Supporting Information

Tailoring the SWIR emission of gold nanoclusters by surface ligand rigidification and their application in 3D bioimaging

Xavier Le Guévela†, K. David Wegnerb†, Christian Würthb, Vladimir A. Baulinc, B. Musniera, V. Josseranda, U. Resch-Gengerb, and Jean-luc Colla

Synthesis of gold nanoclusters (Au NCs). All products were purchased from Sigma-Aldrich (France) and we used deionized water. AuMHA/TDT was prepared in a similar protocol reported previously[1]. Briefly, 500 μL of HAuCl4.3H2O (20mM) was added to 4.8 mL of water followed by 4 mL of the thiolated ligand mixture mercaptohexanoic acid (MHA, 5 mM; 2mL) / tetra(ethyleneglycol) dithiol (TDT, 5 mM, 2mL) changing color from yellowish to slightly pale cloudy. After 1 min, 500 μL of NaOH (1M) was added dropwise leading to almost colorless sols. After 5 min, 150 μL of NaBH4 (20 mM in 0.2 M NaOH) was introduced dropwise under mild stirring at 350rpm for 8 hours. Purification of the AuMHA/TDT on 3 kDa cut-off filter column (Amicon) were repeated 3 times to stop the reaction and sols were kept stored in the fridge before use. Synthesis yield was determined optically on a spectrophotometer by the consumption of gold salt[2] to produce Au NCs and estimated around 90%.

Composite. AuMHA/TDT embedded in PDMS was prepared using a protocol described elsewhere[3].

Microscopy. Metal core sizes were determined by high resolution transmission electron microscopy with an 200 kV monochromated TEM using dispersed Au NCs on ultra-fine carbon films.

Optical characterization.
Absorption spectra of diluted AuNC samples were recorded on an Safas Monaco SP2000 UV-vis spectrophotometer between 350 and 1100 nm. Steady-state photoluminescence spectra were measured from 600 – 1750 nm with a calibrated FSP 920 (Edinburgh Instruments, Edinburgh, United Kingdom) spectrofluorometer equipped with a nitrogen-cooled PMT R5509P. Time-resolved measurements were performed in the wavelength region of 300 – 1100 nm using a FLS 920 (Edinburgh Instruments, Edinburgh, United Kingdom) lifetime spectrofluorometer equipped with an EPL-510 (Edinburgh Instruments, Edinburgh, United Kingdom)
Kingdom) picosecond pulsed diode laser (excitation wavelength of 510±10 nm; power of 5mW) and a fast PMT R2658P from Hamamatsu, respectively. The PL decays were fitted with a multi-exponential model, see Eq. (1)

\[I(t) = \sum_n a_n e^{\left(-\frac{t}{\tau_n} - \frac{t}{\tau_n^2}\right)} \]

where \(a_n \) are the amplitudes and \(\tau_n \) the lifetimes of the respective decaying species. These data were calculated with a reconvolution fitting procedure using the FLS-920 spectrometer software. The fit quality was evaluated from the corresponding \(\chi^2 \) values. The average lifetimes were calculated as an intensity-weighted average, see Eq. (2)

\[<\tau>_{int} = \frac{\sum_n A_n \tau_n^2}{\sum_n A_n \tau_n} \]

where \(\tau_n \) are the lifetimes of each component and \(A_n \) the corresponding relative fractional amplitudes.

In vivo SWIR imaging was performed on a NMRI nude female mice perfused with AuMHA/TDT (5 mg Au/mL) using a Nirvana 640ST (Princeton) and a laser excitation at 808 nm (120 mW/cm\(^2\)). Images were taken with 25mm lens (Navitar) with n.a= 4.8 using a long pass filter at 1319 nm (Semrock) and recorded at 250 ms acquisition time. A tilt support (Thorlabs) enabled to take pictures from -45° to +45° every 0.5° step.

All animal experiments followed the institutional guidelines of the European Community (EU Directive 2010/63/EU) for the use of experimental animals and were approved by an ethic committee (Cometh38 Grenoble, France) and the French Ministry of Higher Education and Research under the reference: APAFIS#8854-20 17031314338357 v1.
Figure S1. Absorbance spectra of (a) AuMHA and AuMHA/TDT dispersed in water, (b) AuMHA/TDT dispersed in water and prepared in different synthesis.

Figure S2. (a) Absorbance spectra and (b) PL spectra ($\lambda_{\text{exc.}}$ 808 nm) of AuMHA/TDT at different pH.
Figure S3. High resolution transmission electron microscopy (HRTEM) of AuMHA/TDT dispersed in water showing a long-distance organisation (a) of narrow particle size distribution (b) with semi-crystalline structure (c). Size distribution was estimated with ~ 400 single gold nanoclusters from TEM images.

Figure S4. Normalized PL spectra of AuMHA and AuMHA/TDT excited at 400 nm.
Figure S5. (a) PL spectra and (b) normalised PL spectra at $\lambda = 920$ nm of AuMHA/TDT dispersed in mixture DMSO/water ($\lambda_{\text{exc.}} 680$ nm). The peak at 1360 nm is caused by the second harmonic generation of the excitation light. (c) PL spectra and (d) normalised PL spectra at $\lambda = 920$ nm of AuMHA/TDT dispersed in mixture DMSO/water ($\lambda_{\text{exc.}} 830$ nm). For increasing DMSO concentration the solvent absorbance causes a dip around 1150 nm.
Figure S6. (a) Absorbance spectra of AuMHA/TDT dispersed in DMF/water mixtures. PL spectra of AuMHA/TDT using excitation wavelengths at 680 nm (b) and at 830 nm (c) were measured in different DMF/water mixtures.

Figure S7. PL spectra before (a) and after (b) water absorbance correction of AuMHA/TDT measured at different excitation wavelength.
Figure S8. (a,b) Absorbance spectra of AuMHA/TDT dispersed in different media. (c) PL spectra and (d) normalised PL spectra at $\lambda = 920$ nm of AuMHA/TDT dispersed in different media ($\lambda_{\text{exc}} = 680$ nm). The peak at 1360 nm is caused by the second harmonic generation of the excitation wavelength. (e) PL spectra and (f) normalised PL spectra at $\lambda = 920$ nm of AuMHA/TDT dispersed in different media ($\lambda_{\text{exc}} = 830$ nm).
Figure S9. PL spectra of AuMHA/TDT dispersed in water and in embedded in the PDMS composite. ($\lambda_{exc.} = 680$ nm)

Table S1. Decay time analysis of AuNCs in solution and in composite and the calculated intensity weighted average decay time.

<table>
<thead>
<tr>
<th></th>
<th>A_1</th>
<th>τ_1 (ns)</th>
<th>A_2</th>
<th>τ_2 (ns)</th>
<th>A_3</th>
<th>τ_3 (ns)</th>
<th>$<\tau>_{int}$ (ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>solution</td>
<td>2201</td>
<td>100.8</td>
<td>2687</td>
<td>432.3</td>
<td>432</td>
<td>1603.0</td>
<td>787</td>
</tr>
<tr>
<td>composite</td>
<td>1732</td>
<td>30.4</td>
<td>1049</td>
<td>138.5</td>
<td>238</td>
<td>571.8</td>
<td>298</td>
</tr>
</tbody>
</table>

References