## **Electronic Supplementary Information**

## Superior Catalytic Performance of Intermetallic CaPt<sub>2</sub> Nanoparticles Supported on Titanium Group Oxides in Hydrogenation of Ketones to Alcohols

Yasukazu Kobayashi, \*a Shohei Tada <sup>b</sup>, Masaru Kondo <sup>b</sup>, Kakeru Fujiwara <sup>c</sup> and Hiroshi Mizoguchi <sup>d</sup>

- <sup>a.</sup> Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan. E-mail: <u>yasu-kobayashi@aist.go.jp</u>.
- <sup>b.</sup> Department of Materials Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawacho, Hitachi, Ibaraki 316-8511, Japan.
- <sup>c</sup> Department of Chemistry and Chemical Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa-shi,
   Yamagata 992-8510, Japan.
- <sup>d.</sup> International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0044, Japan.

#### 1. Experimental

#### 1.1. Density functional theory (DFT) periodic calculations

It was performed using the generalized gradient approximation, Perdew–Burke–Ernzerhof functional<sup>1</sup>, and the projected augmented plane wave method<sup>2</sup> implemented in the Vienna *Ab initio* simulation package (VASP)<sup>3</sup>. An energy cutoff of 600 eV and a  $10 \times 10 \times 10$  gamma-centered *k*-mesh were used. A Wigner–Seitz radius of 0.146 nm was used for the site projections of all the atoms. The atomic charges were estimated by Bader charge analysis<sup>4</sup>, and the crystal structures were visualized using the VESTA code<sup>5</sup>.

#### 1.2. Characterization for the prepared samples

The crystal structures were investigated by X-ray diffraction (XRD, MiniFlex 600, Rigaku) with CuK $\alpha$  radiation generated at 40 kV and 15 mA. The porosity was examined by N<sub>2</sub> adsorption at -196 °C (BELLSORP mini-II, Microtrac-BEL). Before the measurement, the sample powder was pretreated at 150 °C for 30 min under a vacuum, and the contained water was removed. The morphology was observed by scanning electron microscopy (SEM, JSM-7000F, JEOL Ltd) and transmission electron microscopy (TEM, JEM-2100F, JEOL Ltd) with energy dispersive X-ray spectrometry (EDX) for elemental analysis. The molar ratio of Ca, Pt and Ti in CaPt<sub>2</sub>/TiO<sub>x</sub> was analyzed via X-ray fluorescence spectrometry (XRF, Rigaku, ZSX Primus II) at 50 kV and 60 mA.

#### 1.3.Catalyst tests

Hydrogenation of cyclohexanone (0.15 mL, 1.45 mmol) using 5wt% of catalyst was performed in a batch reactor with 0.2 M solution in methanol (7.3 mL) at room temperature and 1 atm H<sub>2</sub> for 16 h. A commercial 3wt%Pt/C (54% water, Wako Pure Chem. Corp.) was used as reference. The turnover frequency (TOF) was calculated to compare the intrinsic catalytic performances based on the surface Pt site for 3wt%Pt/C and CaPt<sub>2</sub>/TiO<sub>x</sub>. The number of surface Pt sites was estimated from CO chemisorption experiments. After the catalyst was reduced at 300 °C under 5%H<sub>2</sub>/Ar flow at 50 mL/min for 1 h, several 10%CO/He pulses were dosed into the reduced catalyst at 40 °C to measure the adsorbed CO amount.

#### References

- 1. J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.
- 2. P. E. Blöchl, Phys. Rev. B: Condens. Matter Mater. Phys., 1994, 50, 17953.
- 3. G. Kresse and J. Furthmüller, Phys. Rev. B: Condens. Matter Mater. Phys., 1996, 54, 11169.
- 4. E. Sanville, S. Kenny, R. Smith and G. Henkelman, J. Comput. Chem., 2007, 28, 899.
- 5. K. Momma and F. Izumi, J. Appl. Crystallogr., 2011, 44, 1272.

| Sample                              | XRD measurements |                      |               | N <sub>2</sub> adsorption XRF |                      | SEM-/TEM-EDX |            |       |             |                     |                            |      |              |                     |                    |           |
|-------------------------------------|------------------|----------------------|---------------|-------------------------------|----------------------|--------------|------------|-------|-------------|---------------------|----------------------------|------|--------------|---------------------|--------------------|-----------|
|                                     | D <sup>a)</sup>  | Lattice constant [Å] |               | SA                            | Vp                   | Mola         | r ratio [r | nol%] |             |                     | Average molar ratio [mol%] |      |              | Pt/Ca <sup>b)</sup> | O/Ti <sup>b)</sup> |           |
|                                     | [nm]             | Exp.                 | ICSD<br>value | [m²/g]                        | [cm <sup>3</sup> /g] | Ca           | Pt         | Ti    | Measurement |                     | Ca                         | Pt   | Ti, Zr or Hf | o                   | [mol/mol]          | [mol/mol] |
|                                     | 70               | 7.552                | 7.598         | 32                            |                      |              | 29         | 59    | SEM         |                     | 4.4                        | 12.4 | 13.9         | 69.6                | 3                  | -         |
| CaPt <sub>2</sub> /TiO <sub>x</sub> |                  |                      |               |                               | 0.02                 | 12           |            |       |             | Pt-rich position    | 14.7                       | 59.5 | 11.4         | 14.4                | 4.3                | 3.1       |
|                                     |                  |                      |               |                               |                      |              |            |       | TEM         | Ti-rich<br>position | 1.7                        | 0.3  | 43.9         | 54.1                | 0.2                | 1.3       |
| CaPt <sub>2</sub> /ZrO <sub>x</sub> | 60               | 7.565                |               | -                             | -                    |              | -          |       |             | SEM                 | 8.1                        | 18.4 | 1.3          | 72.2                | 3.3                | -         |
| CaPt <sub>2</sub> /HfO <sub>x</sub> | 60               | 7.573                |               | -                             | -                    |              | -          |       |             | SEM                 | 3.5                        | 35   | 14.7         | 46.8                | 10.1               | -         |

#### Table S1 Summary of the results of XRD, N<sub>2</sub> adsorption, XRF, SEM-/TEM-EDX for CaPt<sub>2</sub> supported on TiO<sub>x</sub>, ZrO<sub>x</sub> and HfO<sub>x</sub>.

a) Crystallite sizes were calculated by the Scherrer equation with a main peak at 20=20.3°.

b) Average Pt/Ca and O/Ti molar ratios were calculated from a set of data described in Table S2.



Fig. S1 Spectra of Pt, Ti and Ca elements measured by XRF.



Fig. S2 SEM images of CaPt<sub>2</sub>/TiO<sub>x</sub>.



Fig. S3 SEM images of CaPt<sub>2</sub>/ZrO<sub>x</sub>.

#### Journal Name



Fig. S4 SEM images of CaPt<sub>2</sub>/HfO<sub>x</sub>.



**Fig. S5** SEM-EDX of CaPt<sub>2</sub>/TiO<sub>x</sub> at different positions of #1-#3.

8 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx



Fig. S6 SEM-EDX of CaPt<sub>2</sub>/TiO<sub>x</sub> at different positions of #4-#10.



Fig. S7 SEM-EDX of CaPt<sub>2</sub>/TiO<sub>x</sub> at different positions of #11-#17 and the elemental mappings.



Fig. S8 SEM-EDX of  $CaPt_2/ZrO_x$  at different positions of #18 and #19.

This journal is © The Royal Society of Chemistry 20xx



**Fig. S9** SEM-EDX of CaPt<sub>2</sub>/HfO<sub>x</sub> at different positions of #20 and #21.



Fig. S10 TEM images of  $CaPt_2/TiO_x$ .



Fig. S11 TEM-EDX of CaPt<sub>2</sub>/TiO<sub>x</sub> at different positions of #1-#31.

14 | J. Name., 2012, 00, 1-3

This journal is © The Royal Society of Chemistry 20xx

\_

| Sample         | Molar ratio of main constituent elements [mol%] |          |    |      |      |              |      |  |  |  |  |  |
|----------------|-------------------------------------------------|----------|----|------|------|--------------|------|--|--|--|--|--|
| Sample         | Measurement                                     | Position |    | Ca   | Pt   | Ti, Zr or Hf | 0    |  |  |  |  |  |
|                |                                                 | 1        |    | 6.6  | 25.7 | 19.0         | 48.7 |  |  |  |  |  |
|                |                                                 | 2        |    | 5.2  | 23.2 | 14.1         | 57.4 |  |  |  |  |  |
|                |                                                 | 3        |    | 4.2  | 14.4 | 20.2         | 61.2 |  |  |  |  |  |
|                |                                                 | 4        |    | 3.8  | 9.8  | 19.1         | 67.3 |  |  |  |  |  |
|                |                                                 | 5        |    | 3.9  | 24.8 | 15.2         | 56.2 |  |  |  |  |  |
|                |                                                 | 6        |    | 3.9  | 10.0 | 13.9         | 72.2 |  |  |  |  |  |
|                |                                                 | 7        |    | 7.9  | 21.5 | 15.1         | 55.4 |  |  |  |  |  |
|                |                                                 | 8        |    | 1.9  | 6.6  | 23.8         | 67.8 |  |  |  |  |  |
|                | SEM                                             |          | 9  |      |      | 17.8         | 72.7 |  |  |  |  |  |
|                |                                                 | 10       |    | 5.7  | 14.7 | 15.6         | 64.1 |  |  |  |  |  |
|                |                                                 | 11       |    | 4.7  | 10.9 | 7.8          | 76.6 |  |  |  |  |  |
|                |                                                 | 12       |    | 8.2  | 18.2 | 8.4          | 65.2 |  |  |  |  |  |
|                |                                                 | 13       |    | 1.3  | 2.9  | 9.4          | 86.4 |  |  |  |  |  |
|                |                                                 | 14       |    | 1.7  | 2.2  | 12.7         | 83.4 |  |  |  |  |  |
|                |                                                 | 15       |    | 1.2  | 3.6  | 10.1         | 85.2 |  |  |  |  |  |
|                |                                                 | 16       |    | 1.1  | 2.9  | 3.1          | 92.9 |  |  |  |  |  |
|                |                                                 | 17       |    | 5.7  | 12.9 | 11.4         | 70.1 |  |  |  |  |  |
|                |                                                 |          | 1  | 10.9 | 58.1 | 4.9          | 26.1 |  |  |  |  |  |
|                |                                                 |          | 2  | 15.2 | 71.2 | 3.1          | 10.5 |  |  |  |  |  |
|                |                                                 |          | 3  | 9.8  | 52.7 | 10.0         | 27.5 |  |  |  |  |  |
|                |                                                 |          | 4  | 18.7 | 72.2 | 1.9          | 7.3  |  |  |  |  |  |
|                |                                                 |          | 5  | 21.9 | 64.8 | 5.5          | 7.8  |  |  |  |  |  |
|                |                                                 |          | 6  | 23.9 | 66.4 | 1.1          | 8.6  |  |  |  |  |  |
| $CaPt_2/TiO_x$ |                                                 |          | 7  | 16.1 | 47.2 | 18.6         | 18.2 |  |  |  |  |  |
|                |                                                 |          | 8  | 1.4  | 7.6  | 45.4         | 45.6 |  |  |  |  |  |
|                |                                                 |          | 9  | 13.9 | 55.7 | 20.3         | 10.1 |  |  |  |  |  |
|                |                                                 | Pt-rich  | 10 | 11.4 | 59.6 | 22.2         | 6.9  |  |  |  |  |  |
|                |                                                 | position | 11 | 9.5  | 47.3 | 29.2         | 14.1 |  |  |  |  |  |
|                |                                                 |          | 12 | 11.6 | 46.8 | 19.3         | 22.4 |  |  |  |  |  |
|                |                                                 |          | 13 | 16.4 | 70.1 | 0.9          | 12.6 |  |  |  |  |  |
|                |                                                 |          | 14 | 13.9 | 64.6 | 14.4         | 7.0  |  |  |  |  |  |
|                |                                                 |          | 15 | 17.1 | 73.3 | 1.8          | 7.8  |  |  |  |  |  |
|                | TEM                                             |          | 16 | 16.5 | 74.0 | 3.5          | 6.1  |  |  |  |  |  |
|                |                                                 |          | 17 | 13.5 | 58.6 | 8.8          | 19.2 |  |  |  |  |  |
|                |                                                 |          | 18 | 19.0 | 70.4 | 3.5          | 7.2  |  |  |  |  |  |
|                |                                                 |          | 19 | 14.3 | 58.1 | 13.0         | 14.6 |  |  |  |  |  |
|                |                                                 |          | 20 | 18.8 | 71.5 | 1.4          | 8.3  |  |  |  |  |  |
|                |                                                 |          | 21 | 1.3  | 0.3  | 43.0         | 55.3 |  |  |  |  |  |
|                |                                                 |          | 22 | 1.0  | 0.2  | 45.6         | 53.2 |  |  |  |  |  |
|                |                                                 |          | 23 | 1.6  | 0.5  | 33.4         | 64.5 |  |  |  |  |  |
|                |                                                 |          | 24 | 2.7  | 0.4  | 68.6         | 28.3 |  |  |  |  |  |
|                |                                                 | Ti-rich  | 25 | 1.5  | 0.1  | 41.2         | 57.1 |  |  |  |  |  |
|                |                                                 | position | 26 | 2.1  | 0.1  | 39.5         | 58.3 |  |  |  |  |  |
|                |                                                 |          | 27 | 1.6  | 0.2  | 47.0         | 51.3 |  |  |  |  |  |
|                |                                                 |          | 28 | 1.8  | 0.4  | 33.1         | 64.8 |  |  |  |  |  |
|                |                                                 |          | 29 | 1.4  | 0.1  | 40.0         | 58.6 |  |  |  |  |  |
|                |                                                 |          | 30 | 1.8  | 0.5  | 43.3         | 54.5 |  |  |  |  |  |
|                |                                                 |          | 31 | 1.7  | 0.8  | 47.8         | 49.6 |  |  |  |  |  |

# **Table S2** Summary of the molar ratios measured by SEM-/TEM-EDX for CaPt<sub>2</sub> supported on TiO<sub>x</sub>, $ZrO_x$ and $HfO_x$ .

This journal is © The Royal Society of Chemistry 20xx

J. Name., 2013, 00, 1-3 | 15

**Journal Name** 

| CaDt /7=0      | SEM  | 18 | 3.8  | 19.7 | 1.4  | 75.2 |
|----------------|------|----|------|------|------|------|
| $CaPt_2/ZrO_x$ |      | 19 | 12.5 | 17.1 | 1.1  | 69.3 |
|                | 5514 | 20 | 4.0  | 35.5 | 15.0 | 45.5 |
| $CaPt_2/HfO_x$ | SEM  | 21 | 3.1  | 34.4 | 14.4 | 48.2 |

| Catalyst               | Catalyst weight<br>[mg] | Reactant      | Time<br>[h] | Yield <sup>a)</sup><br>[%] | Reaction rate<br>[x10 <sup>-6</sup> mol/s/g-cat] | Adsorbed amount of CO<br>[cm³/g-cat] | Number of active site <sup>b)</sup><br>[x10 <sup>19</sup> g-cat <sup>-1</sup> ] | TOF<br>[s <sup>-1</sup> ] |
|------------------------|-------------------------|---------------|-------------|----------------------------|--------------------------------------------------|--------------------------------------|---------------------------------------------------------------------------------|---------------------------|
|                        |                         | cyclohexanone | 4           | 9                          | 2.63                                             |                                      |                                                                                 | 0.030                     |
|                        | 3.5                     | cyclohexanone | 8           | 12                         | 1.75                                             | 4.00                                 | 5.05                                                                            | 0.020                     |
| Pt/C                   |                         | cyclohexanone | 12          | 16                         | 1.56                                             | 1.99                                 | 5.35                                                                            | 0.018                     |
|                        |                         | cyclohexanone | 16          | 27                         | 1.97                                             |                                      |                                                                                 | 0.022                     |
| CaPt₂/TiO <sub>x</sub> | 7.5                     | cyclohexanone | 16          | 6                          | 0.20                                             | 0.02                                 | 0.06                                                                            | 0.190                     |
|                        |                         | cyclohexanone | 8           | 6                          | 0.40                                             |                                      |                                                                                 | 0.029                     |
|                        | 7.5                     | cyclohexanone | 16          | 11                         | 0.37                                             | 0.31                                 | 0.84                                                                            | 0.026                     |
| CaPt₂/ZrO <sub>x</sub> |                         | cyclohexanone | 24          | 17                         | 0.38                                             |                                      |                                                                                 | 0.027                     |
|                        |                         | cyclohexanone | 32          | 28                         | 0.47                                             |                                      |                                                                                 | 0.034                     |
|                        |                         | acetophenone  | 16          | 8                          | 0.27                                             |                                      |                                                                                 | 0.019                     |
| CaPt₂/HfO <sub>x</sub> | 7.5                     | cyclohexanone | 16          | 6                          | 0.20                                             | 0.01                                 | 0.01                                                                            | 0.84                      |

# Table S3 Catalytic performances of commercial Pt/C and CaPt<sub>2</sub>/TiO<sub>x</sub> in hydrogenation of ketones to alcohols. I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

a) H-NMR yield using 1,3,5-trimethoxybenzene as an internal standard.

b) Calculated with an assumption that a CO molecule adsorbed on an active site.

| Catalysts                              | Reactant      | H <sub>2</sub> pressure<br>[MPa] | Temperature<br>[°C] | TOF<br>[s <sup>-1</sup> ] | ref.      |  |
|----------------------------------------|---------------|----------------------------------|---------------------|---------------------------|-----------|--|
| Pt/C                                   | cyclohexanone | 0.1                              | R.T.                | 0.02-0.03                 |           |  |
| CaPt <sub>2</sub> /TiO <sub>x</sub>    | cyclohexanone | 0.1                              | R.T.                | 0.19                      |           |  |
| CoDt /7rO                              | cyclohexanone | 0.1                              | R.T.                | 0.03                      | This work |  |
| CaPt <sub>2</sub> /ZrO <sub>x</sub>    | acetophenone  | 0.1                              | R.T.                | 0.02                      |           |  |
| CaPt <sub>2</sub> /HfO <sub>x</sub>    | cyclohexanone | 0.1                              | R.T.                | 0.84                      |           |  |
| Pt(0) catalyst                         | cyclohexanone | 0.6                              | 75                  | 0.26                      | [1]       |  |
| Pt/MCM-41                              | acetophenone  | 0.1                              | R.T.                | 0.04-0.15                 | [2]       |  |
| Pt-Fe nanocubes                        | acetophenone  | 0.1                              | 70                  | 0.29                      | [2]       |  |
| Pt-Fe nanowires                        | acetophenone  | 0.1                              | 70                  | 1.63                      | [3]       |  |
| 0.78%Pt/Al <sub>2</sub> O <sub>3</sub> | acetophenone  | 0.09                             | 100                 | 104000                    | [4]       |  |
| 0.95%Pt/TiO <sub>2</sub>               | acetophenone  | 0.09                             | 100                 | 63000-<br>2400000         | [4]       |  |

## **Table S4** Comparison of TOFs obtained with Pt-based catalysts in hydrogenation of ketones to alcohols.

#### References

- 1. M. J. Jacinto, R. Landers, and L. M. Rossi, Catal. Comm., 2009, 10, 1971.
- 2. Z. Wang, K.-D. Kim, C. Zhou, M. Chen, N. Maeda, Z. Liu, J. Shi, A. Baiker, M. Hunger, and J. Huang, *Catal. Sci. Technol.*, 2015, **5**, 2788.
- 3. W. Wu, J. Li, Z. Chen, W. Chen, H. Pang, K. Ma, and J. Zeng, J. Catal., 2019, 373, 209.
- 4. S. D. Lin, D. K. Sanders, and M. A. Vannice, J. Catal., 1994, 147, 370.