	-1.56730700	-2.45841400
н	-0.38742900	2.67873300	2.15643500
н	-1.70270300	-0.52982000	-1.92906400

Н	-3.00115700	-4.77937400	1.62817300
Н	-0.98792600	-2.62256700	2.24728600
Н	-4.24377000	-3.91605300	0.73233900
Н	-5.54579400	-2.26847400	0.63118600
Н	1.00726900	2.58063100	4.16725300
Н	5.26647000	-3.88039700	0.40618800
Н	-3.56732100	-3.21157200	2.21439200
Н	-3.59194800	0.71933600	-1.87234400
Н	-6.39397800	-0.94933800	-0.16993300
Н	-5.32284700	0.67257900	-1.56466800
Н	-5.34508200	-0.61176900	1.21486900
Н	4.35079200	-1.70792100	1.05835600
Н	5.57790300	0.34431800	0.61625400
Н	-4.21981800	1.15947600	-0.27640200
Н	1.29928900	-1.05186200	0.91308400
Н	5.82780300	2.04218400	1.00737700
Н	2.64189900	0.75252900	4.51280800
Н	4.66068400	1.10259400	1.93210900
Н	2.88904300	-1.00745000	2.78321200
Р	-2.62850600	-1.26885200	0.22217200
S	-2.56051500	-0.25503500	1.95345800
Si	-0.38630500	0.96500700	-0.46299900
Si	2.65984200	0.35367100	-0.38947100
С	3.36382100	3.03089800	0.37421800
С	4.65136500	1.88524600	-1.46894500
Н	3.94453600	2.22823600	-2.23000300
Н	5.43025500	2.65090300	-1.38594800
Н	5.13002300	0.97120700	-1.83056300
Н	2.92297200	2.96010900	1.36955600
Н	4.14436700	3.79847000	0.41359500
Н	2.59421300	3.39323500	-0.31285900
С	1.23452500	0.91606500	-1.48223100
Н	1.47041100	1.92824200	-1.82375100
Н	1.14038700	0.29510700	-2.37609000

Figure S58. Optimized structure of compound $7[HB(C_6F_5)_3]$ [B3LYP/6-31G(d)]. Selected bond lengths [Å]: Si1–O 1.669, Si2–O 1.638, Si2–S 2.271, Si2–(*p*-F) 4.049. Formal charges are omitted for clarity.

Table S11. Standard orientation of 7[HB(C₆F₅)₃] [B3LYP/6-31G(d)].

Atomic symbol	Х	У	Z
Si	2.21236400	0.67255000	0.35968900
0	2.62430500	-0.65277700	-0.56762600
Si	3.85349400	-1.60093900	-1.09160800
С	3.86316200	1.64457700	0.67904600
С	0.97594500	1.70066600	-0.57534800
Р	5.35437800	1.57121200	-0.38092800
С	1.59166400	0.17144700	2.04671600
С	3.50737800	-2.36525400	-2.79695800
С	4.40198000	-2.80942800	0.22664200
S	5.59108900	-0.19309000	-1.48918800
С	5.25122500	2.96142200	-1.68142400
С	6.84605000	1.65437000	0.80903100
С	6.36120100	2.81831500	-2.74307700
С	3.88117700	2.81695600	-2.37711800
С	5.34836200	4.35000500	-1.01589700
С	6.85712300	0.34630500	1.63150300
С	6.70706200	2.84925200	1.77804800
С	8.16932500	1.76235700	0.02728600
С	0.69150200	3.02857800	-0.19765900
С	-0.31760600	3.75435300	-0.82962000
С	-1.07092100	3.16072100	-1.84664600
С	-0.81067300	1.84470200	-2.22891100
С	0.20750100	1.12372300	-1.60272400
С	2.42722400	-0.45407800	2.99494800
С	1.93385900	-0.85541200	4.23439400
С	0.58944400	-0.64076100	4.55208900

С	-0.25673300	-0.02237700	3.63240200
С	0.24321100	0.38169000	2.39240000
С	3.44047900	-3.37834600	1.08633700
С	3.81047900	-4.33579100	2.03310300
С	5.14075700	-4.74403400	2.13763400
С	6.10591500	-4.19506600	1.29029400
С	5.73849500	-3.23774300	0.34484400
С	3.04614900	-1.29420000	-3.80661400
С	2.38503200	-3.41720800	-2.61716000
С	4.77995000	-3.06667300	-3.32271200
н	4.19020400	1.33278000	1.67543000
Н	6.21690300	3.60993900	-3.48748200
н	7.36556100	2.93565100	-2.33112900
н	6.30772500	1.85957900	-3.26480300
Н	3.83400300	3.55333100	-3.18798600
н	3.03883800	3.01176800	-1.71007300
Н	3.74864500	1.82746600	-2.82383000
н	6.35723200	4.56808200	-0.65539200
н	5.10240800	5.10548600	-1.77079400
н	4.64347200	4.48408900	-0.18901600
Н	7.69147100	0.40005500	2.34039500
Н	7.00114500	-0.53612200	1.00479200
н	5.94496400	0.20312600	2.21962200
Н	7.55213500	2.81819400	2.47553500
н	6.73942200	3.81579900	1.27161100
Н	5.79291800	2.80234800	2.37705700
н	8.26541000	0.98352300	-0.73553500
н	8.29256700	2.73994200	-0.44645600
н	8.99949700	1.63692700	0.73208800
Н	1.23887000	3.50002800	0.61816800
н	-0.55313300	4.76222600	-0.50046900
н	-1.88897500	3.70982900	-2.30197100
Н	-1.42175800	1.36265600	-2.98565300
н	0.37194700	0.09143500	-1.89243500
н	3.47169000	-0.65604400	2.76136400
н	2.59266400	-1.34226800	4.94881300
н	0.20152900	-0.96091900	5.51522800
н	-1.30464300	0.13923000	3.85962700
н	-0.43351400	0.85567200	1.68767800
н	2.39693200	-3.08850300	1.01710800
н	3.05417100	-4.76166800	2.68634900

Н	5.42523600	-5.49007500	2.87483700
н	7.14256500	-4.51257600	1.36533300
н	6.50398300	-2.82031700	-0.30526600
н	2.79090900	-1.77520500	-4.76027900
Н	3.83112800	-0.55703500	-4.01183100
Н	2.15509400	-0.76101600	-3.45930300
Н	2.19649600	-3.90442900	-3.58339000
Н	2.66387700	-4.20074900	-1.90373300
Н	1.44433600	-2.97245200	-2.28276500
Н	5.60553400	-2.36435000	-3.49504000
н	5.13205600	-3.84921000	-2.64079600
н	4.56014000	-3.54716600	-4.28531200
Н	3.60333200	2.70691300	0.76494200
F	0.33354200	-3.30268100	-0.03852400
С	-0.82982500	-2.64480100	0.18207800
С	-1.41628700	-2.65988500	1.43830400
С	-1.43182900	-1.92736100	-0.84449300
С	-2.60290100	-1.95279700	1.64619600
С	-2.60329300	-1.22402500	-0.58756300
С	-3.24943100	-1.21727100	0.65102100
В	-4.61796000	-0.34832300	0.94632100
н	-4.94530400	-0.55832100	2.09027700
С	-5.91240100	-0.75112800	0.02402500
С	-7.08038300	0.01518900	0.10512700
С	-6.03421000	-1.87426700	-0.79560000
С	-8.26046100	-0.27569700	-0.57176500
С	-7.19524700	-2.20946300	-1.49367400
С	-8.32014900	-1.40354800	-1.38397500
С	-4.19942200	1.24469100	0.85568200
С	-3.55498700	1.85171900	1.93606600
С	-4.38597700	2.08579100	-0.24346100
С	-3.12665000	3.17761600	1.95189100
С	-3.99008700	3.42186700	-0.26813200
С	-3.34719100	3.97155900	0.83326800
F	-0.84733300	-1.89789000	-2.06859200
F	-3.11861800	-0.52266600	-1.62092800
F	-3.09087900	-2.00447100	2.90132200
F	-0.81981700	-3.33158700	2.44142400
F	-5.00191800	-2.73826500	-0.95680500
F	-7.23469200	-3.30952300	-2.26923900
F	-9.44869900	-1.70895200	-2.04726500

F	-7.10379700	1.12067300	0.88463400
F	-9.34201600	0.51534600	-0.44720000
F	-4.16157700	4.17397400	-1.37699200
F	-4.97038700	1.62929300	-1.37001900
F	-3.28973800	1.13685400	3.05842600
F	-2.48902300	3.69037100	3.02256900
F	-2.89830900	5.24256100	0.79637100

Figure S59. Optimized structure of compound Int-1 [B3LYP/6-31G(d)]. Selected bond lengths [Å]: Si1–O 1.738, Si2–O 1.595, Si2–(*p*-F) 1.946. Formal charges are omitted for clarity.

Atomic symbol	Х	У	Z
Si	-2.49211800	-0.24950500	-0.18602700
0	-2.28558000	1.36010000	-0.80957500
Si	-2.19163900	2.95253900	-0.80807000
С	-4.35468800	-0.44284800	-0.57914000
С	-1.25436700	-1.27706700	-1.13569700
Р	-5.22787100	-2.07939900	-0.39692400
С	-2.09001000	-0.17671900	1.63665100
С	-2.45216500	3.77827800	-2.48373900
С	-2.81636900	3.84341000	0.68943000
С	-6.94322200	-1.59421000	0.32854500
С	-5.37450400	-2.78353500	-2.17760900
С	-7.89177100	-2.80751200	0.26704800
С	-6.72202100	-1.23513900	1.81345100
С	-7.59932600	-0.38605700	-0.37196900
С	-3.96269000	-2.75626400	-2.79891700
С	-6.32993300	-1.98041600	-3.08059500
С	-5.83335300	-4.25462000	-2.11362500

Table S12. Standard orientation of Int-1 [B3LYP/6-31G(d)].

С	-0.90407500	-2.56696800	-0.68614800
С	0.08967000	-3.30439800	-1.32973400
С	0.75971400	-2.76856700	-2.43231900
С	0.41904300	-1.49907800	-2.90004600
С	-0.58011300	-0.76423500	-2.25891300
С	-3.00933300	0.26981600	2.60397200
С	-2.64834600	0.38314500	3.94537300
С	-1.35321100	0.05263600	4.35062500
С	-0.42070300	-0.38985000	3.41203900
С	-0.78963000	-0.50225700	2.07035400
С	-2.10046400	4.87192500	1.33044700
С	-2.65882800	5.56093700	2.40612700
С	-3.94264200	5.24333600	2.85251200
С	-4.67002100	4.23075700	2.22456000
С	-4.11061900	3.53507100	1.15406300
С	-1.80282100	2.98083000	-3.63286400
С	-1.90893300	5.22467100	-2.46401100
С	-3.99123000	3.81165100	-2.68418300
н	-4.52465100	-0.05442100	-1.59083200
н	-8.79190500	-2.58806600	0.85479900
н	-8.21666300	-3.02997800	-0.75360400
н	-7.42494400	-3.70192000	0.69068900
Н	-7.69155100	-0.98340400	2.26149700
Н	-6.06769600	-0.36576000	1.94034200
Н	-6.28387100	-2.06734000	2.36837400
Н	-7.83485200	-0.57212900	-1.42116200
Н	-8.54402300	-0.15914700	0.13828000
н	-6.98219800	0.51699900	-0.31732900
Н	-4.00422900	-3.24742000	-3.77921700
н	-3.23567700	-3.29285400	-2.18493600
н	-3.58938500	-1.74068600	-2.96117000
Н	-6.24090100	-2.35758500	-4.10715300
н	-7.37706900	-2.09346200	-2.78677800
Н	-6.09122800	-0.91099200	-3.10967900
Н	-5.17785700	-4.84573600	-1.46925300
Н	-6.85791600	-4.36387200	-1.75026800
Н	-5.79462200	-4.67619000	-3.12587300
н	-1.40923700	-2.99596500	0.17404100
Н	0.36534800	-4.28376300	-0.95000300
н	1.56238200	-3.32986200	-2.90062700
н	0.94495800	-1.06989500	-3.74832500

Н	-0.81378300	0.22946600	-2.62641100
н	-4.02453200	0.53081300	2.31673100
н	-3.37805700	0.72363200	4.67541500
Н	-1.07230500	0.13722500	5.39698500
Н	0.58817700	-0.65387100	3.71169000
Н	-0.05325100	-0.85898900	1.35645100
Н	-1.09481100	5.12525100	1.01161700
Н	-2.08763800	6.34220700	2.89885300
н	-4.37473100	5.78238400	3.69084400
Н	-5.66834800	3.97951600	2.57115600
н	-4.69062300	2.74537400	0.68178100
н	-2.03237100	3.47045700	-4.58821900
н	-2.18566400	1.95624900	-3.68449900
н	-0.71493100	2.93192400	-3.53656700
н	-2.17184000	5.72313000	-3.40568600
н	-2.33599600	5.81901500	-1.64825100
н	-0.81760500	5.25078900	-2.37462000
н	-4.42483000	2.80464900	-2.71920500
н	-4.50316300	4.38305700	-1.90121400
н	-4.21685600	4.29546800	-3.64327900
н	-4.85808500	0.25577100	0.10066000
F	-0.28903100	3.31002400	-0.60827400
С	0.81842700	2.49189200	-0.19615500
С	1.14411600	2.44769900	1.14607200
С	1.54455700	1.83322900	-1.17343800
С	2.26143300	1.68920500	1.50534900
С	2.63647200	1.08260700	-0.75007000
С	3.04907800	0.99163800	0.58416500
В	4.31764400	0.04716900	1.07124300
н	4.55668000	0.33372700	2.21898400
С	5.70166900	0.28925600	0.23241600
С	6.73984300	-0.64754500	0.26082300
С	6.02088100	1.46153600	-0.45428200
С	7.97365200	-0.46587700	-0.35851300
С	7.23955200	1.69135100	-1.09032700
С	8.22826800	0.71680400	-1.04477100
С	3.73117200	-1.49040700	1.04430000
С	3.02318300	-1.98803700	2.14098100
С	3.79960100	-2.36733000	-0.04095400
С	2.42112300	-3.24457800	2.18028800
С	3.22131700	-3.63388600	-0.04459600

С	2.51995100	-4.07530300	1.07066200
F	1.18407400	1.92082000	-2.46626200
F	3.30766800	0.43670300	-1.71444500
F	2.53618500	1.66814900	2.81716700
F	0.40378200	3.11192000	2.04513300
F	5.12632700	2.48192100	-0.53245500
F	7.46672700	2.84778100	-1.74020800
F	9.41135800	0.91504700	-1.64818300
F	6.58124100	-1.81317500	0.92619100
F	8.92173500	-1.41638000	-0.29495800
F	3.27590500	-4.41559700	-1.14193300
F	4.43838100	-2.00876100	-1.17389100
F	2.85361900	-1.22327500	3.24795800
F	1.73382800	-3.64628800	3.26376600
F	1.90498400	-5.27104000	1.05072000
S	-4.27160200	-3.33852800	0.80861200

Figure S62. Optimized structure of compound Int-2 [B3LYP/6-31G(d)]. Selected bond lengths [Å]: Si1–O 1.688, Si2–O 1.623, Si2–F 1.626, C6–(*p*-C) 1.621. Formal charges are omitted for clarity.

Table S15	. Standard	orientation	of Int-2	[B3LYP/6-3	31G(d)].
-----------	------------	-------------	----------	------------	----------

Atomic symbol	Х	У	Z
Si	3.36504700	-0.09772600	-0.15046000
0	2.95354300	1.36394800	0.58619900
Si	2.16174100	2.74786300	0.88912700
С	4.82049100	-0.60651700	0.97981400
С	1.84216200	-1.18600700	-0.15249700
Р	5.76090600	-2.18987400	0.74186500
С	3.92127000	0.36286200	-1.89071700

С	3.31142700	4.03632900	1.65970700
С	1.23878400	3.34287300	-0.64771700
С	7.59815500	-1.66462200	0.97996700
С	5.15848600	-3.35908900	2.14061100
С	8.48642000	-2.91907300	1.09472200
С	8.01180700	-0.89357000	-0.29220500
С	7.83287100	-0.74955300	2.20003900
С	3.61687000	-3.38604100	2.08419800
С	5.59653000	-2.90451800	3.54533900
С	5.66763700	-4.78940600	1.87230600
С	1.77551600	-2.36690700	-0.91980100
С	0.61476500	-3.14126100	-0.94424900
С	-0.50644700	-2.75614300	-0.20659200
С	-0.45872300	-1.59491900	0.56702900
С	0.70410900	-0.82195900	0.59414200
С	5.05082900	1.17941500	-2.09244400
С	5.41763600	1.61659000	-3.36587100
С	4.65661400	1.24294300	-4.47629100
С	3.53062400	0.43739100	-4.30127600
С	3.16673300	0.00753100	-3.02310700
С	-0.10703900	3.92745200	-0.48989700
С	-0.81481700	4.44178300	-1.67893800
С	-0.15287500	4.33411800	-2.97525000
С	1.08850200	3.79611400	-3.06672500
С	1.78299300	3.30345200	-1.89940300
С	4.45570300	4.38338400	0.68408200
С	3.90236900	3.45317600	2.96292200
С	2.50724100	5.31430700	1.98693800
Н	4.45917900	-0.54690600	2.01375800
н	9.53994900	-2.61913900	1.02832500
н	8.35573000	-3.43427500	2.05129800
Н	8.28682800	-3.62760500	0.28485700
н	9.06379600	-0.59618900	-0.19567600
Н	7.42403300	0.01971200	-0.43620500
Н	7.90016100	-1.50741800	-1.18845000
Н	7.60335900	-1.23187600	3.15159100
Н	8.89397200	-0.47005700	2.22461000
н	7.25922800	0.18124100	2.14449400
н	3.25546800	-4.12632100	2.80890500
н	3.24940300	-3.67557300	1.09716800
н	3.16475000	-2.42585500	2.34995700

Н	5.08595400	-3.52681100	4.29099200
Н	6.67133700	-3.02657300	3.70488000
Н	5.32980500	-1.86334600	3.75804900
Н	5.36748500	-5.13543800	0.87994700
Н	6.75475300	-4.87150100	1.94619800
Н	5.23139400	-5.46279100	2.62083000
Н	2.64400500	-2.69281200	-1.48572500
Н	0.58603700	-4.04753100	-1.54381800
Н	-1.41334400	-3.35159100	-0.23435800
Н	-1.32765100	-1.28760000	1.14026500
Н	0.71810100	0.07204000	1.21144400
Н	5.66035700	1.48684200	-1.24505900
Н	6.29858000	2.24069900	-3.49304200
Н	4.94385300	1.57408700	-5.47097500
Н	2.93520800	0.13871100	-5.16028700
Н	2.28262900	-0.61230400	-2.90829200
Н	-0.32932900	4.38730700	0.46820800
Н	-1.52761300	5.25122100	-1.55211300
Н	-0.65732600	4.74540900	-3.84417400
Н	1.59377100	3.74809200	-4.02683000
Н	2.77953400	2.89769400	-2.04676700
Н	5.12397600	5.12943900	1.13564800
Н	4.08169900	4.80763500	-0.25587700
Н	5.06203400	3.50395700	0.43838100
Н	4.57487800	4.18457200	3.43215000
Н	3.11996900	3.20811500	3.69018400
Н	4.48140300	2.54266800	2.77151900
Н	2.07824900	5.77131300	1.08579600
Н	1.69052700	5.11386700	2.69020800
Н	3.16206000	6.06545700	2.44915600
Н	5.54045900	0.21316900	0.87265000
С	-1.44144400	3.12194900	-0.93541300
С	-2.60604500	3.41459300	-0.14301000
С	-1.43735700	1.80767800	-1.51082800
С	-3.62495400	2.51916300	0.02985000
С	-2.48376100	0.93112000	-1.32120800
С	-3.62921300	1.22744000	-0.55143400
В	-4.95264500	0.30409700	-0.38886700
Н	-5.79322700	1.02719000	-0.89406400
С	-5.38269300	0.09997100	1.17319600
С	-6.72260000	-0.10553000	1.50895100

С	-4.49764300	0.06993800	2.24848700
С	-7.16077800	-0.32483600	2.81348200
С	-4.88699800	-0.14380700	3.56771100
С	-6.23444200	-0.34194400	3.85217800
С	-4.94243900	-1.10824800	-1.19992600
С	-5.60195100	-1.26679900	-2.42026600
С	-4.31121000	-2.25815000	-0.72766900
С	-5.64115700	-2.47160200	-3.12290300
С	-4.31397100	-3.47720300	-1.39604200
С	-4.98742700	-3.58637800	-2.60890100
F	-0.39580200	1.42077100	-2.24028700
F	-2.35317700	-0.26433500	-1.91208400
F	-4.66548400	2.91506300	0.77324800
F	-2.67120100	4.62925600	0.42153400
F	-3.16778200	0.26135100	2.03953700
F	-3.98268400	-0.15774400	4.56107100
F	-6.63597000	-0.54716400	5.11459000
F	-7.66488900	-0.10432800	0.54647600
F	-8.46242500	-0.51549900	3.07956000
F	-3.64767900	-4.53597200	-0.89736000
F	-3.61700900	-2.21724400	0.43639000
F	-6.23783900	-0.22520700	-2.99387200
F	-6.29128000	-2.56303200	-4.29430700
F	-5.00075000	-4.74957700	-3.27446300
S	5.48691200	-3.00995500	-1.05456600
F	0.95918100	2.47783200	1.94976600

Figure S60. Optimized structure of compound Int-3 [B3LYP/6-31G(d)].

Atomic symbol	x	У	Z
С	2.85448700	2.17447500	0.83802100
С	3.98280000	1.67198500	0.18759500
С	1.61774500	1.57475800	0.62688700
С	-3.44424600	1.11443200	0.85980200
С	3.85880000	0.57066500	-0.65668300
С	-2.32243800	0.32259400	0.63465000
С	-3.58571700	2.31160900	0.15964700
С	1.43414600	0.46881100	-0.21513700
С	2.60485000	0.00125400	-0.83763400
С	-1.30474200	0.66282000	-0.25859500
С	-2.60129400	2.69606500	-0.74755500
С	0.83148100	-2.55499300	0.48383600
С	0.53096900	-3.91362400	0.75856000
С	-1.49696900	1.87232900	-0.93899900
С	-0.09674900	-1.78284600	-0.18835900
С	-0.47153100	-4.58804600	0.08012400
С	-1.19882500	-2.53887500	-0.71003200
С	-1.51739100	-3.90649600	-0.42640400
В	0.01827500	-0.21438700	-0.54842200
F	2.97918800	3.22140000	1.66061300
F	5.17357800	2.23839000	0.38194400
F	-4.38355300	0.74147300	1.73771100
F	0.57895000	2.10012500	1.30090000
F	-2.24620800	-0.82377900	1.35435800
F	4.93828600	0.07903000	-1.27652100
F	1.86388700	-2.02763300	1.14655400
F	1.13195200	-4.47180500	1.79738700
F	-2.73037200	3.84295700	-1.42521500
F	2.53806300	-1.06730800	-1.65501800
F	-0.57333500	2.28784100	-1.82449000
F	-1.86063700	-2.04209600	-1.73514300
F	-2.54854400	-4.43480000	-1.08419300
Н	0.03017500	-0.39552900	-1.77989000
F	-4.65834500	3.08131300	0.35707300

Table S13. Standard orientation of Int-3 [B3LYP/6-31G(d)].

Figure S61. Optimized structure of compound Int-3 [B3LYP/6-311+G(d,p)].

Table S1	4. Standard	orientation of	of Int-3 [B3LYP/6-311+	-G(d,p)].

Atomic symbol	Х	У	Z
С	-3.25343900	-1.21060700	-1.06387900
С	-3.56291800	-2.27591500	-0.22593100
С	-2.13380000	-0.43741700	-0.78991400
С	0.34945000	3.83927900	-0.88875800
С	-2.74488700	-2.55200000	0.86504300
С	0.71545200	2.50652100	-0.57859700
С	-0.60004700	4.51697300	-0.14970000
С	-1.27990100	-0.67489600	0.28722100
С	-1.63342600	-1.75510800	1.09932600
С	-0.11148300	1.75521300	0.22719700
С	-1.56107400	3.85077500	0.50675100
С	1.66558600	-1.57145900	-0.57502000
С	2.90897100	-2.14604800	-0.79502700
С	-1.17814500	2.50802400	0.82364300
С	1.46813300	-0.46667400	0.26204700
С	4.03071700	-1.61890800	-0.15976900
С	2.63276700	0.02606700	0.87093200
С	3.89174900	-0.51969800	0.68131900
В	0.04435100	0.19629200	0.60513200
F	-4.03104700	-0.94742900	-2.12012000
F	-4.63654400	-3.02836300	-0.46658800
F	0.79899000	4.35130900	-2.02039500
F	-1.86825300	0.56997400	-1.65547200
F	1.68778600	1.96240300	-1.31098100
F	-3.04139200	-3.57588200	1.67199600
F	0.63003300	-2.11934300	-1.23543400
F	3.04758000	-3.19283600	-1.61303400
---	-------------	-------------	-------------
F	-2.53456500	4.39863700	1.22950200
F	-0.87025100	-2.06771700	2.16243200
F	5.22914100	-2.15988400	-0.36249100
F	-1.69763700	2.05607800	1.94286400
F	2.55235300	1.09553800	1.68600300
F	4.96705400	-0.00667000	1.28737600
Н	0.05676900	0.35145700	1.83211500

Figure S63. Optimized structure of compound 8 [B3LYP/6-31G(d)]. Selected bond lengths [Å] and angles [°]: P–S 1.990, Si1–O 1.660, Si2–O 1.654, Si1–O–Si2 148.7, Si2–F 1.620.

Atomic symbol	Х	У	Z	
С	0.73340700	-3.52972600	4.41885200	
С	-0.18851300	-4.04998500	3.50793400	
С	1.43803600	-2.36821300	4.10085100	
С	-0.39969800	-3.40940800	2.28623600	
С	1.22365700	-1.73353000	2.87527700	
С	0.30525200	-2.24038000	1.93892600	
С	-3.59630100	1.63780600	2.36065400	
С	2.46920000	4.21532900	1.60215500	
С	2.40515500	2.87570000	1.21649300	
С	2.34461600	5.22315800	0.64368300	
С	-1.16180000	1.96365200	1.86128800	
С	-5.08459700	-0.61295600	0.31687900	
С	-2.58199100	2.00015600	1.25934800	
С	-1.87077200	-0.78396100	0.45696900	
С	-2.85712100	3.43057900	0.75489400	

Table S16. Standard orientation of	8	[B3LYP/6-31G(d)].
--	---	-------------------

C 2.21679200 2.51192500 -0.13025 C 2.15290600 4.88493500 -0.69674 C -4.36990000 0.26277700 -0.73318 C 0.11760600 -2.49488100 -1.16172 C 0.74101200 -4.64533600 -2.13843 C 2.09038100 3.54363400 -1.02974 C 3.89915500 -0.10213600 -0.63186 C -4.23892800 -0.55323500 -2.03820 C -0.26686200 -2.05721000 -2.44845 C 0.36107600 -4.19411400 -3.40293 C -0.3537100 -2.89771800 -3.5577 H 0.90001700 -4.02708600 5.379910 H -0.74161900 -4.95438400 3.748834 H 2.15520000 -1.95580200 4.806218 H -3.4219300 2.29109000 3.225325 H -3.4219300 2.29109000 3.225326 H -3.49190500 0.60542300 2.712092	С	0.62154600	-3.80242700	-1.03142500
C 2.15290600 4.88493500 -0.69674 C -4.36990000 0.26277700 -0.73318 C 0.11760600 -2.49488100 -1.16172 C 0.74101200 -4.64533600 -2.13843 C 2.09038100 3.54363400 -1.0274 C -5.21379400 1.51732500 -1.02974 C -3.89915500 -0.10213600 -0.63186 C -4.23892800 -0.55323500 -2.03820 C -0.25686200 -2.05721000 -2.44845 C 0.36107600 -4.19411400 -3.40293 C -0.3537100 -2.89771800 -3.5577 H 0.90001700 -4.02708600 5.370910 H -0.74161900 -4.95438400 3.748836 H 2.15520000 -1.95580200 4.806218 H -3.4219300 2.29109000 3.225325 H -3.4219300 2.29109000 3.225326 H -3.42193020 2.10662400 1.980984	С	2.21679200	2.51192500	-0.13025400
C -4.36990000 0.26277700 -0.73318 C 0.11760600 -2.49488100 -1.16172 C 0.74101200 -4.64533600 -2.13843 C 2.09038100 3.54363400 -1.07814 C -5.21379400 1.51732500 -1.02974 C 3.89915500 -0.10213600 -0.63186 C -4.23892800 -0.55323500 -2.03820 C -0.25686200 -2.05721000 -2.44845 C 0.36107600 -4.19411400 -3.40293 C -0.3537100 -2.89771800 -3.55577 H 0.90001700 -4.02708600 5.370910 H -0.74161900 -4.95438400 3.748833 H 2.15520000 -1.95580200 4.806219 H -1.12041600 -3.83647400 1.591194 H -3.42219300 2.29109000 3.225329 H -3.49190500 0.60542300 2.712099 H -2.15249000 -0.84751400 1.51470	С	2.15290600	4.88493500	-0.69674500
C 0.11760600 -2.49488100 -1.16172 C 0.74101200 -4.64533600 -2.13843 C 2.09038100 3.54363400 -1.07814 C -5.21379400 1.51732500 -1.02974 C 3.89915500 -0.10213600 -0.63186 C -4.23892800 -0.55323500 -2.03820 C -0.25686200 -2.05721000 -2.44845 C 0.36107600 -4.19411400 -3.40293 C 4.85935300 0.73539400 -1.50845 C -0.13537100 -2.89771800 -3.5577 H 0.90001700 -4.02708600 5.370910 H -0.74161900 -4.95438400 3.748838 H 2.15520000 -1.95580200 4.806219 H -1.12041600 -3.3647400 1.591194 H -3.42219300 2.29109000 3.225329 H -3.49190500 0.60542300 2.712092 H -1.77459700 -0.82662500 2.643022<	С	-4.36990000	0.26277700	-0.73318500
C 0.74101200 -4.64533600 -2.13843 C 2.09038100 3.54363400 -1.07814 C -5.21379400 1.51732500 -1.02974 C 3.89915500 -0.10213600 -0.63186 C -4.23892800 -0.55323500 -2.03820 C -0.25686200 -2.05721000 -2.44845 C 0.36107600 -4.19411400 -3.40293 C -4.85935300 0.73539400 -1.50845 C -0.13537100 -2.89771800 -3.5577 H 0.90001700 -4.02708600 5.370910 H -0.74161900 -4.95438400 3.748838 H 2.15520000 -1.95580200 4.806219 H -1.12041600 -3.83647400 1.591194 H 2.61375400 4.47267200 2.648534 H -3.42219300 2.29109000 3.225326 H -3.49190500 0.60542300 2.712096 H 2.15249000 -0.84751400 1.514700<	С	0.11760600	-2.49488100	-1.16172000
C 2.09038100 3.54363400 -1.07814 C -5.21379400 1.51732500 -1.02974 C 3.89915500 -0.10213600 -0.63186 C -4.23892800 -0.55323500 -2.03820 C -0.25686200 -2.05721000 -2.44845 C 0.36107600 -4.19411400 -3.40293 C -4.85935300 0.73539400 -1.50845 C -0.13537100 -2.89771800 -3.55577 H 0.90001700 -4.02708600 5.370910 H -0.74161900 -4.95438400 3.748836 H -2.15520000 -1.95580200 4.806219 H -1.12041600 -3.83647400 1.591194 H -3.42219300 2.29109000 3.225329 H -3.49190500 0.60542300 2.712096 H -2.15249000 -0.84751400 1.514709 H -2.15249000 -0.84751400 1.514709 H -2.24923920 2.10662400 1.98	С	0.74101200	-4.64533600	-2.13843700
C -5.21379400 1.51732500 -1.02974 C 3.89915500 -0.10213600 -0.63186 C -4.23892800 -0.55323500 -2.03820 C -0.25686200 -2.05721000 -2.44845 C 0.36107600 -4.19411400 -3.40293 C 4.85935300 0.73539400 -1.50845 C -0.13537100 -2.89771800 -3.55577 H 0.90001700 -4.02708600 5.370910 H -0.74161900 -4.95438400 3.748836 H 2.15520000 -1.95580200 4.806215 H -1.12041600 -3.83647400 1.591194 H 2.61375400 4.47267200 2.648534 H -3.42219300 2.29109000 3.225326 H -3.49190500 0.60542300 2.712096 H -2.15249000 -0.82662500 2.643025 H -2.93386600 6.26758100 0.941457 H -1.08456700 2.74991000 2.62313	С	2.09038100	3.54363400	-1.07814800
C 3.89915500 -0.10213600 -0.63186 C -4.23892800 -0.55323500 -2.03820 C -0.25686200 -2.05721000 -2.44845 C 0.36107600 -4.19411400 -3.40293 C 4.85935300 0.73539400 -1.50845 C -0.13537100 -2.89771800 -3.55577 H 0.90001700 -4.02708600 5.370910 H -0.74161900 -4.95438400 3.748836 H 2.15520000 -1.95580200 4.806215 H -1.12041600 -3.83647400 1.591194 H 2.61375400 4.47267200 2.648534 H -3.42219300 2.29109000 3.225325 H -3.49190500 0.60542300 2.712095 H 1.77459700 -0.82662500 2.643025 H -2.15249000 -0.84751400 1.514705 H 2.49232202 2.10662400 1.980984 H -2.15249000 -0.84751400 1.62680	С	-5.21379400	1.51732500	-1.02974800
C -4.23892800 -0.55323500 -2.03820 C -0.25686200 -2.05721000 -2.44845 C 0.36107600 -4.19411400 -3.40293 C 4.85935300 0.73539400 -1.50845 C -0.13537100 -2.89771800 -3.55577 H 0.90001700 -4.02708600 5.370910 H -0.74161900 -4.95438400 3.748833 H 2.15520000 -1.95580200 4.806218 H -1.12041600 -3.83647400 1.591194 H 2.61375400 4.47267200 2.648534 H -3.42219300 2.29109000 3.225323 H -3.49190500 0.60542300 2.712092 H 1.77459700 -0.82662500 2.643025 H -2.15249000 -0.84751400 1.514705 H 2.49239200 2.10662400 1.980984 H -2.15249000 -0.84751400 1.614705 H -2.49239200 2.74991000 2.62313	С	3.89915500	-0.10213600	-0.63186300
C -0.25686200 -2.05721000 -2.44845 C 0.36107600 -4.19411400 -3.40293 C 4.85935300 0.73539400 -1.50845 C -0.13537100 -2.89771800 -3.55577 H 0.90001700 -4.02708600 5.370910 H -0.74161900 -4.95438400 3.748833 H 2.15520000 -1.95580200 4.806213 H -1.12041600 -3.83647400 1.591194 H 2.61375400 4.47267200 2.648534 H -3.42219300 2.29109000 3.225323 H -3.49190500 0.60542300 2.712093 H -3.49190500 0.60542300 2.712093 H 2.49239200 2.10662400 1.980984 H -2.15249000 -0.84751400 1.514703 H 2.39386600 6.26758100 0.941457 H -1.08456700 2.74991000 2.623133 H -5.24854000 -0.09923800 1.265802<	С	-4.23892800	-0.55323500	-2.03820100
C 0.36107600 -4.19411400 -3.40293 C 4.85935300 0.73539400 -1.50845 C -0.13537100 -2.89771800 -3.55577 H 0.90001700 -4.02708600 5.370910 H -0.74161900 -4.95438400 3.748836 H 2.15520000 -1.95580200 4.806218 H -1.12041600 -3.83647400 1.591194 H 2.61375400 4.47267200 2.648534 H -3.42219300 2.29109000 3.225325 H -3.49190500 0.60542300 2.712095 H 1.77459700 -0.82662500 2.648025 H -2.15249000 -0.84751400 1.514705 H 2.49239200 2.10662400 1.980984 H -2.15249000 -0.84751400 1.514705 H 2.39386600 6.26758100 0.941457 H -1.08456700 2.74991000 2.623138 H -0.94191300 1.01086900 2.354050 </td <td>С</td> <td>-0.25686200</td> <td>-2.05721000</td> <td>-2.44845900</td>	С	-0.25686200	-2.05721000	-2.44845900
C 4.85935300 0.73539400 -1.50845 C -0.13537100 -2.89771800 -3.55577 H 0.90001700 -4.02708600 5.370910 H -0.74161900 -4.95438400 3.748836 H 2.15520000 -1.95580200 4.806213 H -1.12041600 -3.83647400 1.591194 H 2.61375400 4.47267200 2.648534 H -3.42219300 2.29109000 3.225325 H -3.49190500 0.60542300 2.712093 H -3.49190500 0.60542300 2.712093 H -4.63136700 1.79274700 2.042757 H 2.49239200 2.10662400 1.980984 H -2.15249000 -0.84751400 1.514709 H 2.39386600 6.26758100 0.941457 H -1.08456700 2.74991000 2.623133 H -5.24854000 -0.09923800 1.265802 H -0.94191300 1.01086900 2.354050 H -0.7054400 -0.89238900 -0.07640	С	0.36107600	-4.19411400	-3.40293100
C -0.13537100 -2.89771800 -3.55577 H 0.90001700 -4.02708600 5.370910 H -0.74161900 -4.95438400 3.748838 H 2.15520000 -1.95580200 4.806219 H -1.12041600 -3.83647400 1.591194 H 2.61375400 4.47267200 2.648534 H -3.42219300 2.29109000 3.225325 H -3.49190500 0.60542300 2.712092 H -3.49190500 0.60542300 2.712092 H -4.63136700 1.79274700 2.042757 H 2.49239200 2.10662400 1.980984 H -2.15249000 -0.84751400 1.514708 H 2.39386600 6.26758100 0.941457 H -1.08456700 2.74991000 2.623138 H -5.24854000 -0.99923800 1.265802 H -0.94191300 1.01086900 2.354056 H -2.40702600 -1.59913900 -0.04341	С	4.85935300	0.73539400	-1.50845600
H 0.90001700 -4.02708600 5.370910 H -0.74161900 -4.95438400 3.748836 H 2.15520000 -1.95580200 4.806213 H -1.12041600 -3.83647400 1.591194 H 2.61375400 4.47267200 2.648534 H -3.42219300 2.29109000 3.225323 H -3.49190500 0.60542300 2.712093 H 1.77459700 -0.82662500 2.643023 H -4.63136700 1.79274700 2.042757 H 2.49239200 2.10662400 1.980984 H -2.15249000 -0.84751400 1.514709 H 2.39386600 6.26758100 0.941457 H -2.15249000 -0.09923800 1.265802 H -1.08456700 2.74991000 2.623138 H -5.24854000 -0.09923800 0.521017 H -0.94191300 1.01086900 2.354050 H -0.92854000 -4.16989700 -0.05576 H -2.40702600 -1.59913900 -0.04341 </td <td>С</td> <td>-0.13537100</td> <td>-2.89771800</td> <td>-3.55577900</td>	С	-0.13537100	-2.89771800	-3.55577900
H -0.74161900 -4.95438400 3.748833 H 2.15520000 -1.95580200 4.806213 H -1.12041600 -3.83647400 1.591194 H 2.61375400 4.47267200 2.648534 H -3.42219300 2.29109000 3.225323 H -3.49190500 0.60542300 2.712093 H 1.77459700 -0.82662500 2.643023 H -4.63136700 1.79274700 2.042757 H 2.49239200 2.10662400 1.980984 H -2.15249000 -0.84751400 1.514703 H 2.39386600 6.26758100 0.941457 H -1.08456700 2.74991000 2.623138 H -5.24854000 -0.09923800 1.265802 H -0.94191300 1.01086900 2.354050 H -0.94191300 1.01086900 2.354050 H -2.40702600 -1.59913900 -0.04341 H -2.40702600 -1.59913900 -0.04342 H -0.39324800 2.14998000 1.108655 <td>н</td> <td>0.90001700</td> <td>-4.02708600</td> <td>5.37091000</td>	н	0.90001700	-4.02708600	5.37091000
H 2.15520000 -1.95580200 4.806219 H -1.12041600 -3.83647400 1.591194 H 2.61375400 4.47267200 2.648534 H -3.42219300 2.29109000 3.225329 H -3.49190500 0.60542300 2.712099 H 1.77459700 -0.82662500 2.643029 H -4.63136700 1.79274700 2.042757 H 2.49239200 2.10662400 1.980984 H -2.15249000 -0.84751400 1.514709 H 2.39386600 6.26758100 0.941457 H -1.08456700 2.74991000 2.623138 H -5.24854000 -0.09923800 1.265802 H -0.94191300 1.01086900 2.354050 H -4.54583300 -1.54350800 0.521017 H -6.07054400 -0.89238900 -0.076402 H -9.39324800 2.14998000 1.1600462 H -3.86060100 3.53997700 0.334917 H -5.46545200 2.07332900 -0.12135 </td <td>н</td> <td>-0.74161900</td> <td>-4.95438400</td> <td>3.74883800</td>	н	-0.74161900	-4.95438400	3.74883800
H -1.12041600 -3.83647400 1.591194 H 2.61375400 4.47267200 2.648534 H -3.42219300 2.29109000 3.225328 H -3.49190500 0.60542300 2.712098 H 1.77459700 -0.82662500 2.643028 H -4.63136700 1.79274700 2.042757 H 2.49239200 2.10662400 1.980984 H -2.15249000 -0.84751400 1.514708 H 2.39386600 6.26758100 0.941457 H -1.08456700 2.74991000 2.623138 H -5.24854000 -0.09923800 1.265802 H -0.94191300 1.01086900 2.354050 H -4.54583300 -1.54350800 0.521017 H -6.07054400 -0.89238900 -0.076400 H 0.92854000 -4.16989700 -0.05576 H -2.77080200 4.12501400 1.600462 H -0.39324800 2.14998000 1.108655 H -3.86060100 3.53997700 0.334917 <td>н</td> <td>2.15520000</td> <td>-1.95580200</td> <td>4.80621900</td>	н	2.15520000	-1.95580200	4.80621900
H 2.61375400 4.47267200 2.648534 H -3.42219300 2.29109000 3.225325 H -3.49190500 0.60542300 2.712095 H 1.77459700 -0.82662500 2.643025 H -4.63136700 1.79274700 2.042757 H 2.49239200 2.10662400 1.980984 H -2.15249000 -0.84751400 1.514705 H 2.39386600 6.26758100 0.941457 H -1.08456700 2.74991000 2.623138 H -5.24854000 -0.09923800 1.265802 H -0.94191300 1.01086900 2.354050 H -0.94191300 1.01086900 2.354050 H -0.94191300 -0.89238900 -0.076400 H -0.92854000 -4.16989700 -0.05576 H -2.77080200 4.12501400 1.600462 H -2.77080200 4.12501400 1.600462 H -0.39324800 2.14998000 1.108653 H -3.86060100 3.53997700 0.334917 <td>н</td> <td>-1.12041600</td> <td>-3.83647400</td> <td>1.59119400</td>	н	-1.12041600	-3.83647400	1.59119400
H-3.422193002.291090003.225329H-3.491905000.605423002.712099H1.77459700-0.826625002.643029H-4.631367001.792747002.042757H2.492392002.106624001.980984H-2.15249000-0.847514001.514709H2.393866006.267581000.941457H-1.084567002.749910002.623138H-5.24854000-0.099238001.265802H-0.941913001.010869002.354050H-6.07054400-0.89238900-0.07640H0.92854000-4.16989700-0.05576H-2.40702600-1.59913900-0.04341H-2.770802004.125014001.600462H-3.860601003.539977000.334917H-5.465452002.07332900-0.12135H1.13329300-5.65155100-2.01300H2.047098005.66559000-1.44576H-2.135107003.72500700-0.01049H-3.62565300-1.45262000-1.91193	н	2.61375400	4.47267200	2.64853400
H-3.491905000.605423002.712095H1.77459700-0.826625002.643025H-4.631367001.792747002.042757H2.492392002.106624001.980984H-2.15249000-0.847514001.514705H2.393866006.267581000.941457H-1.084567002.749910002.623138H-5.24854000-0.099238001.265802H-0.941913001.010869002.354050H-6.07054400-0.89238900-0.07640H0.92854000-4.16989700-0.05576H-2.40702600-1.59913900-0.04341H-2.770802004.125014001.600462H-3.860601003.539977000.334917H1.13329300-5.65155100-2.01300H2.047098005.66559000-1.44576H-2.135107003.72500700-0.01049H-3.62565300-1.45262000-1.91193	н	-3.42219300	2.29109000	3.22532900
H1.77459700-0.826625002.643025H-4.631367001.792747002.042757H2.492392002.106624001.980984H-2.15249000-0.847514001.514705H2.393866006.267581000.941457H-1.084567002.749910002.623138H-5.24854000-0.099238001.265802H-0.941913001.010869002.354050H-6.07054400-0.89238900-0.07640H0.92854000-4.16989700-0.05576H-2.40702600-1.59913900-0.04341H-2.770802004.125014001.600462H-3.860601003.539977000.334917H1.13329300-5.65155100-2.01300H2.047098005.66559000-1.44576H-2.135107003.72500700-0.01049H-3.62565300-1.45262000-1.91193	н	-3.49190500	0.60542300	2.71209900
H-4.631367001.792747002.042757H2.492392002.106624001.980984H-2.15249000-0.847514001.514703H2.393866006.267581000.941457H-1.084567002.749910002.623138H-5.24854000-0.099238001.265802H-0.941913001.010869002.354050H-4.54583300-1.543508000.521017H-6.07054400-0.89238900-0.07640H0.92854000-4.16989700-0.05576H-2.40702600-1.59913900-0.04341H-2.770802004.125014001.600462H-3.860601003.539977000.334917H-5.465452002.07332900-0.12135H1.13329300-5.65155100-2.01300H2.047098005.66559000-1.44576H-2.135107003.72500700-0.01049H-3.62565300-1.4526200-1.91193	н	1.77459700	-0.82662500	2.64302500
H2.492392002.106624001.980984H-2.15249000-0.847514001.514709H2.393866006.267581000.941457H-1.084567002.749910002.623138H-5.24854000-0.099238001.265802H-0.941913001.010869002.354050H-4.54583300-1.543508000.521017H-6.07054400-0.89238900-0.07640H0.92854000-4.16989700-0.05576H-2.40702600-1.59913900-0.04341H-2.770802004.125014001.600462H-0.393248002.149980001.108653H-5.465452002.07332900-0.12135H1.13329300-5.65155100-2.01300H2.047098005.66559000-1.44576H-2.135107003.72500700-0.01049H-3.62565300-1.45262000-1.91193	н	-4.63136700	1.79274700	2.04275700
H-2.15249000-0.847514001.514709H2.393866006.267581000.941457H-1.084567002.749910002.623138H-5.24854000-0.099238001.265802H-0.941913001.010869002.354050H-4.54583300-1.543508000.521017H-6.07054400-0.89238900-0.07640H0.92854000-4.16989700-0.05576H-2.40702600-1.59913900-0.04341H-2.770802004.125014001.600462H-0.393248002.149980001.108653H-5.465452002.07332900-0.12135H1.13329300-5.65155100-2.01300H2.047098005.66559000-1.44576H-2.135107003.72500700-0.01049H-3.62565300-1.45262000-1.91193	н	2.49239200	2.10662400	1.98098400
H2.393866006.267581000.941457H-1.084567002.749910002.623138H-5.24854000-0.099238001.265802H-0.941913001.010869002.354050H-4.54583300-1.543508000.521017H-6.07054400-0.89238900-0.07640H0.92854000-4.16989700-0.05576H-2.40702600-1.59913900-0.04341H-2.770802004.125014001.600462H-0.393248002.149980001.108653H-5.465452002.07332900-0.12135H1.13329300-5.65155100-2.01300H2.047098005.66559000-1.44576H-2.135107003.72500700-0.01049H-3.62565300-1.45262000-1.91193	н	-2.15249000	-0.84751400	1.51470900
H-1.084567002.749910002.623138H-5.24854000-0.099238001.265802H-0.941913001.010869002.354050H-4.54583300-1.543508000.521017H-6.07054400-0.89238900-0.07640H0.92854000-4.16989700-0.05576H-2.40702600-1.59913900-0.04341H-2.770802004.125014001.600462H-0.393248002.149980001.108653H-3.860601003.539977000.334917H-5.465452002.07332900-0.12135H1.13329300-5.65155100-2.01300H2.047098005.66559000-1.44576H-2.135107003.72500700-0.01049H-3.62565300-1.45262000-1.91193	н	2.39386600	6.26758100	0.94145100
H-5.24854000-0.099238001.265802H-0.941913001.010869002.354050H-4.54583300-1.543508000.521017H-6.07054400-0.89238900-0.07640H0.92854000-4.16989700-0.05576H-2.40702600-1.59913900-0.04341H-2.770802004.125014001.600462H-0.393248002.149980001.108653H-3.860601003.539977000.334917H1.13329300-5.65155100-2.01300H2.047098005.66559000-1.44576H-2.135107003.72500700-0.01049H-3.62565300-1.45262000-1.91193	н	-1.08456700	2.74991000	2.62313800
H-0.941913001.010869002.354050H-4.54583300-1.543508000.521017H-6.07054400-0.89238900-0.07640H0.92854000-4.16989700-0.05576H-2.40702600-1.59913900-0.04341H-2.770802004.125014001.600462H-0.393248002.149980001.108653H-3.860601003.539977000.334917H1.13329300-5.65155100-2.01300H2.047098005.66559000-1.44576H-2.135107003.72500700-0.01049H-3.62565300-1.45262000-1.91193	н	-5.24854000	-0.09923800	1.26580200
H-4.54583300-1.543508000.521017H-6.07054400-0.89238900-0.07640H0.92854000-4.16989700-0.05576H-2.40702600-1.59913900-0.04341H-2.770802004.125014001.600462H-0.393248002.149980001.108653H-3.860601003.539977000.334917H-5.465452002.07332900-0.12135H1.13329300-5.65155100-2.01300H2.047098005.66559000-1.44576H-2.135107003.72500700-0.01049H-3.62565300-1.45262000-1.91193	н	-0.94191300	1.01086900	2.35405000
H-6.07054400-0.89238900-0.07640H0.92854000-4.16989700-0.05576H-2.40702600-1.59913900-0.04341H-2.770802004.125014001.600462H-0.393248002.149980001.108653H-3.860601003.539977000.334917H-5.465452002.07332900-0.12135H1.13329300-5.65155100-2.01300H2.047098005.66559000-1.44576H-2.135107003.72500700-0.01049H-3.62565300-1.45262000-1.91193	н	-4.54583300	-1.54350800	0.52101700
H0.92854000-4.16989700-0.05576H-2.40702600-1.59913900-0.04341H-2.770802004.125014001.600462H-0.393248002.149980001.108653H-3.860601003.539977000.334917H-5.465452002.07332900-0.12135H1.13329300-5.65155100-2.01300H2.047098005.66559000-1.44576H-2.135107003.72500700-0.01049H-3.62565300-1.45262000-1.91193	н	-6.07054400	-0.89238900	-0.07640100
H-2.40702600-1.59913900-0.04341H-2.770802004.125014001.600462H-0.393248002.149980001.108653H-3.860601003.539977000.334917H-5.465452002.07332900-0.12135H1.13329300-5.65155100-2.01300H2.047098005.66559000-1.44576H-2.135107003.72500700-0.01049H-3.62565300-1.45262000-1.91193	н	0.92854000	-4.16989700	-0.05576900
H-2.770802004.125014001.600462H-0.393248002.149980001.108653H-3.860601003.539977000.334917H-5.465452002.07332900-0.12135H1.13329300-5.65155100-2.01300H2.047098005.66559000-1.44576H-2.135107003.72500700-0.01049H-3.62565300-1.45262000-1.91193	н	-2.40702600	-1.59913900	-0.04341900
H-0.393248002.149980001.108653H-3.860601003.539977000.334917H-5.465452002.07332900-0.12135H1.13329300-5.65155100-2.01300H2.047098005.66559000-1.44576H-2.135107003.72500700-0.01049H-3.62565300-1.45262000-1.91193	н	-2.77080200	4.12501400	1.60046200
H-3.860601003.539977000.334917H-5.465452002.07332900-0.12135H1.13329300-5.65155100-2.01300H2.047098005.66559000-1.44576H-2.135107003.72500700-0.01049H-3.62565300-1.45262000-1.91193	н	-0.39324800	2.14998000	1.10865300
H-5.465452002.07332900-0.12135H1.13329300-5.65155100-2.01300H2.047098005.66559000-1.44576H-2.135107003.72500700-0.01049H-3.62565300-1.45262000-1.91193	н	-3.86060100	3.53997700	0.33491100
H1.13329300-5.65155100-2.01300H2.047098005.66559000-1.44576H-2.135107003.72500700-0.01049H-3.62565300-1.45262000-1.91193	н	-5.46545200	2.07332900	-0.12135400
H2.047098005.66559000-1.44576H-2.135107003.72500700-0.01049H-3.62565300-1.45262000-1.91193	н	1.13329300	-5.65155100	-2.01300100
H-2.135107003.72500700-0.01049H-3.62565300-1.45262000-1.91193	н	2.04709800	5.66559000	-1.44576000
Н –3.62565300 –1.45262000 –1.91193	н	-2.13510700	3.72500700	-0.01049100
	н	-3.62565300	-1.45262000	-1.91193200

Н	-6.15886400	1.21246200	-1.49740500
н	-5.23968400	-0.87779700	-2.35133500
Н	-4.69829100	2.19118900	-1.72115500
н	1.92794000	3.29410600	-2.12278400
н	4.95175400	1.76601600	-1.14613700
н	-3.79679300	0.04344800	-2.83888000
н	-0.63272900	-1.04585200	-2.58771500
н	5.86383000	0.28894300	-1.49844500
н	0.45424200	-4.84844200	-4.26622500
н	4.52474300	0.77439600	-2.55144300
Н	-0.42601000	-2.53769900	-4.53943000
0	1.08070400	-0.11212300	0.21843800
Р	-2.58814400	0.78442600	-0.22423100
S	-1.60920900	1.54156000	-1.78262700
Si	-0.03487800	-1.33740500	0.31566400
Si	2.18742300	0.72376100	-0.68337700
С	3.81973100	-1.53465700	-1.20139200
С	4.44978600	-0.15681200	0.80872000
н	3.81473400	-0.76237300	1.46585600
н	5.45056900	-0.61210000	0.81195900
н	4.54590200	0.84234000	1.25037100
н	3.42596500	-1.54725300	-2.22370800
н	4.82265100	-1.98523600	-1.22357500
Н	3.18182300	-2.18461800	-0.59286300
F	1.74320700	0.72349100	-2.24128400

Figure S64. Optimized structure of compound 9 [B3LYP/6-31G(d)].

Atomic symbol	x	У	Z
С	-3.82980500	-1.99682600	0.00848800
С	-3.69724700	-0.81526800	0.73467700
С	-2.74762600	-2.49057700	-0.71723700
С	-2.48347900	-0.13768800	0.71452400
С	-1.54333600	-1.79684700	-0.69703600
С	-1.36016900	-0.59704400	0.00863600
С	-0.91652900	2.50031600	-0.75509500
С	-0.00033200	1.75444600	0.00001700
С	-0.91458000	3.89167100	-0.76733900
С	1.36045900	-0.59652600	-0.00860000
С	0.91551300	2.50073400	0.75514500
С	1.54417700	-1.79611900	0.69729200
С	-0.00098000	4.60275700	0.00001400
С	2.48349400	-0.13691600	-0.71476900
С	0.91293600	3.89208800	0.76737900
С	2.74872500	-2.48940200	0.71745700
С	3.69750600	-0.81405600	-0.73496300
С	3.83061100	-1.99540800	-0.00853900
В	-0.00000500	0.18351800	0.00003400
F	-4.98843900	-2.65339900	0.00867800
F	-4.73220800	-0.34677200	1.43921300
F	-2.87682400	-3.61994700	-1.42068400
F	-2.41082900	0.98796100	1.44280200
F	-0.53891500	-2.31372900	-1.42367400
F	-1.82363900	1.87292500	-1.52593100
F	-1.80900600	4.54259400	-1.52564400
F	0.54006600	-2.31322100	1.42419800
F	2.41032400	0.98853200	-1.44330300
F	1.82288500	1.87376200	1.52601300
F	1.80705500	4.54342000	1.52569300
F	2.87844400	-3.61857600	1.42112100
F	4.73218400	-0.34533800	-1.43976700
F	4.98948400	-2.65155800	-0.00877100
Н	-0.00122600	5.68652200	0.00001200

Table S17. Standard orientation of 9 [B3LYP/6-31G(d)].

Figure S65. Optimized structure of compound 9 [B3LYP/6-311+G(d,p)].

Table S18	. Standard	orientation	of 9	[B3LYP/6-311+G(d,p)].
-----------	------------	-------------	------	-----------------------

Atomic symbol	x	У	Z
С	-3.82494100	-1.98816600	0.00516500
С	-3.66882100	-0.84932700	0.78776600
С	-2.76744000	-2.44329800	-0.77506700
С	-2.45780400	-0.17357000	0.76786900
С	-1.56294300	-1.75654400	-0.75114600
С	-1.36038100	-0.59769700	0.00842200
С	-0.86330900	2.49400100	-0.81203100
С	0.00067900	1.75141800	-0.00002600
С	-0.85680000	3.88163200	-0.82378400
С	1.35979000	-0.59876100	-0.00850500
С	0.86538000	2.49317900	0.81196700
С	1.56124000	-1.75809300	0.75060700
С	0.00198800	4.59076600	0.00002000
С	2.45777100	-0.17508700	-0.76738300
С	0.86014000	3.88081600	0.82377800
С	2.76520900	-2.44577100	0.77458100
С	3.66828800	-0.85174500	-0.78721600
С	3.82329800	-1.99107900	-0.00511400
В	0.00001400	0.18123800	-0.00006600
F	-4.98303800	-2.64099700	0.00344000
F	-4.68095400	-0.42084500	1.54528900
F	-2.92207900	-3.53111400	-1.53309800
F	-2.35601400	0.91290000	1.55039100
F	-0.57735800	-2.23260300	-1.52981500
F	-1.71580600	1.86119600	-1.63967900

F	-1.69502800	4.53921100	-1.63976800
F	0.57503800	-2.23374900	1.52874400
F	2.35704200	0.91187900	-1.54935700
F	1.71733600	1.85955400	1.63954500
F	1.69899500	4.53759300	1.63976400
F	2.91879000	-3.53405100	1.53216000
F	4.68099100	-0.42365100	-1.54419700
F	4.98090400	-2.64478000	-0.00332200
Н	0.00248500	5.67288400	0.00003700

5. References

- [1] M. Lehmann, A. Schulz and A. Villinger, Angew. Chem., Int. Ed., 2009, 48, 7444.
- [2] S. F. Rach, E. Herdtweck and F. E. Kühn, J. Organomet. Chem., 2011, 696, 1817.
- [3] L. Fink, K. Samigullin, A. Bodach, E. Alig, M. Wagner and H.-W. Lerner, Z. Anorg. Allg. Chem., 2016, 642, 282.
- [4] S. Künzler, S. Rathjen, A. Merk, M. Schmidtmann and T. Müller, *Chem. Eur. J.*, 2019, **25**, 15123. (Ref. 7e in the article)
- [5] CrysAlisPro Software System, Rigaku Oxford Diffraction, 2020.
- [6] R. C. Clark and J. S. Reid, The analytical calculation of absorption in multifaceted crystals, *Acta Crystallogr.*, 1995, **A51**, 887.
- [7] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: a complete structure solution, refinement and analysis program, J. Appl. Crystallogr., 2009, 42, 339.
- [8] G. M. Sheldrick, SHELXT Integrated space-group and crystal-structure determination, Acta Crystallogr., 2015, A71, 3.
- [9] G. M. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallogr., 2015, C71, 3.
- [10] L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard and H. Puschmann, The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment – *Olex2* dissected, *Acta Crystallogr.*, 2015, **A71**, 59.
- [11] C. F. Macrae, P. R. Edgington, P. McCabe, E. Pidcock, G. P. Shields, R. Taylor, M. Towler and J. van de Streek, *Mercury*: visualization and analysis of crystal structures, *J. Appl. Crystallogr.*, 2006, **39**, 453.
- [12] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09 (Revision E.01), Gaussian, Inc., Wallingford, CT, USA, 2013.
- [13] R. D. Dennington II, T. A. Keith and J. M. Millam, GaussView 5.0, Gaussian, Inc., Wallingford, CT, USA, 2008.
- [14] J. B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods, Gaussian, Inc., Pittsburgh, PA, USA, 2nd edn, 1996.
- [15] a) H. A. Bent, J. Chem. Educ., 1960, 37, 616; b) H. A. Bent, Chem. Rev., 1961, 61, 275; c) P. v. R. Schleyer, Pure Appl. Chem., 1987, 59, 1647.
- [16] a) M. Bujak, H.-G. Stammler and N. W. Mitzel, Cryst. Growth Des., 2020, 20, 3217; b) J. O. Bauer, S. Koschabek and A. Falk, ChemistrySelect, 2021, 6, 8736.