## Supporting information

# TEMPO-mediated late stage photochemical hydroxylation of biaryl sulfonium salts 

Yue Zhao, Congjun Yu, Wenjing Liang, Iuliana L. Atodiresei, and Frederic W. Patureau Institute of Organic Chemistry, RWTH Aachen University. Landoltweg 1, 52074<br>Aachen (Deutschland)<br>E-Mail: Frederic.Patureau@rwth-aachen.de

## Table of contents

General Information ..... 2

1. Experimental Section .....  3
1.1 General procedure A for the synthesis of aryl thianthrenium salts $\mathbf{2}^{1,2}$ .....  3
1.2 General procedure $\mathbf{B}$ for the hydroxylation of aryl sulfonium salts .....  3
1.3 Mechanistic experiments .....  3
2. UV-vis absorption spectroscopic measurements ..... 4
3. Characterization of Products .....  5
3.1 Characterization of aryl thianthrenium salts .....  5
3.2 Characterization for hydroxylation of simple arenes ..... 14
4. X-ray Experiment ..... 22
5. References ..... 23
6. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra ..... 25

## General Information

NMR spectra were obtained on an Agilent VNMRS 400 or a Bruker Av 600 using $\mathrm{CDCl}_{3}$ or DMSO-d ${ }_{6}$ as solvents. Chemical shifts are given in ppm and coupling constants $(J)$ in Hz . The following abbreviations were used for ${ }^{1} \mathrm{H}$ NMR spectra to indicate the signal multiplicity: s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet) as well as combinations of them. Flash chromatography was performed on silica gel ( $60 \mathrm{M}, 0.04-0.063 \mathrm{~mm}$ ) by standard technique. All the chemicals used for synthesis were purchased from Sigma Aldrich, abcr, Alfa Aesar, TCI, Fisher, BLDpharma or ChemPUR. High resolution mass spectra (HRMS) were recorded on ThermoFisher Scientific LTQ Orbitrap XL spectrometer. IR spectra were measured on a PerkinElmer 100 FT-IR spectrometer with an UATR Diamond KRS-5 unit. The absorption spectra were measured from 500 nm to 240 nm with a medium scan speed on an Agilent Cary 60 UV-Vis Spectrophotometer ( 1 cm , quartz cells).

Crystallographic data were collected on a Bruker Kappa APEX II CCD-diffractometer with monochromatic Mo-K $\alpha$ radiation $(\lambda=0.71073 \AA)$ and a CCD detector.

All reactions with UV-light were carried out using a 23 cm diameter steel cylinder photo-reactor equipped with 8 Heissner GmbH UV Lamps (Model: ZF 418, 18W, Type PL-L, $230 \mathrm{~V}, 4$ pins 2G11), thus in total 144 W at $\lambda=254 \mathrm{~nm}$. The cylindrical quartz vials ( 50 mL ) were thus situated at approximatively 11 cm from the light source. In order to avoid overheating of the reaction mixtures, the quartz vials were cooled with a ventilator located on top of the photo-reactor. No filters were utilized:


## 1. Experimental Section

### 1.1 General procedure $\mathbf{A}$ for the synthesis of aryl thianthrenium salts $\mathbf{2}^{1,2}$



Under ambient atmosphere, a 50 mL round-bottom flask equipped with a magnetic stir bar was charged with simple arenes ( $2 \mathrm{mmol}, 1.0$ equiv.), thianthrene S-oxide ( 464 mg , 2 mmol, 1 equiv.) and $\mathrm{CH}_{3} \mathrm{CN}(5 \mathrm{~mL})$. After cooling to $-40{ }^{\circ} \mathrm{C}$, Trifluoroacetic anhydride ( $0.56 \mathrm{~mL}, 840 \mathrm{mg}, 4 \mathrm{mmol}, 2.0$ equiv.) was added in one portion, followed by the addition of $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}(0.6 \mathrm{~mL}, 712 \mathrm{mg}, 4.4 \mathrm{mmol}, 2.2$ equiv.) in one portion. The mixture was stirred at $-40^{\circ} \mathrm{C}$ for 1 h , then at ambient temperature for $3-12 \mathrm{~h}$. The reaction mixture was concentrated under reduced pressure, and subsequently diluted with DCM ( 14 mL ). The solution was poured onto a saturated aqueous $\mathrm{NaHCO}_{3}$ solution ( 14 mL ), and the layers were separated. The organic phase was washed with aqueous $\mathrm{NaBF}_{4}$ solution ( $2 \times 14 \mathrm{~mL}, 10 \%$ ), and with water $(2 \times 14 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with $\mathrm{DCM} / \mathrm{MeOH}$ (20:1 (v/v)) to afford $\mathbf{2 a}-\mathbf{2 t}$.
1.2 General procedure $\mathbf{B}$ for the hydroxylation of aryl sulfonium salts


Under $\mathrm{N}_{2}$ atmosphere, a 50 mL flat-bottom quartz vial equipped with a magnetic stir bar was charged with aryl thianthrenium salts $2(0.4 \mathrm{mmol}, 1.0$ equiv.), 4-Oxo-TEMPO ( $3.2 \mathrm{mmol}, 8$ equiv.) and DMF ( 3 mL ). The tube was sealed, and the mixture was stirred at room temperature under UV-light ( $254 \mathrm{~nm}, 144 \mathrm{~W}$ ) for 10 h before quenching with aqueous saturated $\mathrm{NaHCO}_{3}$ and dilution with EtOAc. The organic layer was washed with brine, dried using $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo, to give the crude product $\mathbf{3 a}-\mathbf{3 s}$, which was purified by column chromatography on silica gel.

### 1.3 Mechanistic experiments

Mechanistic experiments were carried out along general procedure $\mathbf{B}$, with the addition of an additive to the reaction mixture before the start of the reaction (1.4-dinitrobenzene, 1,1-diphenylethylene, or BHT), in 2 equivalents, as noted in the article. The reaction
work-up is otherwise identical. GCMS profile of the crude reaction mixture in the case of 1,1-diphenylethylene (product 4a):


Line\#:1 R.Time:20.065(Scan\#:3214)
MassPeaks:451
RawMode:Averaged 19.980-20.140(3197-3229) BasePeak:332.25(81908)
BG Mode:None Group 1 - Event 1 Scan


## 2. UV-vis absorption spectroscopic measurements

The UV-Vis spectroscopy was used to measure the absorption of 2a and 2a with 4-OxoTEMPO (medium scan speed on an Agilent Cary 60 UV-Vis Spectrophotometer, 1 cm , quartz cells). As shown in Figure S1, 2a exhibits the main absorption within 260-350 nm and almost no absorption can be seen shorter than 260 nm . In order to eliminate the influence of 4-Oxo-TEMPO to 2a, 8 equiv. 4-Oxo-TEMPO was added to measure the absorption which is consistent with the amount during the synthesis, and the red line reveals no obvious difference as $\mathbf{2 a}$.


Figure S1 UV absorption spectroscopy

## 3. Characterization of Products

Thianthrenium salts $\mathbf{2 a}, \mathbf{2 m}$, and $\mathbf{2 s}$ were prepared as previously described. ${ }^{3}$
3.1 Characterization of aryl thianthrenium salts

4-Methylbiphenyl derived thianthrenium salt 2b


Following the general procedure A afforded the product as a yellow solid ( $749 \mathrm{mg}, 80 \%$ yield, 2 mmol ); Chromatography column, $\mathrm{DCM} / \mathrm{MeOH}=20: 1$.
${ }^{1} \mathrm{H}$ NMR ( 600 MHz, DMSO-d ${ }_{6}$ ) $\delta 8.61$ (dd, $J=7.9,1.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 8.06 (dd, $J=7.9,1.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.93$ (td, $J=7.7,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{td}, J=7.7,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.82(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $2.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ( 565 MHz, DMSO-d ${ }_{6}$ ) $\delta-148.09(\mathrm{~s}, 1 \mathrm{~F}),-148.15(\mathrm{~s}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO-d 6 ) $\delta 144.2$ (s), 138.6 (s), 135.6 ( s$), 135.4$ (s), 134.9 (s), 134.7 ( s ), 130.3 ( s$), 129.8$ ( s ), 129.8 ( s$), 128.7$ ( s$), 128.3$ ( s$), 126.9$ ( s$), 122.9$ ( s$), 119.3$ ( s$),$ 20.7 (s). HRMS-ESI (m/z): Calculated for $\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~S}_{2}$ : $\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$383.0922; Found, 383.0920. IR: 3630, 3083, 2324, 1567, 1482, 1448, 1392, 1287, 1197, 1049, 807, 760, $703 \mathrm{~cm}^{-1}$.

4-Isopropylbiphenyl derived thianthrenium salt 2c


Following the general procedure A afforded the product as a yellow solid ( $712 \mathrm{mg}, 71 \%$ yield, 2 mmol ); Chromatography column, $\mathrm{DCM} / \mathrm{MeOH}=20: 1$.
${ }^{1} \mathrm{H}$ NMR ( 600 MHz, DMSO-d ${ }_{6}$ ) $\delta 8.62(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 2 \mathrm{H}$ ), 8.08 (dd, $J=7.9,1.2$ $\mathrm{Hz}, 2 \mathrm{H}$ ), 7.94 (td, $J=7.7,1.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.88 (td, $J=7.7,1.3 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.83 (d, $J=8.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, 2.90 (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.19 (d, $J=6.9 \mathrm{~Hz}, 6 \mathrm{H}$ ). ${ }^{19} \mathrm{~F}$ NMR ( $565 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$ ) $\delta-148.17$ (s, 1F), -148.22 (s, 3F). ${ }^{13} \mathrm{C}$ NMR ( 151 MHz , DMSO-d ${ }_{6}$ ) $\delta 149.3$ (s), 144.3 ( s ), 135.6 ( s ), 135.4 ( s$), 135.2$ ( s$), 134.8$ ( s$), 130.3$ ( s$), 129.7$ ( s$), 128.7$ ( s$), 128.3$ (s), 127.1 (s), $127.0(\mathrm{~s}), 123.0(\mathrm{~s}), 119.2(\mathrm{~s}), 33.1(\mathrm{~s}), 23.7(\mathrm{~s})$. HRMS-ESI (m/z): Calculated for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~S}_{2}$ : $\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+} 411.1234$; Found, 411.1229. IR: 3098, 2956, 2868, 2324, 1991, $1646,1567,1485,1451,1287,1092,1052,964,820,764,710,660 \mathrm{~cm}^{-1}$.

4-Chlorobiphenyl derived thianthrenium salt 2d


Following the general procedure A afforded the product as a yellow solid ( $825 \mathrm{mg}, 84 \%$ yield, 2 mmol ); Chromatography column, $\mathrm{DCM} / \mathrm{MeOH}=20: 1$.
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-d 6 ) $\delta 8.62$ (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), 8.07 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.97-7.91$ (m, 2H), 7.88 (td, $J=7.7,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.67$ (d, $J$ $=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR $(376 \mathrm{MHz}$, DMSO-d ${ }_{6}$ ) $\delta-148.14$ (s, 1F), -148.20 (s, 3F). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$ ) $\delta 142.9$ ( s ), 136.5 ( s$), 135.7$ ( s ), 135.5 ( s$), 134.9$ ( s$), 133.9$ ( s$), 130.3$ ( s$), 129.8$ ( s$), 129.2$ ( s$),$ 128.9 (s), 128.8 (s), 128.5 (s), 123.9 (s), 119.2 (s). HRMS-ESI (m/z): Calculated for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{ClS}_{2}:\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+} 403.0377$; Found, 403.0372. IR: 3082, 2925, 2323, 2157, 1814,

4-Bromobiphenyl derived thianthrenium salt $\mathbf{2 e}$


Following the general procedure A afforded the product as a white solid ( $895 \mathrm{mg}, 84 \%$ yield, 2 mmol ); Chromatography column, $\mathrm{DCM} / \mathrm{MeOH}=20: 1$.
${ }^{1} \mathrm{H}$ NMR ( 600 MHz, DMSO-d 6 ) $\delta 8.63$ (dd, $J=7.9,1.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 8.07 (dd, $J=7.9,1.1$ $\mathrm{Hz}, 2 \mathrm{H}$ ), 7.94 (td, $J=7.7,1.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.89 (td, $J=7.7,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.84$ (d, $J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 7.64(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{19}$ F NMR ( 565 MHz, DMSO-d 6 ) $\delta-148.10$ (s, 1F), -148.15 (s, 3F). ${ }^{13} \mathrm{C}$ NMR ( 151 MHz , DMSO-d ${ }^{2}$ ) $\delta 142.9$ ( s$), 136.8$ ( s , 135.6 ( s$), 135.4$ ( s ), 134.9 ( s ), 132.0 ( s$), 130.3$ ( s$)$, 129.7 (s), 129.1 ( s), 128.8 ( s ), 128.4 ( s$), 123.9$ ( s$), 122.5$ ( s$), 119.2$ ( s$) . \operatorname{HRMS}-E S I(\mathrm{~m} / \mathrm{z})$ : Calculated for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{BrS}_{2}$ : $\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$446.9871; Found, 446.9870. IR: 3632, 3555, 3085, 2683, 2322, 1997, 1630, 1588, 1567, 1474, 1449, 1384, 1288, 1266, 1049, 810, $757,702,658 \mathrm{~cm}^{-1}$.

4-Iodobiphenyl derived thianthrenium salt $\mathbf{2 f}$


Following the general procedure A afforded the product as a white solid ( $864 \mathrm{mg}, 74 \%$ yield, 2 mmol ); Chromatography column, $\mathrm{DCM} / \mathrm{MeOH}=20: 1$.
${ }^{1} \mathrm{H}$ NMR ( 600 MHz, DMSO-d ${ }_{6}$ ) $\delta 8.62(\mathrm{dd}, J=7.9,1.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), $8.08(\mathrm{dd}, J=7.9,1.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.94(\mathrm{td}, J=7.7,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{td}, J=7.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.83(\mathrm{dd}, J=8.5$, $6.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.45(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ( 565 MHz , DMSO-d ${ }_{6}$ ) $\delta-148.17$ (s, 1F), -148.23 (s, 3F). ${ }^{13} \mathrm{C}$ NMR ( 151 MHz, DMSO-d $_{6}$ ) $\delta 143.1$ (s), 137.9 (s), 137.1 (s), 135.7 (s), 135.4 (s), 134.8 (s), 130.3 (s), 129.6 (s), 129.1 (s), 128.8 (s), 128.3 (s), 123.9 (s), 119.2 (s), 95.8 (s). HRMS-ESI (m/z): Calculated for
$\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{IS}_{2}:\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+} 494.9733$; Found, 494.9728. IR: 3828, 3077, 2924, 2325, 2084, 1996, 1818, 1569, 1450, 1380, 1287, 1260, 1199, 1044, 844, 806, 751, 701, $658 \mathrm{~cm}^{-1}$.

4-Biphenylacetonitrile derived thianthrenium salt $\mathbf{2 g}$


Following the general procedure A afforded the product as a pale yellow solid ( 868 mg , $88 \%$ yield, 2 mmol); Chromatography column, $\mathrm{DCM} / \mathrm{MeOH}=10: 1$.
${ }^{1} \mathrm{H}$ NMR ( 600 MHz, DMSO-d $\mathrm{d}_{6}$ ) $\delta 8.62(\mathrm{dd}, J=7.9,0.9 \mathrm{~Hz}, 2 \mathrm{H}$ ), 8.04 (d, $J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 7.93$ (td, $J=7.7,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.88$ (td, $J=7.8,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.84$ (d, $J=8.7 \mathrm{~Hz}$, 2 H ), 7.67 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.45 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.31 (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.08$ (s, 2H). ${ }^{19}$ F NMR ( $565 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{d}}^{6}$ ) $\delta-147.95$ (s, 1F), -148.00 (s, 3F). ${ }^{13} \mathrm{C}$ NMR ( 151 MHz, DMSO-d $_{6}$ ) $\delta 143.6$ (s), 137.0 ( s , 135.6 ( s$), 135.5$ ( s$), 134.9$ (s), 132.1 (s), 130.3 ( s ), 129.8 ( s ), 129.0 ( s$), 128.7$ ( s$), 128.5$ ( s$), 127.6$ ( s$), 123.6$ ( s$), 119.1$ ( s$), 119.1$ (s), 22.2 (s). HRMS-ESI (m/z): Calculated for $\mathrm{C}_{26} \mathrm{H}_{18} \mathrm{NS}_{2}$ : $\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+} 408.0875$; Found, 408.0870. IR: 3628, 3082, 2925, 2251, 1567, 1483, 1449, 1394, 1288, 1266, 1034, 803, $758,704,658 \mathrm{~cm}^{-1}$.

3,3'-Dimethylbiphenyl derived thianthrenium salt 2h


Following the general procedure A afforded the product as a yellow solid ( $681 \mathrm{mg}, 70 \%$ yield, 2 mmol ); Chromatography column, $\mathrm{DCM} / \mathrm{MeOH}=20: 1$.
${ }^{1} \mathrm{H}$ NMR ( 600 MHz, DMSO-d 6 ) $\delta 8.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$ ), 8.12 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.94-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.86(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.85-7.82(\mathrm{~m}, 2 \mathrm{H}), 7.63(\mathrm{dd}, J=8.6$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~s}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.23$ (d, $J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ( 565 MHz , DMSO-d ${ }_{6}$ ) $\delta-148.16(\mathrm{~s}, 1 \mathrm{~F}),-148.21(\mathrm{~s}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ( 151 MHz, DMSO-d ${ }_{6}$ ) $\delta 145.3$ (s), 140.2 (s), 138.4 (s), 137.5 (s), 136.2 (s), 134.9 (s), 134.6 (s), 131.7 (s), 130.7 (s), 129.8 ( s ), 129.8 ( s), 129.6 ( s$), 129.0$ ( s$), 127.7$ (s), 125.7 ( s$), 124.2$ ( s$), 120.9$ (s), 118.4
(s), 21.0 (s), $20.2(\mathrm{~s})$. $\mathrm{HRMS}-\mathrm{ESI}(\mathrm{m} / \mathrm{z})$ : Calculated for $\mathrm{C}_{26} \mathrm{H}_{21} \mathrm{~S}_{2}:\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$397.1079; Found, 397.1075. IR: 3632, 3081, 2919, 2333, 1592, 1564, 1447, 1384, 1271, 1050, 881, 760, $698 \mathrm{~cm}^{-1}$.

2-Fluorobiphenyl derived thianthrenium salt $\mathbf{2 i}$


Following the general procedure A afforded the product as a white solid ( $779 \mathrm{mg}, 82 \%$ yield, 2 mmol ); Chromatography column, $\mathrm{DCM} / \mathrm{MeOH}=20: 1$.
${ }^{1} \mathrm{H}$ NMR ( 600 MHz, DMSO-d ${ }_{6}$ ) $\delta 8.64(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), 8.08 (d, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.95(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{t}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.46$ (dd, $J=13.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.33$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.27$ (m, $2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ( 565 MHz, DMSO-d ) $\delta-118.04$ (s, 1F), -148.12 (s, 1F), -148.18 (s, 3F). ${ }^{13} \mathrm{C}$ NMR ( 151 MHz, DMSO-d 6 ) $\delta 159.0(\mathrm{~d}, J=247.2 \mathrm{~Hz}$ ), 139.3 ( s ), 135.7 ( s$), 135.5$ (s), 134.1 (s), $131.0(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 130.8(\mathrm{~d}, J=2.0 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 130.4$ (s), 129.7 (s), 128.4 (s), $126.0(\mathrm{~d}, J=13.0 \mathrm{~Hz}$ ), 125.2 (d, $J=3.3 \mathrm{~Hz}$ ), 124.2 (s), 119.1 (s), 116.4 (s), 116.2 (s). HRMS-ESI ( $\mathrm{m} / \mathrm{z}$ ): Calculated for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{FS}_{2}:\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$ 387.0672; Found, 387.0667. IR: 3091, 2700, 2326, 2081, 1614, 1570, 1474, 1450, 1392, $1288,1260,1214,1043,823,755,703,659 \mathrm{~cm}^{-1}$.

3-Bromo-4'-chloro-1,1'-biphenyl derived thianthrenium salt $\mathbf{2 j}$


Following the general procedure A afforded the product as a yellow solid ( $465 \mathrm{mg}, 41 \%$ yield, 2 mmol ); Chromatography column, $\mathrm{DCM} / \mathrm{MeOH}=20: 1$.
${ }^{1} \mathrm{H}$ NMR ( 600 MHz, DMSO-d 6 ) $\delta 8.60(\mathrm{dd}, J=8.1,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.25(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 8.12$ (dd, $J=8.0,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.93$ (td, $J=7.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.88-7.83(\mathrm{~m}, 2 \mathrm{H})$, 7.80 (dd, $J=8.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.07$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ( $565 \mathrm{MHz}, \mathrm{DMSO}_{6}$ ) $\delta-148.16(\mathrm{~s}, 1 \mathrm{~F}),-148.21(\mathrm{~s}, 3 \mathrm{~F})$. ${ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO-d6) $\delta 145.2$ (s), 136.8 (s), 136.5 (s), 135.1 (s), 134.8 (s),
134.5 ( s ), 133.5 ( s$), 131.8$ ( s ), 130.7 ( s$), 129.5$ ( s$), 129.2$ ( s$), 129.1$ ( s$), 126.7$ ( s$), 124.0$ (s), 121.9 (s), 117.8 (s). HRMS-ESI (m/z): Calculated for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{BrClS}_{2}$ : $\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$ 480.9482; Found, 480.9476. IR: 3632, 3084, 2329, 1726, 1620, 1576, 1448, 1370, 1287, $1259,1170,1048,815,758,701,658 \mathrm{~cm}^{-1}$.

Bifonazole derived thianthrenium salt $\mathbf{2 k}$


Under ambient atmosphere, a 50 mL round-bottom flask equipped with a magnetic stir bar was charged with bifonazole ( $2 \mathrm{mmol}, 1.0$ equiv.), thianthrene S-oxide ( 450 mg , $1.94 \mathrm{mmol}, 0.97$ equiv.), thianthrene ( $14 \mathrm{mg}, 0.06 \mathrm{mmol}, 0.03$ equiv.) and $\mathrm{CH}_{3} \mathrm{CN}(5$ mL ). After cooling to $-40^{\circ} \mathrm{C}$, Trifluoroacetic anhydride ( $0.56 \mathrm{~mL}, 840 \mathrm{mg}, 4 \mathrm{mmol}, 2.0$ equiv.) was added in one portion, followed by the addition of $\mathrm{HBF}_{4} \cdot \mathrm{OEt}_{2}(0.6 \mathrm{~mL}, 712$ $\mathrm{mg}, 4.4 \mathrm{mmol}, 2.2$ equiv.) in one portion. The mixture was stirred at $-40^{\circ} \mathrm{C}$ for 1 h , then at ambient temperature for 6 h . The reaction mixture was concentrated under reduced pressure, and subsequently diluted with DCM $(14 \mathrm{~mL})$. The solution was poured onto a saturated aqueous $\mathrm{NaHCO}_{3}$ solution ( 14 mL ), and the layers were separated. The organic phase was washed with aqueous $\mathrm{NaBF}_{4}$ solution ( $2 \times 14 \mathrm{~mL}, 10 \%$ ), and with water $(2 \times 14 \mathrm{~mL})$. The organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with $\mathrm{DCM} / \mathrm{MeOH}(10: 1(\mathrm{v} / \mathrm{v})$ ) to afford $\mathbf{2 k}$ as a yellow solid ( $887 \mathrm{mg}, 72 \%$ yield, 2 mmol ).
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-d ${ }_{6}$ ) $\delta 8.62(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.08(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.98-7.82(\mathrm{~m}, 6 \mathrm{H}), 7.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.33(\mathrm{~m}$, $3 \mathrm{H}), 7.30(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.02$ $(\mathrm{s}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ( 376 MHz, DMSO-d $_{6}$ ) $\delta$-148.20 ( $\mathrm{s}, 1 \mathrm{~F}$ ), $-148.26(\mathrm{~s}, 3 \mathrm{~F})$. ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d 6 ) $\delta 143.5$ (s), 140.5 (s), 139.5 (s), 137.3 (s), 135.7 (s), 135.4 ( s), 134.8 ( s$), 130.3$ ( s ), 129.7 ( s$), 128.8$ ( s$), 128.7$ ( s$), 128.6$ ( s$), 128.1$ ( s$), 127.9$ (s), 127.5 (s), 123.7 (s), 119.2 (s), 63.1 (s). HRMS-ESI ( $\mathrm{m} / \mathrm{z}$ ): Calculated for $\mathrm{C}_{34} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{~S}_{2}:\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+} 525.1454$; Found, 525.1446. IR: 3746, 3394, 3086, 2165, 1831, $1605,1572,1447,1379,1320,1252,1172,1055,959,870,845,763 \mathrm{~cm}^{-1}$.

Flurbiprofen derived thianthrenium salt 21


Following the general procedure A afforded the product as a white solid ( $878 \mathrm{mg}, 78 \%$
yield, 2 mmol ); Chromatography column, $\mathrm{DCM} / \mathrm{MeOH}=10: 1$.
${ }^{1} \mathrm{H}$ NMR ( $\left.400 \mathrm{MHz}, ~ D M S O-\mathrm{d}_{6}\right) \delta 8.62(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.09(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{t}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{dd}, J=14.0,10.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.90(\mathrm{q}, J=7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ ) $\delta-$ $117.85(\mathrm{~s}, 1 \mathrm{~F}),-148.24(\mathrm{~s}, 1 \mathrm{~F}),-148.30(\mathrm{~s}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$ ) $\delta 173.6$ (s), $158.8(\mathrm{~d}, J=247.7 \mathrm{~Hz}), 144.0(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 139.0(\mathrm{~s}), 135.7(\mathrm{~s}), 135.5(\mathrm{~s}), 134.9$ ( s$), 130.9(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 130.6(\mathrm{~d}, J=2.6 \mathrm{~Hz}), 130.3(\mathrm{~s}), 129.7(\mathrm{~s}), 128.4(\mathrm{~s}), 124.6(\mathrm{~d}$, $J=12.9 \mathrm{~Hz}), 124.3(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 124.1(\mathrm{~s}), 119.1(\mathrm{~s}), 115.5(\mathrm{~s}), 115.3(\mathrm{~s}), 52.0(\mathrm{~s})$, 43.8 (s), 18.3 (s). HRMS-ESI (m/z): Calculated for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{FO}_{2} \mathrm{~S}_{2}$ : $\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+} 473.1040$; Found, 473.1030. IR: 3088, 2945, 2322, 1821, 1734, 1619, 1568, 1431, 1392, 1283, $1196,1128,1095,1050,919,835,764,703,658 \mathrm{~cm}^{-1}$.

Dibenzothiophene derived thianthrenium salt $\mathbf{2 n}$


Following the general procedure A afforded the product as a white solid ( $650 \mathrm{mg}, 67 \%$ yield, 2 mmol ); Chromatography column, $\mathrm{DCM} / \mathrm{MeOH}=20: 1$.
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{DMSO}_{6}$ ) $\delta 9.14(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $8.48-8.42(\mathrm{~m}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.20(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.16-8.09(\mathrm{~m}$, $1 \mathrm{H}), 7.98(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.70-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.14(\mathrm{dd}, J$ $=8.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (565 MHz, DMSO-d 6 ) $\delta-148.21(\mathrm{~s}, 1 \mathrm{~F}),-148.26(\mathrm{~s}, 3 \mathrm{~F})$. ${ }^{13} \mathrm{C}$ NMR (151 MHz, DMSO-d ${ }_{6}$ ) $\delta 144.6$ (s), 139.5 (s), 139.2 (s), 136.2 (s), 133.9 (s), 133.4 ( s ), 131.3 ( s$), 128.6$ ( s$), 128.2$ ( s), 126.2 ( s$), 126.1$ (s), 125.6 (s), 124.9 (s), 124.6 ( s ), $124.2(\mathrm{~s}), 123.5(\mathrm{~s}), 122.6(\mathrm{~s})$. HRMS-ESI (m/z): Calculated for $\mathrm{C}_{24} \mathrm{H}_{15} \mathrm{~S}_{3}$ : [M $\left.\mathrm{BF}_{4}\right]^{+} 399.0330$; Found, 399.0326. IR: 3087, 2322, $2157,1986,1904,1568,1430,1289$, $1230,1048,911,874,808,759,727 \mathrm{~cm}^{-1}$.

Carbazole derived thianthrenium salt 20


Following the general procedure A afforded the product as a white solid ( $572 \mathrm{mg}, 61 \%$ yield, 2 mmol ); Chromatography column, $\mathrm{DCM} / \mathrm{MeOH}=10: 1$.
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$ ) $\delta 11.97(\mathrm{~s}, 1 \mathrm{H}), 8.44(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.37(\mathrm{~d}, J=$ $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{td}, J=7.8,1.1 \mathrm{~Hz}$,

2H), 7.83 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=8.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ( 565 MHz, DMSO-d 6 ) $\delta-148.15$ (s, 1F), -148.21 (s, 3F). ${ }^{13} \mathrm{C}$ NMR ( 151 MHz , DMSO-d $\mathrm{d}_{6}$ ) $\delta$ 141.8 ( s ), 140.5 ( s$), 134.6$ ( s ), 134.3 ( s$), 134.1$ ( s$), 130.2$ ( s$), 129.8$ ( s$), 127.5$ ( s$), 125.4$ ( s ), 123.6 ( s$), 122.6$ ( s$), 121.2$ ( s$), 121.1$ ( s$), 120.9$ ( s$), 120.1$ (s), 113.4 (s), 111.9 (s), 111.8 (s). HRMS-ESI (m/z): Calculated for $\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{NS}_{2}$ : $\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+} 382.0719$; Found, 382.0713. IR: $3356,3085,2164,1603,1570,1496,1329,1286,1251,1069,1005,961$, $808,761,709,658 \mathrm{~cm}^{-1}$.

9-Methylcarbazole derived thianthrenium salt 2p


Following the general procedure A afforded the product as a pale green solid ( 653 mg , $67 \%$ yield, 2 mmol ); Chromatography column, $\mathrm{DCM} / \mathrm{MeOH}=10: 1$.
${ }^{1} \mathrm{H}$ NMR ( 600 MHz, DMSO-d 6 ) $\delta 8.45(\mathrm{dd}, J=8.0,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.36(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 8.15(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{dd}, J=7.9,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{td}, J=7.8,1.3 \mathrm{~Hz}$, 2H), $7.86-7.79$ (m, 3H), 7.67 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.57 (t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.46 (dd, $J$ $=8.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ( 565 MHz , DMSO$\mathrm{d}_{6}$ ) $\delta-148.14(\mathrm{~s}, 1 \mathrm{~F}),-148.19(\mathrm{~s}, 3 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ( 151 MHz, DMSO-d ${ }_{6}$ ) $\delta 142.4$ (s), 141.4 (s), 134.6 ( s ), 134.3 ( s$), 134.1$ ( s$), 130.2$ ( s$), 129.8$ ( s$), 127.6$ ( s$), 125.5$ (s), 123.1 ( s$)$, 122.4 (s), 121.1 (s), 120.9 (s), 120.7 (s), 120.4 (s), 112.0 (s), 111.7 (s), 110.1 (s), 29.4 (s). HRMS-ESI (m/z): Calculated for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{NS}_{2}$ : $\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$396.0875; Found, 396.0870. IR: $3635,3078,2329,2014,1737,1585,1502,1458,1429,1323,1288,1254$, $1155,1049,911,888,751,700,657 \mathrm{~cm}^{-1}$.

9-Phenylcarbazole derived thianthrenium salt $\mathbf{2 q}$


Following the general procedure A afforded the product as a pale green solid ( 795 mg , $82 \%$ yield, 2 mmol ); Chromatography column, $\mathrm{DCM} / \mathrm{MeOH}=10: 1$.
${ }^{1} \mathrm{H}$ NMR ( 600 MHz, DMSO-d 6 ) $\delta 8.52(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.47(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $8.21(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.01(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.89(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.43-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.39$ (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36$ (dd, $J=9.0,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{t}, J$ $=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ( 565 MHz , DMSO-d 6 ) $\delta-147.89(\mathrm{~s}$,

1F), -147.94 (s, 3F). ${ }^{13} \mathrm{C}$ NMR ( 151 MHz, DMSO-d $_{6}$ ) $\delta 142.0(\mathrm{~s}), 141.0(\mathrm{~s}), 135.4$ (s), 134.8 ( s ), 134.5 ( s$), 134.4$ ( s ), 130.3 ( s$), 130.2$ ( s$), 129.9$ ( s$), 128.6$ ( s$), 128.0$ ( s$), 126.7$ ( s ), 125.8 ( s$), 124.0(\mathrm{~s}), 122.5(\mathrm{~s}), 121.4$ ( s$), 121.3$ ( s$), 120.4$ ( s$), 113.9$ (s), 111.9 ( s$)$, 110.2 (s). HRMS-ESI (m/z): Calculated for $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{NS}_{2}$ : $\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+} 458.1032$; Found, 458.1022. IR: 3948, 3628, 3069, 2806, 2167, 1833, 1590, 1499, 1449, 1284, 1237, 1172, 1048, 801, 754, 698, $661 \mathrm{~cm}^{-1}$.

2-Methoxycarbazole derived thianthrenium salt $\mathbf{2 r}$


Following the general procedure A afforded the product as a yellow solid ( $437 \mathrm{mg}, 44 \%$ yield, 2 mmol ); Chromatography column, $\mathrm{DCM} / \mathrm{MeOH}=10: 1$.
${ }^{1} \mathrm{H}$ NMR ( 600 MHz, DMSO- $\mathrm{d}_{6}$ ) $\delta 11.82(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.06(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.80(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.60(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $4.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ( $565 \mathrm{MHz}, \mathrm{DMSO}_{6}$ ) $\delta-148.18$ ( $\mathrm{s}, 1 \mathrm{~F}$ ), -148.24 (s, 3F). ${ }^{13} \mathrm{C}$ NMR ( 151 MHz, DMSO-d $_{6}$ ) $\delta 156.1$ (s), 144.2 (s), 140.2 (s), 135.6 (s), 134.1 (s), 134.1 (s), 130.3 (s), 129.5 (s), 126.2 (s), 122.6 (s), 121.5 ( s$), 120.1$ (s), 120.1 ( s ), 119.2 ( s ), 116.9 ( s ), 111.5 ( s$), 98.9$ ( s$), 95.9$ ( s$), 57.1$ ( s$)$. HRMS-ESI ( $\mathrm{m} / \mathrm{z}$ ): Calculated for $\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{ONS}_{2}$ : $\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$412.0824; Found, 412.0812. IR: 3746, 3394, 3086, 2165, 1831, 1605, 1572, 1447, 1379, 1320, 1252, 1172, 1055, 959, 870, 845, 763 $\mathrm{cm}^{-1}$.

9-Fluorenone derived thianthrenium salt $\mathbf{2 t}$


Following the general procedure A afforded the product as a yellow solid ( $795 \mathrm{mg}, 82 \%$ yield, 2 mmol ); Chromatography column, $\mathrm{DCM} / \mathrm{MeOH}=10: 1$.
${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO-d ${ }_{6}$ ) $\delta 8.64(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 8.10(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H})$, $8.00-7.83(\mathrm{~m}, 6 \mathrm{H}), 7.66(\mathrm{dd}, J=13.0,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{dd}$, $J=8.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~s}, 1 \mathrm{H}) .{ }^{19}$ F NMR ( 376 MHz , DMSO-d 6 ) $\delta-148.23(\mathrm{~s}, 1 \mathrm{~F}),-$ 148.29 (s, 3F). ${ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO-d ${ }_{6}$ ) $\delta 190.7$ (s), 147.3 (s), 142.0 (s), 136.0
 125.8 ( s ), 124.6 ( s ), 123.1 ( s ), 122.7 ( s$), 122.5$ ( s$), 119.4$ ( s$)$. HRMS-ESI ( $\mathrm{m} / \mathrm{z}$ ): Calculated for $\mathrm{C}_{25} \mathrm{H}_{15} \mathrm{OS}_{2}$ : $\left[\mathrm{M}-\mathrm{BF}_{4}\right]^{+}$395.0559; Found, 395.0554. IR: 3585, 3094, 2925, 2322, 1873, 1718, 1600, 1567, 1446, 1287, 1267, 1190, 1156, 1025, 961, 938,

### 3.2 Characterization for hydroxylation of simple arenes

4-Phenylphenol 3a


Following the general procedure B afforded the product as a pale yellow solid ( 56 mg , $82 \%$ yield); Chromatography column, pentane $/ \mathrm{EA}=5: 1$.
Scale-up experiment: 4 mmol scale: Under $\mathrm{N}_{2}$ atmosphere, a 50 mL flat-bottom quartz vial equipped with a magnetic stir bar was charged with aryl thianthrenium salts 2a (4 mmol, 1.0 equiv.), 4-Oxo-TEMPO ( $32 \mathrm{mmol}, 8$ equiv.) and DMF ( 10 mL ). The tube was sealed, and the mixture was stirred at room temperature under UV-light ( 254 nm , 144 W ) for 24 h before quenching with aqueous saturated $\mathrm{NaHCO}_{3}$ and dilution with EtOAc. The organic layer was washed with brine, dried using $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo, to give the crude product $\mathbf{4 a}$, which was purified by column chromatography on silica gel. pentane / $\mathrm{EA}=5: 1$. ( $446 \mathrm{mg}, 66 \%$ yield)
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.42$ $(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 155.2$ (s), 140.9 ( s ), 134.2 ( s$), 128.9$ (s), 128.5 ( s$), 126.9$ (s), $126.8(\mathrm{~s}), 115.8(\mathrm{~s})$. The characterization of this compound is in accordance with the literature. ${ }^{4}$

4'-methyl-[1,1'-biphenyl]-4-ol 3b


Following the general procedure B afforded the product as a yellow solid ( $73 \mathrm{mg}, 82 \%$ yield); Chromatography column, pentane $/ \mathrm{EA}=4: 1$.
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.47(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.24$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 151 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 155.0(\mathrm{~s}), 138.0(\mathrm{~s}), 136.5(\mathrm{~s}), 134.1(\mathrm{~s}), 129.6(\mathrm{~s}), 128.3$ (s), 126.7 ( s ), 115.7 (s), 21.2 (s). The characterization of this compound is in accordance with the literature. ${ }^{5}$

4'-isopropyl-[1,1'-biphenyl]-4-ol 3c


Following the general procedure B afforded the product as a yellow solid ( $60 \mathrm{mg}, 71 \%$ yield); Chromatography column, pentane / $\mathrm{EA}=4: 1$.
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.48(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}$ ), 7.47 (d, $J=4.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29$ (d, $J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.92(\mathrm{~s}, 1 \mathrm{H}), 2.95$ (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $1.30(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 155.0$ (s), 147.6 (s), 138.4 (s), 134.2 (s), 128.4 (s), 126.9 (s), 126.8 (s), 115.7 (s), 33.9 (s), 24.2 (s). HRMS-APCI (m/z): Calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}$ : [M] 212.1196; Found, 212.1202. IR: 3376, 2962, 2872, 1716, $1609,1497,1447,1367,1226,1173,1108,1024,819,921,753,720,685 \mathrm{~cm}^{-1}$.

4'-chloro-[1, 1'-biphenyl]-4-ol 3d


Following the general procedure B afforded the product as a yellow solid ( $51 \mathrm{mg}, 62 \%$ yield); Chromatography column, pentane / $\mathrm{EA}=4: 1$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.46(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.38(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.92$ (s, 2H). ${ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 155.3$ (s), 139.3 (s), 132.8 (s), 132.8 (s), 128.9 (s), 128.4 (s), $128.0(\mathrm{~s}), 116.2$ (s). The characterization of this compound is in accordance with the literature. ${ }^{6}$

4'-bromo-[1,1'-biphenyl]-4-ol 3e


Following the general procedure B afforded the product as a yellow solid ( $58 \mathrm{mg}, 58 \%$ yield); Chromatography column, pentane / EA = 5:1.
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.53(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.40$ (d, $\left.J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(151} \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 155.5$ (s), 139.8 (s), 132.9 ( s$), 131.9$ (s), 128.4 (s), 128.4 ( s$), 121.0$ (s), 115.9 ( s$)$. The characterization of this compound is in accordance with the literature. ${ }^{7}$

4'-iodo-[1,1'-biphenyl]-4-ol 3f


Following the general procedure B afforded the product as a white solid ( $28 \mathrm{mg}, 24 \%$ yield); Chromatography column, pentane / $\mathrm{EA}=4: 1$.
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.73(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.90(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.88(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 137.8$ (s), 128.6 (s), 128.2 (s), $115.8(\mathrm{~s})$. The characterization of this compound is in accordance with the literature. ${ }^{8}$
2-(4'-hydroxy-[1,1'-biphenyl]-4-yl) acetonitrile 3g


Following the general procedure B afforded the product as a pale yellow solid ( 54 mg , $64 \%$ yield); Chromatography column, pentane $/ \mathrm{EA}=2: 1$.
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 7.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.37$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), $6.86(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 158.4$ (s), 142.1 (s), 132.9 (s), 130.2 (s), 129.4 ( s$), 129.0(\mathrm{~s}), 128.0(\mathrm{~s}), 119.7$ ( s$), 116.7$ (s), 23.1 (s). The characterization of this compound is in accordance with the literature. ${ }^{9}$

3,3'-dimethyl-[1,1'-biphenyl]-4-ol 3h


Following the general procedure B afforded the product as a pale yellow solid ( 41 mg , $52 \%$ yield); Chromatography column, pentane / $\mathrm{EA}=5: 1$.
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.38(\mathrm{~s}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}$ ), 7.14 (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.85$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H})$, $2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 153.4$ (s), 141.1 ( s$), 134.2$ (s), 123.0 (s), 128.7 (s), 127.7 (s), 127.5 (s), 125.9 (s), 124.1 ( s), 124.0 ( s$), 115.3$ (s), 21.7 (s), 16.0 (s). HRMS-APCI (m/z): Calculated for C14H15O: [M + H ] ${ }^{+}$199.1039; Found, 199.1112. IR: 3891, 3410, 3027, 2921, 2859, 2335, 1873, 1606, 1509, 1480, 1387, 1305, 1239, 1183, $1116,881,820,738,698 \mathrm{~cm}^{-1}$.

2'-fluoro-[1,1'-biphenyl]-4-ol 3i


Following the general procedure B afforded the product as a yellow solid ( $55 \mathrm{mg}, 73 \%$ yield); Chromatography column, pentane $/ \mathrm{EA}=5: 1$.
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.45(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.28$ $(\mathrm{d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, 2H), $4.95(\mathrm{~s}, 1 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ( $565 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-118.25(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ( 151 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 159.9(\mathrm{~d}, J=247.0 \mathrm{~Hz}), 155.3(\mathrm{~s}), 130.6(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 130.5(\mathrm{~d}, J=3.2 \mathrm{~Hz})$, 128.8 (d, $J=13.3 \mathrm{~Hz}$ ), 128.6 (d, $J=8.5 \mathrm{~Hz}$ ), 124.4 ( $\mathrm{d}, J=3.6 \mathrm{~Hz}$ ), 116.19 (d, $J=22.6$ $\mathrm{Hz}), 115.5$ ( s ). (At least one line overlapped). HRMS-APCI (m/z): Calculated for C12H9OF: [M] 188.0632; Found, 188.0634. IR: 3425, 2925, 1709, 1606, 1517, 1478, $1448,1363,1228,1102,1035,1007,942,820,753 \mathrm{~cm}^{-1}$.

3-bromo-4'-chloro-[1,1'-biphenyl]-4-ol 3j


Following the general procedure B afforded the product as a yellow solid ( $58 \mathrm{mg}, 51 \%$ yield); Chromatography column, pentane / $\mathrm{EA}=4: 1$.
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.66(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41$ (dd, $J=8.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.09$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.56$ (s, $1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 152.1$ (s), 138.0 (s), 134.3 (s), 133.5 (s), 130.5 (s), 129.1 (s), 128.1 (s), 127.9 (s), 116.6 (s), 110.9 (s). HRMS-APCI (m/z): Calculated for C12H8OBrCl: [M]283.9419; Found, 283.9413. IR: 3394, 3060, 2974, 1898, 1703, 1600, 1477, 1384, 1282, 1183, 1093, 1012, 956, 884, 815, 751, $680 \mathrm{~cm}^{-1}$.

4'-((1H-imidazol-1-yl) (phenyl)methyl)-[1,1'-biphenyl]-4-ol 3k


Following the general procedure B afforded the product as a white solid ( $81 \mathrm{mg}, 62 \%$ yield); Chromatography column, $\mathrm{DCM} / \mathrm{EA}=1: 1$.
${ }^{1} \mathrm{H}$ NMR ( 600 MHz, DMSO-d 6 ) $\delta 9.59(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.49(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 4 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H}), 6.88(\mathrm{~s}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 151 MHz, DMSO-d 6 ) $\delta 157.3$ (s), 140.0 (s), 139.8 (s), 137.9 (s), 137.2 (s), 130.2 (s),
128.7 ( s ), 128.7 ( s$), 128.3$ ( s$), 128.0$ ( s$), 127.8$ (s), 127.8 ( s$), 126.2$ ( s$), 119.2$ (s), 115.8 (s), 63.1 (s). HRMS-ESI (m/z): Calculated for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{ON} 2:[\mathrm{M}+\mathrm{H}]^{+} 327.1492$; Found, 327.1491. IR: 3116, 3029, 2934, 2815, 2676, 2606, 2159, 1661, 1605, 1495, 1452, 1387, $1269,1231,1173,1107,1078,1025,921,826,795,736,702,660 \mathrm{~cm}^{-1}$.

Methyl 2-(2-fluoro-4'-hydroxy-[1,1'-biphenyl]-4-yl) propanoate 31


Following the general procedure B afforded the product as a white solid ( $61 \mathrm{mg}, 56 \%$ yield); Chromatography column, pentane $/ \mathrm{EA}=4: 1$.
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.40(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.11$ ( $\mathrm{t}, J=10.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, $1.54(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR ( $565 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-117.67(\mathrm{~s}, 1 \mathrm{~F}) .{ }^{13} \mathrm{C}$ NMR ( 151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.1$ (s), 159.7 (d, $J=247.9 \mathrm{~Hz}$ ), 155.6 ( s$), 141.1$ (d, $J=7.7 \mathrm{~Hz}$ ), 130.6 (d, $J=3.7 \mathrm{~Hz}$ ), 130.3 (d, $J=3.2 \mathrm{~Hz}$ ), 127.9 ( s$), 127.6$ (d, $J=13.7 \mathrm{~Hz}$ ), 123.6 (d, $J=2.6 \mathrm{~Hz}$ ), 115.6 (s), 115.3 (d, $J=23.9 \mathrm{~Hz}$ ), 52.5 ( s$), 45.0(\mathrm{~s}), 18.4$ (s). HRMS-APCI ( $\mathrm{m} / \mathrm{z}$ ): Calculated for $\mathrm{C}_{16} \mathrm{H}_{16 \mathrm{OF}:}[\mathrm{M}+\mathrm{H}]^{+}$275.1078; Found, 275.1076. IR: 3756, 3366, 2963, 1706, 1611, 1525, 1493, 1433, 1334, 1274, 1210, 1170, 1073, 1009, 968, 918, $871,825,786,715 \mathrm{~cm}^{-1}$.
dibenzo[b,d]furan-2-ol 3m


Following the general procedure B afforded the product as a white solid ( $53 \mathrm{mg}, 72 \%$ yield); Chromatography column, pure DCM.
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.88(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44$ (dd, $J=15.5,8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=10.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 157.1$ (s), 151.6 ( s$), 151.1(\mathrm{~s}), 127.4$ (s), 125.2 ( s ), 124.3 ( s ), 122.6 ( s$), 120.8$ ( s$), 115.4$ (s), 112.2 ( s$), 111.9$ (s), 106.4 (s). The characterization of this compound is in accordance with the literature. ${ }^{10}$
dibenzo[b, d]thiophen-2-ol 3n


Following the general procedure B afforded the product as a white solid ( $51 \mathrm{mg}, 64 \%$ yield); Chromatography column, pentane / $\mathrm{EA}=4: 1$.
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 8.05(\mathrm{dd}, J=6.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{dd}, J=6.8,1.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.69(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.48-7.37$ (m, 2H), 7.02 (dd, $J=8.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 153.5(\mathrm{~s}), 140.8(\mathrm{~s})$,
137.0 ( s ), 135.3 (s), 131.6 (s), 127.0 ( s$), 124.3$ (s), 123.7 (s), 123.1 ( s$), 121.8$ (s), 116.1 (s), 107.7 (s). HRMS-APCI (m/z): Calculated for $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{OS}$ : [M] 200.0290; Found, 200.0285. IR: 3797, 3485, 3388, 3282, 2923, 2854, 1708, 1602, 1466, 1427, 1330, 1183, 1068, 1020, 892, 850, 807, 756, 725, $658 \mathrm{~cm}^{-1}$.

## 9H-carbazol-3-ol 3o



Following the general procedure B afforded the product as a white solid ( $48 \mathrm{mg}, 66 \%$ yield); Chromatography column, pentane / $\mathrm{EA}=2: 1$.
${ }^{1} \mathrm{H}$ NMR ( 600 MHz, DMSO-d 6 ) $\delta 10.86(\mathrm{~s}, 1 \mathrm{H}), 8.89(\mathrm{~s}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.41 (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=8.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.06(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J=8.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(151 \mathrm{MHz}$, DMSO-d ${ }_{6}$ ) $\delta 150.4$ ( s ), 140.4 ( s ), 133.7 ( s ), 125.2 ( s ), 123.0 ( s ), 122.3 ( s$), 120.1$ ( s$)$, 117.7 (s), 115.0 (s), 111.3 (s), 110.8 (s), 104.8 (s). The characterization of this compound is in accordance with the literature. ${ }^{11}$

9-methyl-9H-carbazol-3-ol 3p


Following the general procedure B afforded the product as a yellow solid ( $47 \mathrm{mg}, 60 \%$ yield); Chromatography column, pentane / $\mathrm{EA}=2: 1$.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H})$, $3.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 148.0(\mathrm{~s}), 141.0(\mathrm{~s}), 135.7(\mathrm{~s}), 125.2(\mathrm{~s})$, 122.9 (s), 121.8 (s), 119.8 (s), 117.7 (s), 115.4 (s), 108.6 (s), 107.9 (s), 106.8 (s), 28.6 (s). The characterization of this compound is in accordance with the literature. ${ }^{12}$

9-phenyl-9H-carbazol-3-ol 3q


Following the general procedure B afforded the product as a yellow solid ( $61 \mathrm{mg}, 59 \%$ yield); Chromatography column, pentane $/ \mathrm{EA}=2: 1$.
${ }^{1} \mathrm{H}$ NMR ( 600 MHz, DMSO-d ${ }_{6}$ ) $\delta 9.17$ ( $\mathrm{s}, 1 \mathrm{H}$ ), $8.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~s}, 1 \mathrm{H}), 7.49(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.31(\mathrm{~m}$, $2 \mathrm{H}), 7.21$ (dd, $J=12.7,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=20.5 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 151 MHz , DMSO-d ${ }_{6}$ ) $\delta 151.6$ (s), 140.4 ( s , 137.3 (s), 134.1 ( s$), 130.1$ (s), 127.1 (s), 126.3 (s),
126.0 ( s ), 123.5 (s), 122.6 (s), 120.5 ( s$), 119.4$ (s), 115.4 (s), 110.1 (s), 109.4 (s), 105.2 (s). HRMS-APCI (m/z): Calculated for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{ON}:[\mathrm{M}+\mathrm{H}]^{+}$260.1070; Found, 260.1073. IR: 3315, 2934, 2862, 1627, 1593, 1485, 1450, 1361, 1313, 1234, 1190, 1106, 1024, 931, 875, 803, 744, $696 \mathrm{~cm}^{-1}$.

2-methoxy-9H-carbazol-3-ol 3r


Following the general procedure B afforded the product as a yellow solid ( $29 \mathrm{mg}, 34 \%$ yield); Chromatography column, pentane / $\mathrm{EA}=2: 1$.
${ }^{1} \mathrm{H}$ NMR ( 600 MHz, DMSO- $\mathrm{d}_{6}$ ) $\delta 10.80(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~s}, 1 \mathrm{H}), 7.87(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.42(\mathrm{~s}, 1 \mathrm{H}), 7.37(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.97(\mathrm{~s}, 1 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 151 MHz , DMSO-d ${ }_{6}$ ) $\delta 148.1(\mathrm{~s}), 140.7$ (s), 139.6 ( s ), 134.0 ( s$), 123.5$ ( s ), 122.7 ( s$), 119.1$ ( s$), 117.8$ ( s$), 114.8$ ( s$), 110.5$ (s), 105.5 ( s$)$, 94.4 (s), 55.7 (s). HRMS-APCI (m/z): Calculated for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{~N}:[\mathrm{M}+\mathrm{H}]^{+} 214.0863$; Found, 214.0870. IR: 3530, 3391, 2923, 2853, 1715, 1613, 1489, 1453, 1342, 1307, $1178,1147,1025,921,862,820,743,692 \mathrm{~cm}^{-1}$.

4-Phenoxyphenol 3s


Following the general procedure B afforded the product as a brown solid ( $32 \mathrm{mg}, 43 \%$ yield); Chromatography column, pentane / $\mathrm{EA}=4: 1$.
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.30(\mathrm{dd}, J=8.5,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.95(\mathrm{t}, J=8.9 \mathrm{~Hz}, 4 \mathrm{H}), 6.82(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( 151 MHz , $\mathrm{CDCl}_{3}$ ) $\delta 158.4$ (s), 151.5 (s), 150.2 (s), 129.6 (s), 122.4 (s), 121.0 (s), 117.5 (s), 117.0 (s). The characterization of this compound is in accordance with the literature. ${ }^{13}$

2,2,6,6-tetramethyl-1-((9-oxo-9H-fluoren-2-yl) oxy) piperidin-4-one 3t


Following the general procedure B afforded the product as a yellow solid ( $52 \mathrm{mg}, 37 \%$ yield); Chromatography column, pentane / $\mathrm{EA}=4: 1$.
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.69(\mathrm{~s}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{td}, J=7.3$, $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.22(\mathrm{td}, J$ $=7.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.31(\mathrm{~s}, 6 \mathrm{H})$, 1.23 (s, 6H). ${ }^{13} \mathrm{C}$ NMR ( $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 207.1$ (s), 194.1 ( s ), 164.3 (s), 145.0 ( s ),
137.4 (s), 135.8 (s), 135.0 (s), 134.5 (s), 128.0 (s), 124.4 (s), 121.1 (s), 119.6 (s), 119.3 (s), 110.7 (s), $63.9(\mathrm{~s}), 53.3(\mathrm{~s}), 31.9(\mathrm{~s}), 23.1$ (s). HRMS-ESI (m/z): Calculated for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{NNa}:[\mathrm{M}+\mathrm{Na}]^{+} 372.1570$; Found, 372.1569. IR: 3417, 3067, 2975, 2927, $2319,1713,1600,1451,1368,1298,1223,1130,1072,947,922,886,850,761,732$, $671 \mathrm{~cm}^{-1}$.

## 4. X-ray Experiment

Crystallization of compound $3 \mathrm{t}\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{1} \mathrm{O}_{3}\right)$ from ethyl acetate/hexane at room temperature gave monoclinic crystals of space group P21/n (14) suitable for single crystal X-ray structure determination. Cell constants $a=8.2069(3), b=26.8100(11), c$ $=8.7494(4) \AA, \alpha=\gamma=90^{\circ}, \beta=105.943(2), \mathrm{Z}=4$, and a molecular weight of $M_{\mathrm{r}}=$ 349.41 result in a density of $1.254 \mathrm{gcm}^{-3}$ and a linear absorption coefficient of $\mu=0.083$ $\mathrm{mm}^{-1}$ for $\mathrm{MoK}_{\alpha}$ radiation $(\lambda=0.71073 \AA$ ). 29640 reflections covering the range $-11 \leq$ $h \leq 10,-38 \leq k \leq 38$, and $-11 \leq l \leq 12\left(\Theta_{\max }=30.7^{\circ}\right)$ were collected ( $\phi$ and $\omega$ scans) at 293 K on an Bruker APEX-II CCD diffractometer equipped with a graphitemonochomator and merged to give 5740 independent diffraction data $\left(\mathrm{R}_{\mathrm{int}}=0.0364\right)$ of which 3827 with $\mathrm{I}>2 \sigma(\mathrm{I})$. The data set was corrected for absorption effects using the multi scan absorption correction method $\operatorname{SADABS}^{14}\left(T_{\text {min }}=0.6788, T_{\max }=0.761\right)$. The structure was solved by intrinsic phasing using the ShelXT 2018/2 structure solution program ${ }^{15}$ and refined against $\mathrm{F}^{2}$ on all data by full-matrix least-squares methods using ShelXL-2018/3 ${ }^{16}$ and ShelXle GUI. ${ }^{17} 3827$ reflexions were used in the final full-matrix least squares refinement including 239 parameters. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were placed at idealised positions and refined isotropically using the riding model. Refinement converged at $R 1=0.0507$ for the observed data and $\mathrm{w} R 2=0.1491$ for all data $\left(\mathrm{w}=1 /\left[\sigma^{2}\left(\mathrm{Fo}^{2}\right)+(0.0672 \mathrm{P})^{2}+0.3135 \mathrm{P}\right]\right.$ where $\left.\mathrm{P}=\left(\mathrm{Fo}^{2}+2 \mathrm{Fc}^{2}\right) / 3\right)$, a residual electron density of $-0.198 /+0.270 \mathrm{e} \AA^{-3}$, and a final goodness of fit of 1.026.


3t


CCDC 2118729

Figure S2 X-ray for compound 3t

## 5. References

(1) Berger, F.; Plutschack, M. B.; Riegger, J.; Yu, W.; Speicher, S.; Ho, M.; Frank, N.; Ritter, T. Site-selective and versatile aromatic C-H functionalization by thianthrenation. Nature 2019, 567, 223.
(2) Engl, P. S.; Häring, A. P.; Berger, F.; Berger, G.; Perez-Bitrian, A.; Ritter, T. C-N Cross-Couplings for Site-Selective Late-Stage Diversification via Aryl Sulfonium Salts. J. Am. Chem. Soc. 2019, 141, 13346.
(3) Zhao, Y.; Yu, C.; Liang, W.; Patureau, F. W. Photochemical (Hetero-) Arylation of Aryl Sulfonium Salts. Org. Lett. 2021, 23, 6232.
(4) See for example: (a) Imahori, T.; Tokuda, T.; Taguchi, T.; Takahata, H. An Alternative Approach to para-C-H Arylation of Phenol: Palladium-Catalyzed Tandem $\gamma$-Arylation/Aromatization of 2-Cyclohexen-1-one Derivatives. Org. Lett. 2012, 14, 1172; or: (b) Gao, H.; Zhou, Z.; Kwon, D.-H.; Coombs, J.; Jones, S.; Behnke, N. E.; Ess, D. H.; Kürti, L. Rapid heteroatom transfer to arylmetals utilizing multifunctional reagent scaffolds. Nat. chem. 2017, 9, 681.
(5) Gondo, K.; Oyamada, J.; Kitamura, T. Palladium-catalyzed desilylative acyloxylation of silicon-carbon bonds on (trimethylsilyl) arenes: synthesis of phenol derivatives from trimethylsilylarenes. Org. Lett. 2015, 17, 4778.
(6) Chadwick, J.; Amewu, R. K.; Marti, F.; Garah, F. B.; Sharma, R.; Berry, N. G.; Stocks, P. A.; Burrell-Saward, H.; Wittlin, S.; Rottmann, M.; Brun, R.; Taramelli, D.; Parapini, S.; Ward, S. A.; O’Neill, P. M. Antimalarial Mannoxanes: Hybrid Antimalarial Drugs with Outstanding Oral Activity Profiles and A Potential Dual Mechanism of Action. ChemMedChem 2011, 6, 1357.
(7) Cui, J.; Liu, A.; Guan, Y.; Zheng, J.; Shen, Z.; Wan, X. Tuning the Helicity of SelfAssembled Structure of a Sugar-Based Organogelator by the Proper Choice of Cooling Rate. Langmuir 2010, 26, 3615.
(8) (a) Olshavsky, M. A.; Allcock, H. R. Polyphosphazenes with High Refractive Indices: Synthesis, Characterization, and Optical Properties. Macromolecules 1995, 28, 6188. (b) Kang, Q.-K.; Lin, Y.; Li, Y.; Xu, L.; Li, K.; Shi, H. Catalytic SNAr Hydroxylation and Alkoxylation of Aryl Fluorides. Angew. Chem. Int. Ed. 2021, 60, 20391.
(9) Ortar, G.; Morera, E.; De Petrocellis, L.; Ligresti, A.; Moriello, A. S.; Morera, L.; Nalli, M.; Ragno, R.; Pirolli, A.; Di Marzo, V. Biaryl tetrazolyl ureas as inhibitors of endocannabinoid metabolism: modulation at the N -portion and distal phenyl ring. Eur. J. Med. Chem. 2013, 63, 118.
(10) Purtsas, A.; Kataeva, O.; Knölker, H. J. Iron-Catalyzed Oxidative C- C CrossCoupling Reaction of Tertiary Anilines with Hydroxyarenes by Using Air as Sole Oxidant. Chem. Eur. J. 2020, 26, 2499.
(11) Ku, S. K.; Lee, J. H.; Yuseok, O.; Lee, W.; Song, G. Y.; Bae, J. S. Vascular barrier protective effects of 3-N-or 3-O-cinnamoyl carbazole derivatives. Bioorg. Med. Chem. Lett. 2015, 25, 4304.
(12) Langendoen, A.; Plug, J. P. M.; Koomen, G. J.; Pandit, U. K. Regiospecific C-9
substitution of ellipticine derivatives. Tetrahedron 1989, 45, 1759.
(13) Song, Z. Q.; Wang, D. H. Palladium-catalyzed hydroxylation of aryl halides with boric acid. Org. Lett. 2020, 22, 8470.
(14) a) SADABS-2016/2 - Bruker AXS area detector scaling and absorption correction. b) Krause, L.; Herbst-Irmer, R.; Sheldrick, G. M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination. J. Appl. Cryst. 2015, 48, 3.
(15) Sheldrick, G. M. SHELXT - Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3-8.
(16) Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Cryst. 2015, C71, 3-8.
(17) Hübschle, C. B.; Sheldrick, G. M.; Dittrich, B. ShelXle: a Qt graphical user interface for SHELXL. J. Appl. Cryst. 2011, 44, 1281.

## 6. Copies of ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR Spectra

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 b}$

${ }^{19}$ F NMR spectrum of $\mathbf{2 b}$


${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 b}$


${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 c}$

${ }^{19}$ F NMR spectrum of $\mathbf{2 c}$


${ }^{13} \mathrm{C}$ NMR spectrum of 2c

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 d}$

${ }^{19} \mathrm{~F}$ NMR spectrum of 2d


${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 d}$



${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 e}$

${ }^{19}$ F NMR spectrum of $\mathbf{2 e}$

${ }^{13} \mathrm{C}$ NMR spectrum of 2e

${ }^{1} H$ NMR spectrum of $\mathbf{2 f}$

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{2 f}$


${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 f}$
 $\infty$
$\underset{i}{\alpha}$
$i$



${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 g}$

${ }^{19}$ F NMR spectrum of $\mathbf{2 g}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 g}$

$\underset{\sim}{1} \underset{\sim}{\sim}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 h}$
 かの $\iint\left\|\int\right\| \int \|$


${ }^{19}$ F NMR spectrum of $\mathbf{2 h}$


|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | O- |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | -10 | -20 | -30 | -40 | -50 | -60 | -70 | -80 | -90 | -100 | -110 | -120 | -130 | -140 | -150 | -160 |

## ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 h}$


${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 i}$

${ }^{19}$ F NMR spectrum of $\mathbf{2 i}$


$\qquad$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 i}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 j}$

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{2} \mathbf{j}$


${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 j}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 k}$

${ }^{19}$ F NMR spectrum of $\mathbf{2 k}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 k}$

$\stackrel{7}{\text { ® }}$
$\stackrel{n}{\text { n }}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 1}$

${ }^{19} \mathrm{~F}$ NMR spectrum of 21

${ }^{13} \mathrm{C}$ NMR spectrum of 21




${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 n}$

${ }^{19}$ F NMR spectrum of $\mathbf{2 n}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 n}$



${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 0}$

${ }^{19}$ F NMR spectrum of $\mathbf{2 0}$


${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 0}$




${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 p}$

${ }^{19}$ F NMR spectrum of $\mathbf{2 p}$

${ }^{13}$ C NMR spectrum of $\mathbf{2 p}$




|  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 |  | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

${ }^{1} H$ NMR spectrum of $\mathbf{2 q}$



${ }^{19}$ F NMR spectrum of $\mathbf{2 q}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 q}$

$\stackrel{n}{\stackrel{n}{1}}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 r}$

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{2 r}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 r}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{2 t}$


$\xrightarrow{2}$


${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{2 t}$




${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{2 t}$

${ }^{1} \mathrm{H}$ NMR spectrum of 3a

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 a}$
 -115.8

-77.2


| 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 |

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 b}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 b}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 c}$

${ }^{13} \mathrm{C}$ NMR spectrum of $3 \mathbf{c}$

$\stackrel{N}{\text { N }}$
$\stackrel{\sim}{n}$

$\begin{array}{llllllllllllllllll}170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & { }^{9} 0 & \begin{array}{l}80 \\ f 1(\mathrm{ppm})\end{array} & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 d}$



${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 d}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 e}$


${ }^{13} \mathrm{C}$ NMR spectrum of 3 e
旤
$\stackrel{N}{\wedge}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 f}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 f}$

$$
\stackrel{\infty}{\stackrel{\infty}{m}} \stackrel{\circ}{\infty} \underset{\sim}{\sim} \underset{\sim}{\sim}
$$


${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 g}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 g}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 h}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 h}$


| 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 i}$

${ }^{19} \mathrm{~F}$ NMR spectrum of $\mathbf{3 i}$

${ }^{13} \mathrm{C}$ NMR spectrum of 3 il

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 j}$

${ }^{13} \mathbf{C}$ NMR spectrum of $\mathbf{3} \mathbf{j}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 k}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 k}$

$\stackrel{-}{0}$



${ }^{1} \mathrm{H}$ NMR spectrum of 31

${ }^{19} \mathrm{~F}$ NMR spectrum of 31

${ }^{13} \mathrm{C}$ NMR spectrum of 31

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 m}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 m}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 n}$




${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 o}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 0}$
+



| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 150 | 140 | 130 | 120 | 110 | 100 | 90 | $\begin{aligned} & 80 \\ & \mathrm{f} 1(\mathrm{ppm}) \end{aligned}$ | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 p}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 p}$

${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 q}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 q}$ - $\underbrace{\text { ion }}$


$\begin{array}{lllllllllllllllllllllll}160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 6 & 1 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 r}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 r}$

${ }^{1} \mathrm{H}$ NMR spectrum of 3 s


${ }^{13} \mathrm{C}$ NMR spectrum of 3 s
$\stackrel{+}{\infty} \stackrel{n}{i} \stackrel{N}{n} \stackrel{0}{n}$

$\stackrel{N}{N}$


${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 t}$

${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 t}$


$\begin{array}{llllllllllll}220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 \\ & & & & & & & & & 100\end{array}$


Zoom in section on the ${ }^{13} \mathrm{C}$ NMR spectrum of $\mathbf{3 t}$ :
$\stackrel{N}{N}$
0

1
$\stackrel{m}{n}$
$\stackrel{9}{\text { m }}$


## Zoom in section on the ${ }^{13} \mathrm{C}$ NMR spectrum of $3 \mathbf{t}$ :


$\stackrel{M}{\stackrel{M}{\oplus}}$
i
$\hat{\circ}$
$\stackrel{\rightharpoonup}{J}$


