Supporting Information

Ruthenium-catalyzed acceptorless dehydrogenative coupling of

amino alcohols and ynones to access 3-acylpyrroles

Mingshi Pan, Xiabin Wang, Yixin Tong, Xiaodong Qiu, Xiaobao Zeng and Biao Xiong*

School of Pharmacy, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China.

Table of contents

General information	S2
Preparation of ynones	S2-S7
Screening of reaction conditions	S7-S8
Typical procedure for the synthesis of 3aa	S 9
Substrates employed for synthesis	S 9
References	S10
Time course diagram and spectrums of 3aaa	S11
Mechanism investigation	S12-S13
Details of the gram reaction	S14
Analytical data of the obtained compounds	S15-S30
NMR spectra of obtained compounds	S31-S71

General information

All the obtained products were characterized by melting points (m.p), ¹H-NMR, ¹³C-NMR and infrared spectra (IR). Melting points were measured on an Electrothemal SGW-X4 microscopy digital melting point apparatus and are uncorrected; IR spectra were recorded on a FTLA2000 spectrometer; ¹H-NMR and ¹³C-NMR spectra were obtained on Bruker-400 and referenced to 7.19 ppm for chloroform solvent with TMS as internal standard (0 ppm). Chemical shifts were reported in parts per million (ppm, δ) downfield from tetramethylsilane. Proton coupling patterns are described as singlet (s), doublet (d), triplet (t), multiplet (m); TLC was performed using commercially prepared 100-400 mesh silica gel plates (GF254), and visualization was effected at 254 nm; Unless otherwise stated,, all the reagents were purchased from commercial sources (J&KChemic, TCI, Bidepharm, Aladdin, SCRC), used without further purification.

Preparation of Ynones (2a-2t)

The preparation of alkynone **2** was similar to the literature procedures.^[1, 2] **4** (5 mmol), **5** (5.5 mmol), triethylamine (5 mmol), Pd(PPh₃)₂Cl₂ (2 mol %), CuI (4 mol %), and Anhydrous tetrahydrofuran (16 mL) were introduced in a flask (50 mL). Then, it was stirred at 30 °C under N₂ for 18 hours. The reaction mixture was concentrated by removing the solvent under vacuum, and the residue was purified by column chromatography.

0	$\sim R^4 Pd_2$	2(PPh ₃) ₂ Cl ₂ (2 mol%)	
R ³	+ Cul	(4 mol%), Et ₃ N (1 eq) THF, rt, 18h, N ₂	R ⁴ 2 , isolated yield
Entry	R ³	\mathbb{R}^4	2 ^[ref.] , Yield
1	4-MeC ₆ H ₄	Ph	2a ^[2] , 90%
2	3-Me C ₆ H ₄	Ph	2b ^[3] , 92%
3	2-MeC ₆ H ₄	Ph	2c ^[2] , 91%
4	C_6H_5	Ph	2d ^[1] , 86%
5	$4-FC_6H_4$	Ph	2e ^[4] , 90%
6	4-ClC ₆ H ₄	Ph	2f ^[2] , 88%
7	4-BrC ₆ H ₄	Ph	2g ^[5] , 84%
8	$4-CF_3C_6H_4$	Ph	2h ^[3] ,87%
9	4-CNC ₆ H ₄	Ph	2i ^[2] , 91%
10	4-OMeC ₆ H ₄	Ph	2j ^[2] , 84%
11	3,4-OMeC ₆ H ₃	Ph	2k ^[2] , 85%
12	4-OMeC ₆ H ₄	$4-\text{MeC}_6\text{H}_4$	2l ^[3] , 87%
13	4-OMeC ₆ H ₄	$4-CNC_6H_4$	2m ^[3] , 86%
14	$4-CF_3C_6H_4$	$4-\text{MeC}_6\text{H}_4$	2n ^[3] , 90%
15	4-CNC ₆ H ₄	$4-CNC_6H_4$	20 ^[3] , 83%
16	s ² O	Ph	2p ^[2] , 79%
17	s st N	Ph	2q ^[3] , 75%
18		Ph	2r ^[3] , 81%
19	<i>t</i> -Bu	Ph	2s ^[2] , 89%
20	<i>n</i> -propyl	Ph	2t ^[3] , 76%

Table S1. Synthesis of Ynones (2a-2t)

R		HO + R ² n-BuLi THF step 1	OH R ¹ R ² DCM step 2	$R^{1} \frac{1}{1}$ 2 , isolated yields
	Entry	R^1	\mathbb{R}^2	2 ^[ref.] , Yield
	1	Н	n-butyl	2u ^[7] , 86%
	2	Н	cyclopropyl	2v ^[8] , 85%

Table S2. Preparation of Ynones (2u and 2v)

Step 1^[6]: To a solution of alkyne (5.5 mmol) in THF (20 mL) at -40 °C was added n-BuLi (1.6 M in hexane, 5.5 mmol) dropwise. After stirring for 30 min, aldehyde (5.0 mmol) was added and the solution was warmed to RT. After the consumption of aldehyde, the reaction was quenched with saturated solution of NH₄Cl and the mixture was extracted with ethyl acetate (30 mL×3). Then, the organic phase was dried by Na₂SO₄, filtered and concentrated under reduced pressure to afford the crude propargylic alcohol, which could be used directly in the next step without further purification.

Step 2^[7]: The obtained crude propargylic alcohol was added to a suspension of MnO₂ (3.6 g, 40.0 mmol) in dichloromethane (35 mL) at 0 °C, and the mixture was stirred for 1 hour at 0 °C. After filtered through celite, the solvent was removed under vacuum. The residue was purified by silica column chromatography (EA: PE = 1: 50) to afford the alkyone.

Analytical data of synthesized ynones

1-(4-chlorophenyl)-3-phenylprop-2-yn-1-one (2f)

Yellow solid (1.06 g, 88% yield), m.p: 101-102 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.20-8.13 (m, 2H), 7.73-7.66 (m, 2H), 7.52-7.41 (m, 5H). ¹³C NMR (101 MHz, CDCl₃): δ 176.70, 140.75, 135.32, 133.14, 131.02, 130.90, 129.04, 128.77, 119.91, 93.66, 86.60. MS (EI, m/z): 240 [M]+.

1-(4-bromophenyl)-3-phenylprop-2-yn-1-one (2g)

Yellow solid (1.19 g, 84% yield), m.p: 108-110 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.11-8.06 (m, 2H), 7.71-7.50 (m, 4H), 7.53-7.48 (m, 1H), 7.47-7.41 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 176.90, 135.72, 133.15, 132.03, 131.03, 130.97, 129.60, 128.77, 119.90, 93.71, 86.58. MS (EI, m/z): 284 [M]+.

4-(3-phenylpropioloyl)benzonitrile (2i)

Yellow solid (1.05 g, 91% yield), m.p: 139-140 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.35-8.29 (m, 2H), 7.86-7.81 (m, 2H), 7.73-7.69 (m, 2H), 7.56-7.51 (m, 1H), 7.48-7.43 (m, 2H). ¹³C NMR (101 MHz, CDCl₃): δ 176.24, 139.67, 133.28, 132.53, 131.41, 129.84, 128.87, 119.48, 117.91, 117.19, 95.17, 86.44. MS (EI, m/z): 231 [M]+.

1-(4-methoxyphenyl)-3-(p-tolyl)prop-2-yn-1-one (2l)

Brown solid (1.09 g, 87% yield), m.p: 78-79 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.19 (d, *J* = 8.8 Hz, 2H), 7.57 (d, *J* = 8.4 Hz, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 6.98 (d, *J* = 8.8 Hz, 2H), 3.90 (s, 3H), 2.40 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 176.78, 164.42, 141.32, 133.02, 131.97, 130.43, 129.47, 117.26, 113.87, 93.00, 86.79, 55.62, 21.78. MS (EI, m/z): 250 [M]+.

3-(p-tolyl)-1-(4-(trifluoromethyl)phenyl)prop-2-yn-1-one (2n)

Yellow solid (1.30 g, 90% yield), m.p: 95-96 °C; ¹H NMR (400 MHz, CDCl₃): δ 8.33 (d, *J* = 8.4 Hz, 2H), 7.79 (d, *J* = 8.0 Hz, 2H), 7.60 (d, *J* = 8.0 Hz, 2H), 7.25 (d, *J* = 8.0 Hz, 2H), 2.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 176.78, 142.11, 139.50, 135.10 (q, *J*_{C-F} = 32.3 Hz), 133.30, 129.80, 129.63, 125.70 (q, *J*_{C-F} = 4.1 Hz), 123.58 (d, *J*_{C-F} = 274.7 Hz), 116.56, 95.28, 86.57, 21.85. MS (EI, m/z): 288 [M]+.

1-(furan-2-yl)-3-phenylprop-2-yn-1-one (2p)

Brown solid (0.77 g, 79% yield), m.p: 50-51 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.73-7.69 (m, 1H), 7.68-7.64 (m, 2H), 7.52-7.46 (m, 1H), 7.45-7.39 (m, 3H), 6.61 (dd, J = 3.6 Hz, 1.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃): δ 164.80, 153.24, 148.08, 133.08, 130.91, 128.71, 120.97, 119.90, 112.69, 91.92, 86.24. MS (EI, m/z): 196 [M]+.

1-(naphthalen-1-yl)-3-phenylprop-2-yn-1-one (2r)

Yellow solid (1.04 g, 81% yield), m.p: 94-95 °C; ¹H NMR (400 MHz, CDCl₃): δ 9.24 (d, *J* = 8.4 Hz, 1H), 8.65 (dd, *J* = 7.2 Hz, 1.6 Hz, 1H), 8.10 (d, *J* = 8.0 Hz, 1H), 7.92 (d, *J* = 8.4 Hz, 1H), 7.72-7.67 (m, 3H), 7.64-7.56 (m, 2H), 7.50-7.40 (m, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 179.78, 135.14, 134.57, 133.91, 132.99, 130.78, 130.65, 129.00, 128.70, 128.61, 126.81, 126.04, 124.51, 120.39, 91.73, 88.52. MS (EI, m/z): 256 [M]+.

4,4-dimethyl-1-phenylpent-1-yn-3-one (2s)

Yellow oil (0.83 g, 89% yield); ¹H NMR (400 MHz, CDCl₃): δ 7.60-7.56 (m, 2H), 7.48-7.43 (m, 1H), 7.41-7.36 (m, 2H), 1.28 (m, 9H). ¹³C NMR (101 MHz, CDCl₃): δ 194.31, 132.98, 130.58, 128.63, 120.27, 92.24, 86.01, 44.91, 26.16. MS (EI, m/z): 186 [M]+.

1-phenylhept-2-yn-1-one (2u)

Colorless oil (0.80 g, 86% yield); ¹H NMR (400 MHz, CDCl₃): δ 8.17-7.17 (m, 2H), 7.55-7.48 (m, 1H), 7.46-7.33 (m, 2H), 2.43 (t, J = 7.2 Hz, 2H), 1.59 (p, J = 7.2 Hz, 2H), 1.43 (h, J = 7.2 Hz, 2H), 0.88 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 178.31, 136.91, 133.91, 129.57, 128.52, 96.92, 79.67, 29.85, 22.11, 18.94, 13.57. MS (EI, m/z): 186 [M]+.

3-cyclopropyl-1-phenylprop-2-yn-1-one (2v)

Colorless oil (0.72 g, 85% yield); ¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, *J* = 8.0 Hz, 2H), 7.53-7.46 (m, 1H), 7.38 (t, *J* = 7.6 Hz, 2H), 1.50-1.39 (m, 1H), 1.01-1.89 (m, 4H). ¹³C NMR (101 MHz, CDCl₃): δ 177.92, 136.87,133.79, 129.41, 128.44, 101.14, 75.51, 9.92, . MS (EI, m/z): 170 [M]+.

Entry	Catalyst	Ligand	Solvent	Base	$\text{Yield}(\%)^b$
1	Mn ₂ (CO) ₁₀	L1	t-amyl alcohol	Cs_2CO_3	trace
2	$Co_2(CO)_8$	L1	t-amyl alcohol	Cs_2CO_3	trace
3	Ru ₃ (CO) ₁₂	L1	t-amyl alcohol	Cs_2CO_3	59
4	RuCl ₂ (PPh ₃) ₃	L1	t-amyl alcohol	Cs_2CO_3	42
5	RuCl ₂ (CO) ₂ (PPh ₃) ₂	L1	t-amyl alcohol	Cs_2CO_3	48
6	[Ru(p-cymene)Cl ₂] ₂	L1	t-amyl alcohol	Cs_2CO_3	31
7		L1	t-amyl alcohol	Cs_2CO_3	0
8	Ru ₃ (CO) ₁₂	L2	t-amyl alcohol	Cs_2CO_3	52
9	Ru ₃ (CO) ₁₂	L3	t-amyl alcohol	Cs_2CO_3	21
10	Ru ₃ (CO) ₁₂	L4	t-amyl alcohol	Cs_2CO_3	37
11	Ru ₃ (CO) ₁₂	L5	t-amyl alcohol	Cs_2CO_3	54
12	Ru ₃ (CO) ₁₂	L6	t-amyl alcohol	Cs_2CO_3	58
13	Ru ₃ (CO) ₁₂	L7	t-amyl alcohol	Cs_2CO_3	72
14	Ru ₃ (CO) ₁₂	L8	t-amyl alcohol	Cs_2CO_3	78
15	Ru ₃ (CO) ₁₂	L8	t-amyl alcohol	Base	$(56, 39, 0)^c$
16	Ru ₃ (CO) ₁₂	L8	t-amyl alcohol	Base	$(43, 18, 0)^d$
17	Ru ₃ (CO) ₁₂	L8	1,4-Dioxane	Cs_2CO_3	72
18	Ru ₃ (CO) ₁₂	L8	Toluene	Cs_2CO_3	70
19	Ru ₃ (CO) ₁₂	L8	Chlorobenzene	Cs_2CO_3	70
20	Ru ₃ (CO) ₁₂	L8	DMF	Cs ₂ CO ₃	47
21	Ru ₃ (CO) ₁₂	L8	DMSO	Cs ₂ CO ₃	12
22	Ru ₃ (CO) ₁₂	L8	t-amyl alcohol	Cs_2CO_3	(23, 89, 89) ^e

^{*a*} Unless otherwise stated, the reaction was performed with **1a** (0.3 mmol), **2a** (0.3 mmol), catalyst (1 mol%), ligand (3 mol%), base (100 mmol%) in *t*-amyl alcohol (1.5 mL) at 130 °C for 16 h under N₂. ^{*b*} GC yield. ^{*c*} Yields are with respect to use of K₂CO₃, CsOH and *t*-BuOK as the bases, respectively. ^{*d*} Yields are with respect to use of Na₂CO₃, NaOH and *t*-BuONa as the bases, respectively. ^{*e*} Yields are with respect to the temperature at 120 °C, 140 °C and 150 °C, respectively.

Typical procedure for the synthesis of 3aa

Under N₂ atmosphere, 2-aminoethanol hydrochloride **1a** (29 mg, 0.3 mmol), alkynone **2a** (66 mg, 0.3 mmol), 4,7-dimethyl-1,10-phenanthroline (1.9 mg, 3 mol %), Ru₃CO₁₂ (2.0 mg, 1 mol %), Cs₂CO₃ (97 mg, 100 mol %), and *t*-Amyl alcohol (1.5 mL) were introduced in a Schlenk tube (25 mL), successively. Then, the Schlenk tube was closed and the resulting mixture was stirred at 140 °C for 16 h. Then, the reaction mixture was concentrated by removing the solvent under vacuum, and the residue was purified by preparative TLC on silica, eluting with petroleum ether: ethyl acetate (10:1) to give (2-phenyl-1H-pyrrol-3-yl)(p-tolyl) methanone **3aa** as a canary yellow solid.

Scheme S1. Substrates employed for synthesizing pyrroles

Reference

- [1] Y. Tohda, K. Sonogashira, N. Hagihara; Synthesis 1977, 777-778.
- [2] D. A. Alonso, C. Najera, M. C. Pacheco; J. Org. Chem. 2004, 69, 1615-1619.
- [3] L. C. Zhang, Y. L. Chu, P. Z. Ma, S. J. Zhao, Q. Y. Li, B. Y. Chen, X. J. Hong, J. Sun;
- Org. Biomol. Chem. 2020, 18, 1073-1077.
- [4] X. F. Wu, H. Neumann, M. Beller; *Chem.-Eur. J.* 2010, 16, 12104-12107.
- [5] J. X. Wang, B. G. Wei, Y. L. Hu, Z. X. Liu, Y. Fu; Syn. Comm. 2001, 31, 3527-3532.
- [6] W. M. Yan, Y. F. Chen, J. L. Petersen, X. D. Shi; Org. Lett. 2010, 12, 3308-3311.
- [7] R. Shintani; T. Hayashi. Org. Lett. 2005, 7, 2071-2073.
- [8] D. Zhai, S. M. Ma; Org. Chem. Front. 2019, 6, 3101-3106.

Fig S1. Representative time course of the reaction

A time-concentration profile of different components of the model reaction under the standard conditions is depicted in Figure S1. Initially, intermediate **4aa** was almost formed quantitatively in a short time and converted into target product **3aa** efficiently in the first 2 hours. Meanwhile, due to the auto transfer hydrogenation, a small amount of reduction product of **2a** were detected which had no increase over the whole reaction time, indicating the protocol has good selectivity on the catalytic acceptorless dehydrogenation coupling rather than auto transfer hydrogenation. Moreover, **4aa** could be completely transformed into the product **3aa** within 16 h. The above-results indicate that the compound **4aa** is a key intermediate.

Figure S2. UV (a) and fluorescence emission spectrums (b) of 3aaa An obvious absorbance peak at 515 nm of this synthesized BODIPY (3aaa) was observed from UV-vis absorption spectra and the maximum emission wavelength was located at 585 nm under the excitation wavelength at 520 nm (5 μ M 3aaa in DMSO).

Mechanism investigation

1. GC-MS spectrums of control experiments

Figure S3 GC-MS of the model reaction under standard conditions after 2 hours.

Figure S4 GC-MS of the reaction from 4aa after 12 hours.

Figure S5 GC-MS of the reaction from 1d and 2a without catalyst after12 hours.

2. Detection of hydrogen gas

The model reaction of **1a** (0.3 mmol) and **2a** (0.3 mmol) was stirred at 140 °C under N_2 atmosphere for 12 h. After cooling to room temperature, the head gas was collected by a gas-tight syringe and analyzed by GC. (Instrument model: GC9790plus. The peak time has very slight deviation because of the manual injection mode.)

Fig S6 GC of the standard mixture of N_2 and $H_2 \left(V_{N2} \, / \, V_{H2} \, = \, 95 \, / \, 5 \right)$

Details of the gram reaction

Under N₂ atmosphere, 2-aminoethanol hydrochloride **1a** (0.61 g, 10.0 mmol), alkynone **2a** (2.20 g, 10.0 mmol), 4,7-dimethyl-1,10-phenanthroline (62.5 mg, 3 mol %), Ru₃CO₁₂ (64.0 mg, 1 mol %), Cs₂CO₃ (3.2 g, 100 mol %), and *t*-Amyl alcohol (20 mL) were introduced in a Schlenk tube (100 mL), successively. Then, the Schlenk tube was closed and the resulting mixture was stirred at 140 °C for 24 h. Then, the reaction mixture was concentrated by removing the solvent under vacuum, and the residue was purified by silica-gel column chromatography, eluting with petroleum ether: ethyl acetate (20:1) to give (2-phenyl-1H-pyrrol-3-yl)(p-tolyl) methanone **3aa** (2.11g, 81%).

Analytic data of the obtained compounds

(1) (2-phenyl-1H-pyrrol-3-yl)(p-tolyl)methanone (3aa)

Yellow solid, 88% yield, m.p: 155-157 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.72 (s, 1H), 7.63 (d, *J* = 8.0 Hz, 2H), 7.38-7.32 (m, 2H), 7.24-7.12 (m, 3H), 7.06 (d, *J* = 8.0 Hz, 2H), 6.69 (m, 1H), 6.52-6.46 (m, 1H), 2.29 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 192.37, 142.25, 136.85, 136.77, 132.10, 129.91, 128.57, 128.37, 128.34, 127.86, 120.52, 117.61, 113.68, 21.57. IR (KBr): 3243, 1615, 1597, 1566, 1557, 1495, 1472, 1432, 1399, 1312, 1292, 1164, 1112, 1034, 883, 779, 760, 735, 696 cm⁻¹. MS (EI, m/z): 261 [M]⁺. HRMS (ESI): Calcd. for C₁₈H₁₅NO [M+H]⁺: 262.1226; found: 262.1224.

(2) (2-phenyl-1H-pyrrol-3-yl)(m-tolyl)methanone (3ab)

Yellow solid, 81% yield, m.p: 92-95 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.61 (s, 1H), 7.57-7.46 (m, 2H), 7.38-7.31 (m, 2H), 7.23-7.19 (m, 3H), 7.17-7.10 (m, 2H), 6.74 (t, *J* = 2.8 Hz, 1H), 6.54 (t, *J* = 2.8 Hz, 1H), 2.22 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.61, 138.40, 136.49, 135.97, 131.29, 131.08, 129.25, 127.36, 127.30, 126.91, 126.69, 125.87, 119.57, 116.60, 112.66, 20.19. MS (EI, m/z): 261 [M]⁺. HRMS (ESI): Calcd. for C₁₈H₁₅NO [M+H]⁺: 262.1226; found: 262.1223.

(3) (2-phenyl-1H-pyrrol-3-yl)(o-tolyl)methanone (3ac)

Yellow solid, 77% yield, m.p: 134-136 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.58 (s, 1H), 7.38-7.34 (m, 2H), 7.26-7.19 (m, 4H), 7.16-7.10 (m, 1H), 7.05 (d, *J* = 7.2 Hz, 1H), 6.97 (t, *J* = 7.2 Hz, 1H), 6.67 (t, *J* = 2.8 Hz, 1H), 6.40 (t, *J* = 2.8 Hz, 1H), 2.29 (s, 3H). ¹³C

NMR (101 MHz, CDCl₃) δ 194.23, 140.62, 137.60, 136.25, 131.90, 130.56, 129.52, 128.61, 128.54, 128.20, 128.14, 124.83, 121.67, 117.75, 113.78, 19.91. MS (EI, m/z): 261 [M]⁺. HRMS (ESI): Calcd. for C₁₈H₁₅NO [M+H]⁺: 262.1226; found: 262.1225.

(4) phenyl(2-phenyl-1H-pyrrol-3-yl)methanone (3ad)

Red solid, 83% yield, m.p: 131-134 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.72 (s, 1H), 7.72-7.67 (m, 2H), 7.39-7.31 (m, 3H), 7.27-7.21 (m, 2H), 7.20-7.15 (m, 3H), 6.70 (t, *J* = 2.8 Hz, 1H), 6.51 (t, *J* = 2.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 192.60, 139.56, 137.17, 132.02, 131.61, 129.67, 128.44, 128.35, 127.97, 127.85, 120.40, 117.75, 113.71. MS (EI, m/z): 247 [M]⁺. HRMS (ESI): Calcd. for C₁₇H₁₃NO [M+H]⁺: 268.1070; found: 248.1068.

(5) (4-fluorophenyl)(2-phenyl-1H-pyrrol-3-yl)methanone (3ae)

Yellow solid, 78% yield, m.p: 123-125 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.59 (s, 1H), 7.75-7.68 (m, 2H), 7.36-7.28 (m, 2H), 7.24-7.19 (m, 3H), 6.94-6.86 (m, 2H), 6.76 (t, *J* = 2.8 Hz, 1H), 6.53 (t, *J* = 2.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 189.97, 163.82 (d, *J*_{C-F} = 253.5 Hz), 135.99, 134.68 (d, *J*_{C-F} = 3.0 Hz), 131.08 (d, *J*_{C-F} = 9.0 Hz), 130.85, 127.39, 127.07, 119.28, 116.83, 113.82 (d, *J*_{C-F} = 21.2 Hz), 112.45. MS (EI, m/z): 265 [M]⁺. HRMS (ESI): Calcd. for C₁₇H₁₂FNO [M+H]⁺: 266.0976; found: 266.0974.

(6) (4-chlorophenyl)(2-phenyl-1H-pyrrol-3-yl)methanone (3af)

Yellow solid, 73% yield, m.p: 108-110 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.68 (s, 1H),

7.62 (d, J = 8.0 Hz, 2H), 7.47-7.28 (m, 2H), 7.26-7.09 (m, 5H), 6.73 (t, J = 2.8 Hz, 1H), 6.50 (t, J = 2.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 191.16, 137.87, 137.82, 137.28, 131.84, 131.05, 128.47, 128.45, 128.18, 128.12, 120.14, 117.94, 113.50. MS (EI, m/z): 281 [M]⁺. HRMS (ESI): Calcd. for C₁₇H₁₂CINO [M+H]⁺: 282.0680; found: 282.0678.

(7) (4-bromophenyl)(2-phenyl-1H-pyrrol-3-yl)methanone (3ag)

Yellow solid, 71% yield, m.p: 115-117 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.77 (s, 1H), 7.71-7.49 (m, 2H), 7.43-7.27 (m, 4H), 7.23-7.13 (m, 3H), 6.70 (s, 1H), 6.54-6.44 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 191.33, 138.33, 137.36, 131.20, 131.10, 129.67, 128.48, 128.43, 128.17, 126.43, 120.05, 117.98, 113.49. IR (KBr): 3151, 3040, 2919, 1591, 1570, 1489, 1453, 1429, 1343, 1256, 1190, 1153, 1065, 1013, 901, 801, 760, 730, 691 cm⁻¹. MS (EI, m/z): 325 [M]⁺. HRMS (ESI): Calcd. for C₁₇H₁₂BrNO [M+H]⁺: 326.0175; found: 326.0172.

(8) (2-phenyl-1H-pyrrol-3-yl)(4-(trifluoromethyl)phenyl)methanone (3ah)

Red solid, 70% yield, m.p: 131-132 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.66 (s, 1H), 7.73 (d, *J* = 8.0 Hz, 2H), 7.47 (d, *J* = 8.0 Hz, 2H), 7.36-7.28 (m, 2H), 7.24-7.17 (m, 3H), 6.76 (t, *J* = 2.8 Hz, 1H), 6.53 (t, *J* = 2.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 191.09, 142.73, 137.89, 132.79 (q, *J*_{C-F} = 32.3 Hz), 131.69, 129.67, 128.60, 128.42, 128.37, 124.83 (q, *J*_{C-F} = 3.6 Hz), 123.75 (d, *J*_{C-F} = 271.7 Hz), 120.03, 118.10, 113.53. MS (EI, m/z): 315 [M]⁺. HRMS (ESI): Calcd. for C₁₈H₁₂F₃NO [M+H]⁺: 316.0944; found: 316.0943. (9) 4-(2-phenyl-1H-pyrrole-3-carbonyl)benzonitrile (3ai)

Yellow solid, 80% yield, m.p: 134-136 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.95 (s, 1H), 7.67 (d, *J* = 8.0 Hz, 2H), 7.47 (d, *J* = 8.0 Hz, 2H), 7.30-7.24 (m, 2H), 7.21-7.14 (m, 3H), 6.74 (t, *J* = 2.8 Hz, 1H), 6.51 (t, *J* = 2.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 189.63, 142.30, 137.10, 130.63, 130.52, 128.76, 127.65, 127.42, 127.36, 118.70, 117.42, 117.27, 113.45, 112.26. MS (EI, m/z): 272 [M]⁺. HRMS (ESI): Calcd. for C₁₈H₁₂N₂O [M+H]⁺: 273.1022; found: 273.1020.

(10) (4-methoxyphenyl)(2-phenyl-1H-pyrrol-3-yl)methanone (3aj)

Yellow solid, 86% yield, m.p: 179-180 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.53 (s, 1H), 7.74 (d, *J* = 8.8 Hz, 2H), 7.39-7.34 (m, 2H), 7.26-7.15 (m, 3H), 6.79-6.72 (m, 3H), 6.52 (t, *J* = 2.8 Hz, 1H), 3.75 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 190.31, 161.52, 135.22, 131.09, 130.99, 127.41, 127.21, 126.81, 119.68, 116.50, 112.48, 112.07, 53.34. MS (EI, m/z): 277 [M]⁺. HRMS (ESI): Calcd. for C₁₈H₁₅NO₂ [M+H]⁺: 278.1176; found: 278.1174.

(11) (3,4-dimethoxyphenyl)(2-phenyl-1H-pyrrol-3-yl)methanone (3ak)

Black solid, 70% yield, m.p: 58-60 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.63 (s, 1H), 7.40 (dd, J = 8.4 Hz, 1.6 Hz, 1H), 7.38-7.31 (m, 3H), 7.24-7.14 (m, 3H), 6.75 (t, J = 2.8 Hz, 1H), 6.70 (d, J = 8.4 Hz, 1H), 6.54 (d, J = 2.8 Hz, 1H), 3.82 (s, 3H), 3.75 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 190.31, 151.24, 147.41, 135.21, 131.13, 131.06, 127.43, 127.18, 126.84, 123.61, 119.59, 116.66, 112.49, 111.13, 108.64, 54.95, 54.84. MS (EI,

m/z): 307 [M]⁺. HRMS (ESI): Calcd. for C₁₉H₁₇NO₃ [M+H]⁺: 308.1281; found: 308.1280.

(12) (4-methoxyphenyl)(2-(m-tolyl)-1H-pyrrol-3-yl)methanone (3al)

Red solid, 77% yield, m.p: 100-102 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.67 (s, 1H), 7.81 (d, *J* = 8.8 Hz, 2H), 7.26 (d, *J* = 8.0 Hz, 2H), 7.08 (d, *J* = 8.0 Hz, 2H), 6.83 (d, *J* = 8.8 Hz, 2H), 6.76 (t, *J* = 2.8 Hz, 1H), 6.55 (t, *J* = 2.8 Hz, 1H), 3.83 (s, 3H), 2.31 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.41, 162.52, 137.70, 136.58, 132.27, 132.04, 129.27, 129.12, 128.13, 120.31, 117.28, 113.45, 113.11, 55.39, 21.24. MS (EI, m/z): 291 [M]⁺. HRMS (ESI): Calcd. for C₁₉H₁₇NO₂ [M+H]⁺: 292.1332; found: 292.1330.

(13) 3-(3-(4-methoxybenzoyl)-1H-pyrrol-2-yl)benzonitrile (3am)

Crimson solid, 67% yield, m.p: 86-87 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.82 (s, 1H), 7.77 (d, *J* = 8.8 Hz, 2H), 7.49 (s, 4H), 6.81 (d, *J* = 8.4 Hz, 3H), 6.51 (s, 1H), 3.79 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.22, 163.07, 136.40, 133.51, 132.20, 131.64, 128.44, 122.25, 118.96, 118.76, 114.25, 113.40, 110.94, 55.48. MS (EI, m/z): 302 [M]⁺. HRMS (ESI): Calcd. for C₁₉H₁₄N₂O₂ [M+H]⁺: 303.1128; found: 303.1126.

(14) (2-(m-tolyl)-1H-pyrrol-3-yl)(4-(trifluoromethyl)phenyl)methanone (3an)

Red solid, 80% yield, m.p: 165-166 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.61 (s, 1H), 7.71 (d, *J* = 8.0 Hz, 2H), 7.46 (d, *J* = 8.0 Hz, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 7.00 (d, *J* = 8.0 Hz, 2H), 6.73 (t, *J* = 2.8 Hz, 1H), 6.52 (t, *J* = 2.8 Hz, 1H), 2.24 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 190.02, 141.83, 137.37, 137.16, 131.58 (q, *J*_{C-F} = 32.3 Hz), 128.57, 128.03, 127.74, 127.46, 123.73 (q, *J*_{C-F} = 3.6 Hz), 122.58 (d, *J*_{C-F} = 271.7 Hz), 118.80, 116.79, 112.35, 20.12. MS (EI, m/z): 329 [M]⁺. HRMS (ESI): Calcd. for C₁₉H₁₄F₃NO [M+H]⁺: 330.1100; found: 330.1099.

(15) 3-(3-(4-cyanobenzoyl)-1H-pyrrol-2-yl)benzonitrile (3ao)

Yellow solid, 62% yield, m.p: 222-223 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.74 (s, 1H), 7.86-7.76 (m, 2H), 7.70-7.62 (m, 2H), 7.59 (s, 4H), 6.87 (t, *J* = 2.8 Hz, 1H), 6.47 (t, *J* = 2.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 189.07, 141.84, 134.85, 134.16, 131.27, 131.02, 128.84, 127.91, 119.67, 118.27, 117.45, 117.09, 114.26, 113.40, 110.89. MS (EI, m/z): 297 [M]⁺. HRMS (ESI): Calcd. for C₁₉H₁₁N₃O [M+H]⁺: 298.0975; found: 298.0973.

(16) furan-2-yl(2-phenyl-1H-pyrrol-3-yl)methanone (3ap)

Yellow solid, 69% yield, m.p: 141-143 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.66 (s, 1H),

7.50-7.37 (m, 3H), 7.33-7.20 (m, 3H), 7.07-6.99 (m, 1H), 6.80 (t, J = 2.8 Hz, 1H), 6.75 (t, J = 2.8 Hz, 1H), 6.38 (dd, J = 3.5, 1.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 178.47, 153.64, 145.73, 137.17, 132.17, 128.43, 128.39, 128.10, 119.45, 118.48, 117.94, 112.69, 111.84. MS (EI, m/z): 237 [M]⁺. HRMS (ESI): Calcd. for C₁₅H₁₁NO₂ [M+H]⁺: 238.0863; found: 238.0861.

(17) (2-phenyl-1H-pyrrol-3-yl)(pyridin-2-yl)methanone (3aq)

Black solid, 58% yield, m.p: 127-129 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.65 (s, 1H), 8.43 (d, *J* = 4.8 Hz, 1H), 7.80 (d, *J* = 8.0 Hz, 1H), 7.71-7.64 (m, 1H), 7.44-7.34 (m, 2H), 7.28-7.16 (m, 4H), 6.85 (t, *J* = 2.8 Hz, 1H), 6.75 (t, *J* = 2.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 188.73, 155.56, 147.18, 137.78, 135.57, 131.41, 127.62, 127.24, 127.04, 124.41, 122.80, 118.42, 116.93, 113.19. MS (EI, m/z): 248 [M]⁺. HRMS (ESI): Calcd. for C₁₆H₁₂N₂O [M+H]⁺: 249.1022; found: 249.1020.

(18) naphthalen-1-yl(2-phenyl-1H-pyrrol-3-yl)methanone (3ar)

Crimson solid, 85% yield, m.p: 164-165 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.60 (brs, 1H), 8.15 (d, *J* = 3.6 Hz, 1H), 7.77-7.67 (m, 2H), 7.48 (d, *J* = 7.2 Hz, 1H), 7.44-7.35 (m, 2H), 7.32-7.25 (m, 2H), 7.25-7.17 (m, 1H), 7.14-7.00 (m, 3H), 6.71-6.60 (m, 1H), 6.50-6.41 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 193.47, 138.32, 138.09, 133.54, 131.87, 130.88, 130.44, 128.48, 128.09, 128.04, 127.41, 126.78, 125.97, 125.80, 124.21, 122.24, 117.85, 113.80. MS (EI, m/z): 297 [M]⁺. HRMS (ESI): Calcd. for C₂₁H₁₅NO [M+H]⁺: 298.1226; found: 298.1224.

(19) 2,2-dimethyl-1-(2-phenyl-1H-pyrrol-3-yl)propan-1-one (3as)

Crimson solid, 73% yield, m.p: 55-56 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.38 (s, 1H), 7.37-7.33 (m, 2H), 7.31-7.22 (m, 3H), 6.64 (t, *J* = 2.8 Hz, 1H), 6.58 (t, *J* = 2.8 Hz, 1H), 1.24 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 204.69, 136.54, 133.12, 128.50, 127.86, 119.21, 116.98, 111.00, 44.32, 27.95. MS (EI, m/z): 227 [M]⁺. HRMS (ESI): Calcd. for C₁₅H₁₇NO [M+H]⁺: 228.1383; found: 228.1381.

(20) 1-(2-phenyl-1H-pyrrol-3-yl)butan-1-one (3at)

Red solid, 65% yield, m.p: 82-84 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.54 (s, 1H), 7.52-7.44 (m, 2H), 7.36-7.27 (m, 3H), 6.68 (t, *J* = 2.8 Hz, 1H), 6.62 (t, *J* = 2.8 Hz, 1H), 2.60 (t, *J* = 7.2 Hz, 2H), 1.58 (h, *J* = 7.2 Hz, 2H), 0.83 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 197.29, 136.14, 132.55, 129.04, 128.43, 128.29, 121.32, 117.68, 111.54, 42.79, 18.09, 13.95. MS (EI, m/z): 213 [M]⁺. HRMS (ESI): Calcd. for C₁₄H₁₅NO [M+H]⁺: 214.1226; found: 214.1224.

(21) 1-(2-phenyl-1H-pyrrol-3-yl)butan-1-one (3au)

Yellow oil, 78% yield; ¹H NMR (400 MHz, CDCl₃) δ 9.45 (s, 1H), 7.80 (d, *J* = 7.2 Hz, 2H), 7.53-7.47 (m, 1H), 7.46-7.39 (m, 2H), 6.51 (t, *J* = 2.8 Hz, 1H), 6.37 (t, *J* = 2.8 Hz, 1H), 2.96 (t, *J* = 7.6 Hz, 2H), 1.62 (p, *J* = 7.6 Hz, 2H), 1.32 (h, *J* = 7.6 Hz, 2H), 0.87 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 193.07, 141.77, 140.85, 131.19, 129.08, 128.06, 119.01, 115.81, 122.69, 31.50, 27.46, 22.62, 13.92. MS (EI, m/z): 227 [M]⁺. HRMS (ESI): Calcd. for C₁₅H₁₇NO [M+H]⁺: 228.1383; found: 228.1381.

(22) (2-cyclopropyl-1H-pyrrol-3-yl)(phenyl)methanone (3av)

White solid, 77% yield; m.p: 106-107 °C;¹H NMR (400 MHz, CDCl₃) δ 8.94 (s, 1H), 7.86-7.78 (m, 2H), 7.53-7.48 (m, 1H), 7.47-7.41 (m, 2H), 6.45 (dd, *J* = 5.6 Hz, 2.4 Hz, 1H), 6.34 (t, *J* = 2.8 Hz, 1H), 2.72-2.54 (m, 1H), 1.01-0.93 (m, 2H), 0.79-0.72 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 192.92,142.05, 140.82, 131.21, 129.16, 128.04, 120.61, 115.52, 112.79, 29.74, 9.09, 8.22. MS (EI, m/z): 211 [M]⁺. HRMS (ESI): Calcd. for C₁₄H₁₃NO [M+H]⁺: 212.1070; found: 212.1068.

(23) (5-methyl-2-phenyl-1H-pyrrol-3-yl)(p-tolyl)methanone (3ba)

Yellow solid, 85% yield, m.p: 142-143 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.53 (s, 1H), 7.60 (d, *J* = 8.0 Hz, 2H), 7.30 (d, *J* = 8.0, 2H), 7.16-7.09 (m, 3H), 7.02 (d, *J* = 8.0 Hz, 2H), 6.13 (d, *J* = 2.8 Hz, 1H), 2.27 (s, 3H), 2.18 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.35, 140.94, 135.96, 134.76, 131.21, 128.79, 127.41, 127.16, 127.13, 126.66, 126.39, 119.59, 110.12, 20.47, 11.64. MS (EI, m/z): 275 [M]⁺. HRMS (ESI): Calcd. for C₁₉H₁₇NO [M+H]⁺: 276.1383; found: 276.1382.

(24) (4-chlorophenyl)(5-methyl-2-phenyl-1H-pyrrol-3-yl)methanone (3bf)

Black solid, 79% yield, m.p: 52-53 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.54 (s, 1H), 7.59 (d, J = 8.4 Hz, 2H), 7.26 (d, J = 6.4, 2.8 Hz, 2H), 7.19-7.12 (m, 5H), 6.15 (s, 1H), 2.20 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 190.20, 136.98, 136.55, 135.38, 130.95, 127.29,

127.27, 126.97, 126.77, 119.19, 109.89, 11.66. MS (EI, m/z): 295 [M]⁺. HRMS (ESI): Calcd. for C₁₈H₁₄ClNO [M+H]⁺: 296.0837; found: 296.0837.

(25) (4-methoxyphenyl)(5-methyl-2-phenyl-1H-pyrrol-3-yl)methanone (3bj)

Yellow solid, 81% yield, m.p: 112-113 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.47 (s, 1H), 7.70 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 6.8 Hz, 2H), 7.20-7.07 (m, 3H), 6.71 (d, *J* = 8.4 Hz, 2H), 6.15 (s, 1H), 3.73 (s, 3H), 2.20 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 190.50, 161.38, 134.31, 131.25, 131.23, 130.95, 127.24, 127.05, 126.71, 126.37, 119.73, 111.98, 109.96, 54.32, 11.70. MS (EI, m/z): 291 [M]⁺. HRMS (ESI): Calcd. for C₁₉H₁₇NO₂ [M+H]⁺: 292.1332; found: 292.1331.

(26) (5-ethyl-2-phenyl-1H-pyrrol-3-yl)(p-tolyl)methanone (3ca)

Green solid, 80% yield, m.p: 162-163 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.31 (d, *J* = 4.8 Hz, 2H), 7.23-7.07 (m, 6H), 7.03 (d, *J* = 7.6 Hz, 1H), 6.94 (t, *J* = 7.6 Hz, 1H), 6.10 (s, 1H), 2.53 (q, *J* = 7.6 Hz, 2H), 2.28 (s, 3H), 1.17 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 193.15, 139.75, 135.59, 135.07, 133.19, 131.05, 129.39, 128.27, 127.47, 127.47, 127.02, 126.77, 123.71, 120.58, 108.28, 19.43, 18.82, 12.14. MS (EI, m/z): 289 [M]⁺. HRMS (ESI): Calcd. for C₂₀H₁₉NO [M+H]⁺: 290.1539; found: 290.1538.

(27) (5-ethyl-2-phenyl-1H-pyrrol-3-yl)(phenyl)methanone (3cd)

Yellow solid, 82% yield, m.p: 79-80 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H),

7.68 (d, J = 7.6 Hz, 2H), 7.31 (d, J = 7.2 Hz, 3H), 7.24-7.14 (m, 5H), 6.23 (s, 1H), 2.59 (q, J = 7.6 Hz, 2H), 1.21 (t, J = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 192.56, 139.72, 136.06, 134.22, 132.27, 131.39, 129.62, 128.35, 128.28, 127.76, 127.68, 120.48, 109.54, 20.57, 13.29. MS (EI, m/z): 275 [M]⁺. HRMS (ESI): Calcd. for C₁₉H₁₇NO [M+H]⁺: 276.1383; found: 276.1380.

(28) (5-ethyl-2-phenyl-1H-pyrrol-3-yl)(4-(trifluoromethyl)phenyl)methanone

Yellow solid, 79% yield, m.p: 150-152 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.54 (s, 1H), 7.68 (d, *J* = 8.4 Hz, 2H), 7.43 (d, *J* = 8.4 Hz, 2H), 7.27-7.11 (m, 5H), 6.20 (d, *J* = 2.8 Hz, 1H), 2.56 (q, *J* = 7.6 Hz, 2H), 1.20 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 191.27, 142.95, 137.04, 134.77, 132.56 (q, *J*_{C-F} = 32.3 Hz), 131.92, 129.61, 128.55, 128.27, 128.02, 124.74 (q, *J*_{C-F} = 3.6 Hz), 123.81 (q, *J*_{C-F} = 271.7 Hz), 120.03, 109.20, 20.50, 13.24. MS (EI, m/z): 343 [M]⁺. HRMS (ESI): Calcd. for C₂₀H₁₆F₃NO [M+H]⁺: 344.1257; found: 344.1255.

(29) (5-ethyl-2-phenyl-1H-pyrrol-3-yl)(4-methoxyphenyl)methanone (3cj)

Yellow solid, 77% yield, m.p: 60-61 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.71 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.18-7.11 (m, 3H), 6.72 (d, *J* = 8.4 Hz, 2H), 6.20 (s, 1H), 3.74 (s, 3H), 2.59 (q, *J* = 7.6 Hz, 2H), 1.22 (t, *J* = 7.6 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 190.47, 161.37, 134.12, 133.09, 131.34, 131.25, 130.94, 127.28, 127.10, 126.44, 119.68, 111.99, 108.34, 54.31, 19.54, 12.27. MS (EI, m/z): 305 [M]⁺. HRMS (ESI): Calcd. for C₂₀H₁₉NO₂ [M+H]⁺: 306.1489; found: 306.1487.

(30) (5-isobutyl-2-phenyl-1H-pyrrol-3-yl)(p-tolyl)methanone (3da)

Yellow solid, 74% yield, m.p: 121-122 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.35-7.30 (m, 2H), 7.25-7.20 (m, 1H), 7.17-7.10 (m, 4H), 7.03 (d, *J* = 7.6 Hz, 1H), 6.95 (t, *J* = 7.6 Hz, 1H), 6.07 (d, *J* = 2.8 Hz, 1H), 2.35 (d, *J* = 7.2 Hz, 2H), 2.28 (s, 3H), 1.84-1.73 (m, 1H), 0.87 (d, *J* = 7.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 193.23, 135.41, 135.12, 131.08, 130.80, 129.42, 128.31, 127.56, 127.39, 127.05, 126.76, 123.74, 120.66, 110.08, 35.67, 27.88, 21.36, 18.86. MS (EI, m/z): 317 [M]⁺. HRMS (ESI): Calcd. for C₂₂H₂₃NO [M+H]⁺: 318.1852; found: 318.1848.

(31) (4-fluorophenyl)(5-isobutyl-2-phenyl-1H-pyrrol-3-yl)methanone (3de)

Yellow solid, 81% yield, m.p: 96-97 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.25 (s, 1H), 7.77-7.64 (m, 2H), 7.34-7.27 (m, 3H), 7.17-7.15 (m, 2H), 6.88 (t, *J* = 8.8 Hz, 2H), 6.21 (d, *J* = 2.8 Hz, 1H), 2.42 (d, *J* = 7.2 Hz, 2H), 1.89-1.78 (m, 1H), 0.90 (d, *J* = 7.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 191.09, 164.76 (d, *J*_{C-F} = 252.5 Hz), 135.91, 132.13, 132.04, 131.97, 129.26, 128.36, 128.32, 127.79, 120.39, 114.79 (d, *J*_{C-F} = 21.21 Hz), 111.06, 36.79, 29.00, 22.43. MS (EI, m/z): 321 [M]⁺. HRMS (ESI): Calcd. for C₂₁H₂₀FNO [M+H]⁺: 322.1602; found: 322.1598.

(32) (5-isobutyl-2-phenyl-1H-pyrrol-3-yl)(4-methoxyphenyl)methanone (3dj)

Yellow solid, 76% yield, m.p: 40-41 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.55 (s, 1H), 7.78 (d, *J* = 8.8 Hz, 2H), 7.43-7.35 (m, 2H), 7.24-7.16 (m, 3H), 6.79 (d, *J* = 8.8 Hz, 2H), 6.24 (s, 1H), 3.81 (s, 3H), 2.46 (d, *J* = 7.2 Hz, 2H), 1.95-1.83 (m, 1H), 0.95 (d, *J* = 7.2 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 191.67, 162.43, 135.25, 132.38, 132.04, 131.78, 128.30, 128.17, 127.43, 120.65, 113.05, 111.15, 55.38, 36.78, 29.00, 22.46. MS (EI, m/z): 333 [M]⁺. HRMS (ESI): Calcd. for C₂₂H₂₃NO₂ [M+H]⁺: 334.1802; found: 334.1797.

(33) (2,5-diphenyl-1H-pyrrol-3-yl)(p-tolyl)methanone (3ea)

Yellow solid, 78% yield, m.p: 196-198 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.70 (s, 1H), 7.46-7.38 (m, 4H), 7.34-7.26 (m, 3H), 7.23-7.13 (m, 5H), 7.07 (d, *J* = 7.2 Hz, 1H), 7.02-6.95 (m, 1H), 6.67 (d, *J* = 2.8 Hz, 1H), 2.32 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 193.03, 139.34, 137.27, 135.34, 130.79, 130.62, 130.23, 129.58, 128.61, 128.00, 127.66, 127.53, 127.27, 127.21, 126.15, 123.85, 123.01, 109.34, 18.91. MS (EI, m/z): 337 [M]⁺. HRMS (ESI): Calcd. for C₂₄H₁₉NO [M+H]⁺: 338.1539; found: 338.1536.

(34) (2,5-diphenyl-1H-pyrrol-3-yl)(phenyl)methanone (3ed)

Yellow solid, 79% yield, m.p: 148-149 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.92 (s, 1H), 7.76-7.68 (m, 2H), 7.46 (d, *J* = 7.6 Hz, 2H), 7.39-7.28 (m, 5H), 7.25-7.14 (m, 6H), 6.76 (d, *J* = 2.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 191.48, 138.31, 136.87, 130.85, 130.69, 130.37, 128.66, 127.99, 127.43, 127.32, 127.06, 126.85, 126.08, 123.09, 120.85, 109.43. MS (EI, m/z): 323 [M]⁺. HRMS (ESI): Calcd. for C₂₃H₁₇NO [M+H]⁺: 324.1383; found: 324.1380.

(35) (2,5-diphenyl-1H-pyrrol-3-yl)(4-methoxyphenyl)methanone (3ej)

Yellow solid, 72% yield, m.p: 186-187 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.93 (s, 1H), 7.75 (d, *J* = 8.8 Hz, 2H), 7.49-7.45 (m, 2H), 7.38-7.28 (m, 4H), 7.21-7.13 (m, 4H), 6.74 (dd, *J* = 6.4 Hz, 3.0 Hz, 3H), 3.75 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 190.40, 161.63, 136.07, 131.06, 130.88, 130.78, 130.49, 127.98, 127.38, 127.24, 126.88, 125.98, 123.07, 121.11, 112.13, 109.31, 54.36. IR (KBr): 3137, 3001, 2969, 2842, 1589, 1562, 1508, 1452, 1432, 1339, 1243, 1170, 1152, 1032, 903, 846, 762, 695 cm⁻¹. MS (EI, m/z): 353 [M]⁺. HRMS (ESI): Calcd. for C₂₄H₁₉NO₂ [M+H]⁺: 354.1489; found: 354.1487.

(36) (2,4-diphenyl-1H-pyrrol-3-yl)(p-tolyl)methanone (3fa)

Yellow solid, 76% yield, m.p: 193-195 °C; ¹H NMR (400 MHz, CDCl₃) δ 10.22 (s, 1H), 7.78-7.69 (m, 2H), 7.54-7.47 (m, 2H), 7.45-7.38 (m, 2H), 7.37-7.30 (m, 1H), 7.29-7.22 (m, 1H), 7.07 (t, *J* = 7.6 Hz, 2H), 7.01-6.93 (m, 2H), 6.85 (d, *J* = 7.6 Hz, 2H), 6.68 (d, *J* = 2.8 Hz, 1H), 2.23 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 185.98, 137.08, 136.47, 135.26, 134.46, 131.37, 130.05, 129.82, 128.49, 128.38, 128.01, 127.35, 127.19, 126.95, 126.45, 124.16, 109.32, 20.03. MS (EI, m/z): 337 [M]⁺. HRMS (ESI): Calcd. for C₂₄H₁₉NO [M+H]⁺: 338.1539; found: 338.1536.

(37) (2-phenyl-4,5,6,7-tetrahydro-1H-indol-3-yl)(p-tolyl)methanone (3ga)

Yellow solid, 65% yield, m.p: 151-153 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.06 (s, 1H), 7.52 (d, *J* = 8.0 Hz, 2H), 7.15-7.00 (m, 5H), 6.91 (d, *J* = 8.0 Hz, 2H), 2.56 (t, *J* = 6.4 Hz, 2H), 2.46 (t, *J* = 6.4 Hz, 2H), 2.20 (s, 3H), 1.82-1.73 (m, 2H), 1.70-1.62 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 193.94, 142.13, 136.89, 134.32, 132.60, 129.97, 128.40, 128.26, 127.94, 126.96, 120.39, 119.57, 23.43, 22.94, 22.79, 22.64, 21.51. MS (EI, m/z): 315 $[M]^+$. HRMS (ESI): Calcd. for C₂₂H₂₁NO $[M+H]^+$: 316.1696; found: 316.1690.

(38) phenyl(4-phenyl-1H-pyrrol-3-yl)methanone (3fw)

White solid, 80% yield, m.p: 229-231 °C; ¹H NMR (400 MHz, DMSO- d_6) δ 7.76-7.72 (m, 2H), 7.59-7.53 (m, 1H), 7.46 (t, J = 7.6 Hz, 2H), 7.39-7.35 (m, 2H), 7.30-7.19 (m, 3H), 7.19-7.14 (m, 1H), 7.08 (t, J = 2.4 Hz, 1H). ¹³C NMR (101 MHz, DMSO- d_6) δ 190.80, 140.44, 135.71, 132.01, 129.42, 128.82, 128.63, 128.58, 128.20, 126.11, 125.95, 120.98, 120.10. MS (EI, m/z): 247 [M]⁺. HRMS (ESI): Calcd. for C₁₇H₁₃NO [M+H]⁺: 248.1070; found: 248.1067.

(39) (5,5-difluoro-3,7,10-triphenyl-5H-4l4,5l4-dipyrrolo[1,2-c:2',1'-f][1,3,2]diaza borinine-2,8-diyl)bis(p-tolylmethanone) (3aaa)

Red solid, 90% yield, m.p: 253-255 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.79-7.74 (m, 8H), 7.59-7.55 (m, 2H), 7.48-7.44 (m, 2H), 7.41-7.36 (m, 6H), 7.18 (d, *J* = 8.0 Hz, 4H), 6.99 (s, 2H), 5.30 (s, 1H), 2.38 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 192.15, 155.70, 143.66, 140.11, 135.82, 133.71, 132.57, 130.78, 130.16, 129.99, 129.73, 129.58, 129.04, 128.64, 128.56, 128.18, 21.68. HRMS (ESI): Calcd. for C₄₃H₃₁BF₂N₂O₂ [M+e] ⁻: 656.2452; found: 656.2446.

(40) phenyl(4-phenyl-1H-pyrrol-3-yl)methanone (intermidate 4aa)

White solid, 62% yield, m.p: 114-115 °C; ¹H NMR (400 MHz, CDCl₃) δ 11.41 (br, 1H), 7.76 (d, *J* = 8.4 Hz, 2H), 7.44-7.36 (m, 3H), 7.36-7.31 (m, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 5.72 (s, 1H), 4.06 (br, 1H), 3.71 (t, *J* = 5.2 Hz, 2H), 3.35 (q, *J* = 5.2 Hz, 2H), 2.36 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ188.38, 167.18, 141.16, 137.56, 135.58, 129.49, 128.99, 128.53, 127.87, 127.18, 93.78, 61.84, 47.09, 21.49. MS (EI, m/z): 281 [M]⁺.

(41) 4-isobutyl-2-phenyl-4,5-dihydrooxazole (9da)

Yellow oil, 86% yield; ¹H NMR (400 MHz, CDCl₃) δ 7.92-7.83 (m, 2H), 7.42-7.37 (m, 1H), 7.36-7.29 (m, 2H), 4.46-4.41 (m, 1H), 4.31-4.22 (m, 1H), 3.92 (t, *J* = 8.0 Hz, 1H), 1.77-1.73 (m, 1H), 1.69-1.62 (m, 1H), 1.35-1.29 (m, 1H), 0.91 (t, *J* = 6.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 163.31, 131.19, 128.30, 128.22, 127.95, 73.13, 65.14, 45.61, 25.51, 22.95, 22.70. MS (EI, m/z): 203 [M]⁺.

NMR spectra of the obtained compounds

¹H- NMR spectrum of 3aa

¹³C-NMR spectrum of 3aa

¹H- NMR spectrum of 3ab

¹³C-NMR spectrum of 3ab

¹H- NMR spectrum of 3ac

¹³C-NMR spectrum of 3ac

¹³C-NMR spectrum of 3ad

¹H- NMR spectrum of 3ae

¹³C-NMR spectrum of 3ae

¹H- NMR spectrum of 3af

¹³C-NMR spectrum of 3af

¹H- NMR spectrum of 3ag

¹³C-NMR spectrum of 3ag

¹H- NMR spectrum of 3ah

¹³C-NMR spectrum of 3ah

¹H- NMR spectrum of 3ai

¹³C-NMR spectrum of 3ai

¹H- NMR spectrum of 3aj

¹³C-NMR spectrum of 3aj

¹H- NMR spectrum of 3ak

¹³C-NMR spectrum of 3ak

¹H- NMR spectrum of 3al

¹³C-NMR spectrum of 3al

¹H- NMR spectrum of 3am

¹³C-NMR spectrum of 3am

¹H- NMR spectrum of 3an

¹³C-NMR spectrum of 3an

¹H- NMR spectrum of 3ao

¹³C-NMR spectrum of 3ao

¹H- NMR spectrum of 3ap

¹³C-NMR spectrum of 3ap

¹H- NMR spectrum of 3aq

¹³C-NMR spectrum of 3aq

¹H- NMR spectrum of 3ar

¹³C-NMR spectrum of 3ar

¹H- NMR spectrum of 3as

¹³C-NMR spectrum of 3as

¹H- NMR spectrum of 3at

¹³C-NMR spectrum of 3at

¹H- NMR spectrum of 3au

¹³C-NMR spectrum of 3au

¹H- NMR spectrum of 3av

¹³C-NMR spectrum of 3av

¹H- NMR spectrum of 3ba

¹³C-NMR spectrum of 3ba

¹H- NMR spectrum of 3bf

¹³C-NMR spectrum of 3bf

¹H- NMR spectrum of 3bj

¹³C-NMR spectrum of 3bj

¹H- NMR spectrum of 3ca

¹³C-NMR spectrum of 3ca

¹H- NMR spectrum of 3cd

¹³C-NMR spectrum of 3cd

¹H- NMR spectrum of 3ch

¹³C-NMR spectrum of 3ch

¹H- NMR spectrum of 3cj

¹³C-NMR spectrum of 3cj

¹H- NMR spectrum of 3da

¹³C-NMR spectrum of 3da

¹H- NMR spectrum of 3de

¹³C-NMR spectrum of 3de

¹H- NMR spectrum of 3dj

¹³C-NMR spectrum of 3dj

¹H- NMR spectrum of 3ea

¹³C-NMR spectrum of 3ea

¹H- NMR spectrum of 3ed

¹³C-NMR spectrum of 3ed

¹H- NMR spectrum of 3ej

¹³C-NMR spectrum of 3ej

¹H- NMR spectrum of 3fa

¹³C-NMR spectrum of 3fa

¹H- NMR spectrum of 3fw

¹³C-NMR spectrum of 3fw

¹H- NMR spectrum of 3ga

¹³C-NMR spectrum of 3ga

¹H- NMR spectrum of 3aaa

¹³C-NMR spectrum of 3aaa

¹H- NMR spectrum of 4aa

¹³C-NMR spectrum of 4aa

¹H- NMR spectrum of 9da

¹³C-NMR spectrum of 9da

