Supplementary Information

Tunable Deep-Blue Luminescence from Ball Milled Chlorine-Rich Cs_x(NH₄)₁₋

_xPbCl₂Br Nanocrystals by Ammonium Modulation

Hongfei Xiao,^{a,b} Hao Xiong,^b Ping Li,^b Linqin Jiang,^{*b} Aijun Yang,^c Lingyan Lin,^b Zhenjing Kang,^b Qiong Yan,^{a,b} and Yu Qiu^{*b}

^a College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China

^b Key Laboratory of Green Perovskites Application of Fujian Provincial Universities, College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou 350108, China

° PV Metrology Institute, Fujian Metrology Institute, Fuzhou 350003, China

*Corresponding authors. Email: yuqiu@fjjxu.edu.cn; linqinjiang@fjjxu.edu.cn

Experimental section:

Materials:

Lead dichloride (PbCl₂, energy chemical, 99%), Cesium bromide (CsBr, Advanced Ejection Technology, 99.999%), Ammonium bromide (NH₄Br, Sinopharm), Oleylamine (OAm, Aladdin, 267.49MW) were used directly without further treatment.

Preparation:

Synthesis of perovskite powders: $PbCl_2$, CsBr and NH_4Br were mixed according to the designed molar ratios and placed in a 50 ml agate grinding jar together with 100ul of OAm. The total mass of the raw material was roughly 1.2g. Then, the powders were ground using a planetary ball-mill (Changsha MITR Corp., YXQM-4L) at the speed of 350 rpm for 2h in air.

Preparation of perovskite nanocrystal (PNC) solutions: 70 mg of the as-milled powder was dispersed in 70 ml of n-hexane with ultrasonication or stirring for 1h. The as-prepared milky liquid was centrifuged at 7000 rmp for 10min to obtain a clear PNC solution.

Characterization:

The Rigaku Ultima IV X-ray Diffractometer with Cu K α source (λ = 1.5418 Å) was used to record the powder X-ray diffraction (XRD) patterns. The scanning electron microscopy (SEM) images were recorded on a scanning electron microscope (Helios G4 CX). The X-ray photoelectron spectra (XPS) of the samples were measured using a ESCALAB 250 XPS instrument. Ultraviolet-visible (UV-vis) absorption spectra were measured using SHIMADZU UV-2600 at room temperature. The photoluminescence (PL) spectra recorded at excitation of 365 nm were performed by Edinburgh FS5 transient steady-state fluorescence spectrometer. The time-resolved PL curves were determined with the same fluorescence spectrometer. The TECNAI G2 F20 transmission electron microscope (TEM) was used to record the TEM and high-resolution TEM (HRTEM) images of the PNCs.

XPS Results and Discussion:

The survey X-ray photoelectron spectroscopy (XPS) spectra confirm the existence of Cs, Pb, Cl, Br, O, C and N (Fig. S6, ESI⁺). All samples exhibited a C 1s peak at 285.6 eV, which was attributed to the aliphatic carbon in OAm.¹ The weak O 1s was observed due to the adsorption of the ambient air. The N 1s peak can be divided into two subpeaks (Fig. S7, ESI⁺) at 402.1 and 402.7 eV, pointing to the presence of N–H groups arising from the surface OAm ligand¹ and the lattice $NH_4^{+.2}$ With the increase in the NH_4^{+} content, the intensity of the subpeak at 402.7 eV grew gradually. The high-resolution Cs 3d spectra of CsPbCl₂Br (Fig. S8, ESI⁺) showed two distinct peaks of $3d^{3/2}$ and $3d^{5/2}$ at 738.8 and 724.8 eV, respectively.³ The Cs 3d peaks of mixed $Cs_x(NH_4)_{1-x}PbCl_2Br$ shifted to lower binding energies slightly with the substitution of Cs by NH_4^{+} . On the other hand, the Pb $4f^{5/2}$ and $4f^{7/2}$ peaks of $Cs_x(NH_4)_{1-x}PbCl_2Br$ in Fig. S9 (ESI⁺) showed an opposite trend, shifting to higher binding energies with the incorporation of NH_4^{+} . These results suggest the change of the chemical environment of Cs and Pb ions after the NH_4^{+} doping. The locations of Cl $2p^{1/2}$, Cl $2p^{3/2}$, Br

 $3d^{3/2}$ and Br $3d^{5/2}$ peaks seemed almost independent on the doping amount of NH₄⁺ in mixed $Cs_x(NH_4)_{1-x}PbCl_2Br$, but shifted to higher binding energies for pure NH₄PbCl₂Br (Fig. S10 and S11, ESI⁺).

References:

- 1 Y. Hou, Z. R. Zhou, T. Y. Wen, H. W. Qiao, Z. Q. Lin, B. Ge, H. G. Yang, *Nanoscale Horiz.*, 2019, **4**, 208-213.
- 2 M. Thompson, A. D. Nunn, E. N. Treher, *Anal. Chem.*, 1986, **58**, 3100-3103.
- 3 Y. Yu, G. Shao, L. Ding, H. Zhang, X. Liang, J. Liu, W. Xiang, J. Rare Earth., 2021, **39**, 1497-1505.

Figure S1. The SEM images of (a) CsPbCl₂Br powder synthesized without OAm ligand and (b) CsPbCl₂Br, (c) Cs_{0.3}(NH₄)_{0.7}PbCl₂Br, (d) Cs_{0.5}(NH₄)_{0.5}PbCl₂Br, (e) Cs_{0.3}(NH₄)_{0.7}PbCl₂Br and (f) NH₄PbCl₂Br powders synthesized with OAm ligand, respectively.

Figure S2. The PL spectra of CsPbCl₂Br powders synthesized with and without OAm.

Figure S3. The XRD patterns of CsPbCl₂Br powders prepared with and without OAm. The standard X-ray diffraction pattern of CsPbCl₃ (PDF 75-0412) and CsPbBr₃ (PDF 73-0692) are presented for comparison.

Figure S4. The optical photographs of as-milled $CsPbCl_2Br$, $Cs_{0.3}(NH_4)_{0.7}PbCl_2Br$, $Cs_{0.5}(NH_4)_{0.5}PbCl_2Br$, $Cs_{0.3}(NH_4)_{0.7}PbCl_2Br$ and NH_4PbCl_2Br powders under natural light indoors (upper images) or under 365 nm UV light (lower images).

Figure S5. The XRD patterns of $Cs_x(NH_4)_{1-x}PbCl_2Br$ (x = 1, 0.7, 0.5, 0.3, 0) powders milled with OAm ligand. The standard X-ray diffraction pattern of CsPbCl₃ (PDF 75-0412) and CsPbBr₃ (PDF 73-0692) are presented for comparison.

Figure S6. The XPS survey spectra of $Cs_x(NH_4)_{1-x}PbCl_2Br$ (x = 1, 0.7, 0.5, 0.3, 0) powders.

Figure S7. High-resolution N 1s XPS spectra of $Cs_x(NH_4)_{1-x}PbCl_2Br$ (x = 1, 0.7, 0.5, 0.3, 0) powders.

Figure S8. High-resolution Cs 3d XPS spectra of $Cs_x(NH_4)_{1-x}PbCl_2Br$ (x = 1, 0.7, 0.5, 0.3, 0) powders.

Figure S9. High-resolution Pb 4f XPS spectra of $Cs_x(NH_4)_{1-x}PbCl_2Br$ (x = 1, 0.7, 0.5, 0.3, 0) powders.

Figure S10. High-resolution Cl 2p XPS spectra of $Cs_x(NH_4)_{1-x}PbCl_2Br$ (x = 1, 0.7, 0.5, 0.3, 0) powders.

Figure S11. High-resolution Br 3d XPS spectra of $Cs_x(NH_4)_{1-x}PbCl_2Br$ (x = 1, 0.7, 0.5, 0.3, 0) powders.

Figure S12. Tauc plots of as-milled $Cs_x(NH_4)_{1-x}PbCl_2Br$ (x = 1, 0.7, 0.5, 0.3, 0) powders.

Figure S13. The optical photograph of $Cs_x(NH_4)_{1-x}PbCl_2Br$ (x = 1, 0.7, 0.5, 0.3, 0) powders dispersed in n-hexane solvent before centrifugation.

Figure S14. The PL spectra of $Cs_x(NH_4)_{1-x}PbCl_2Br$ (x = 1, 0.7, 0.5, 0.3, 0) NC solutions obtained after centrifugation under UV irradiation (λ_{ex} = 365 nm).

Figure S15. The PL spectra of NH₄PbCl₂Br NC solution measured with the doubled slit width for both excitation and emission (λ_{ex} = 365 nm).

Figure S16. Tauc plots of $Cs_x(NH_4)_{1-x}PbCl_2Br$ (x = 1, 0.7, 0.5, 0.3, 0) NCs.

Figure S17. PL spectra of (a) CsPbCl₂Br, (b) Cs_{0.7}(NH₄)_{0.3}PbCl₂Br, (c) Cs_{0.5}(NH₄)_{0.5}PbCl₂Br, (d) Cs_{0.3}(NH₄)_{0.7}PbCl₂Br and (e) NH₄PbCl₂Br NC solutions after stored under ambient conditions for 0-20 days. (f) is the corresponding normalized PL intensity as a function of storing time.

Figure S18. TEM images and the corresponding particles size statistics of (a) CsPbCl₂Br, (b) Cs_{0.7}(NH₄)_{0.3}PbCl₂Br, (c) Cs_{0.5}(NH₄)_{0.5}PbCl₂Br, (d) Cs_{0.3}(NH₄)_{0.7}PbCl₂Br and (e) NH₄PbCl₂Br NCs after being stored under ambient conditions for 29 days. The average sizes are 12.02, 13.19, 15.40 and 10.64 nm for CsPbCl₂Br, Cs_{0.7}(NH₄)_{0.3}PbCl₂Br, Cs_{0.5}(NH₄)_{0.5}PbCl₂Br and Cs_{0.3}(NH₄)_{0.7}PbCl₂Br NCs, respectively.

Figure S19. PL spectra of (a) CsPbCl₂Br, (b) Cs_{0.7}(NH₄)_{0.3}PbCl₂Br, (c) Cs_{0.5}(NH₄)_{0.5}PbCl₂Br, (d) Cs_{0.3}(NH₄)_{0.7}PbCl₂Br and (e) NH₄PbCl₂Br NC solutions under continuous 365 nm UV irradiation. (f) is the corresponding normalized PL intensity as a function of UV irradiation time.

	PL peak (nm)	FWHM (nm)	CIE	Hue
CsPbCl ₂ Br	434	14.45	(0.164, 0.011)	263°
Cs _{0.7} (NH ₄) _{0.3} PbCl ₂ Br	443	14.68	(0.160, 0.015)	260°
Cs _{0.5} (NH ₄) _{0.5} PbCl ₂ Br	446	16.62	(0.157, 0.018)	259°
Cs _{0.3} (NH ₄) _{0.7} PbCl ₂ Br	447	17.44	(0.156, 0.019)	258°
NH ₄ PbCl ₂ Br	455	26.31	(0.146, 0.034)	248°

Table S1. Detailed PL information of $Cs_x(NH_4)_{1-x}PbCl_2Br$ (x = 1, 0.7, 0.5, 0.3, 0) NCs.

Table S2. Tabulated fitted lifetime components of $Cs_x(NH_4)_{1-x}PbCl_2Br$ (x = 1, 0.7, 0.5, 0.3, 0) NCs.

	τ ₃ (ns)	α ₃ (%)	τ ₂ (ns)	α ₂ (%)	τ ₁ (ns)	α ₁ (%)	τ _{ave} (ns)
CsPbCl ₂ Br	23.10	43.38	4.76	43.57	0.77	13.05	12.20
Cs _{0.7} (NH ₄) _{0.3} PbCl ₂ Br	22.89	56.41	5.54	37.71	0.98	5.88	15.06
$Cs_{0.5}(NH_4)_{0.5}PbCl_2Br$	20.97	45.47	5.95	46.42	1.14	8.11	12.39
Cs _{0.3} (NH ₄) _{0.7} PbCl ₂ Br	18.15	47.27	4.92	45.03	0.92	7.70	10.87
NH ₄ PbCl ₂ Br	19.71	37.95	0.70	20.82	3.54	41.23	9.09