Supporting Information

Band Structure Engineering of the W Replacement in ReSe₂

Nanosheets for Enhancing Hydrogen Evolution

Xiaowei Guo,^{†ab} Tong Wu,^{†ab} Siwei Zhao,^{†c} Yuqiang Fang,^a Shumao Xu,^a Miao Xie^{ab} and Fuqiang Huang^{*ac}

^aState Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China ^bUniversity of Chinese Academy of Sciences, Beijing 100049, China ^cState Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R. China

AUTHOR INFORMATION E-mail: huangfq@mail.sic.ac.cn

Experimental Section

Material Preparation

The bulk $\operatorname{Re}_{1-x}W_x\operatorname{Se}_2$ ($0 \le x \le 0.3$) crystals were synthesized via high temperature solid-state reaction. Re powder, W powder and Se powder were mixed according to stoichiometric ratio and pressed into a pellet. It was transferred into muffle furnace and annealed at 1323 K for 24 hours with the heating rate of 5 K·min⁻¹. Afterwards, the samples were cooled down to room temperature naturally. Ultimately, the samples were dispersed in deionized water and dried in a vacuum oven at room temperature. Re_{1-x}W_xSe₂ nanosheets were obtained from an ultrasonication-assisted exfoliation process. In a typical procedure, 0.5 g of bulk Re_{1-x}W_xSe₂ powder was added to 30 mL of N,N-dimethylformamide (DMF) in a 50 mL glass vial and this mixture was subjected to ultrasonication for 24 h to get the exfoliated Re_{1-x}W_xSe₂ NSs.

Materials characterization

X-ray diffraction (XRD) characterization was carried out by Bruker D8 advance. Raman spectra were obtained using a thermal dispersive spectrometer with laser excitation at 635nm. Material microstructure was observed by a Hitachi S-4800 field emission scanning electron microscope (SEM). Transmission Electron Microscopy (TEM) images were obtained by JEOL JEM-2100F. X-ray Photoelectron Spectroscopy (XPS) measurements were run on a Thermo VG Scientific with Al K α radiation (λ = 1486.6 eV). The images were imaged in high Angle annular dark field (HAADF) and bright field (BF), obtaining the mass-thickness and diffraction contrast information, respectively. The internal and external receiving angles of HAADF imaging were 68 and 280 m rad, respectively, and the receiving angles of BF imaging were 17 m rad.

Electrochemical measurements

The electrochemical experiment was carried out using a CHI-760E electrochemical workstation at ambient temperature. The measurements were performed in $0.5 \text{ M H}_2\text{SO}_4$ solution (deaerated by Ar) using a three-electrode setup, with a saturated calomel electrode (in saturated KCl solution) reference electrode, a graphite rod counter electrode and the glassy carbon working electrode. The catalyst was treated by ultrasonically dispersing in

Nafion/alcohol solution (0.5 wt.%, Alfa Aesar) to obtain 5.0 mg mL⁻¹ slurry. The catalyst was dispersed in Nafion/alcohol solution (0.5 wt.%, Alfa Aesar) by sonication for 60 min. Then, 10 μ L of the mixed solution was drop-casted onto a glassy carbon rotating disk working electrode (5 mm diameter) and dried with N₂. Initially, cyclic voltammogram (CV) was operated at least 20 cycles to guarantee the activation of the catalyst. LSV scan rate was 0.01 V·s⁻¹. The electrochemical active surface area (ECSA) of the catalyst was tested in this way, that double-layer capacitance (C_{dl}) was tested in the potential window of -0.25 ~ -0.15 V (*vs.* RHE) at the scan rates of 20, 40, 60, 80, 100 and 120 mV·s⁻¹ in the CV model.

Theoretical calculation

The calculations were based on the density functional theory (DFT) using Vienna Ab-initio Simulation Package (VASP). Ultra-soft (US) pseudopotentials and Perdew-Burke-Ernzerhof (PBE) parameterization of the generalized gradient approximation (GGA) are applied for the core-valence electron interaction and exchange-correlation functional, respectively. The cutoff energy was set as 600 eV. The total energy convergence was less than 10^{-4} eV per atom. The force-on-atom was converged below a threshold of 0.02. For WS₂ or ReSe₂, a $12 \times 12 \times 3$ or $6 \times 6 \times 6$ Monkhorst-Pack K-point grid was applied based on single cell unit for density of states (DOS). For Re_{0.7}W_{0.3}Se₂, one Re atom was substituted by W in ReSe₂.

Supporting Figures

Figure S1. Powder X-ray diffraction pattern of $Re_{0.6}W_{0.4}Se_2$ is calculated by stoichiometry.

Figure S2. SEM images of (a) bulk $Re_{0.7}W_{0.3}Se_2$ and (b) $Re_{0.7}W_{0.3}Se_2$ nanosheets.

Figure S3. Room-temperature Hall measurements based on $Re_{1-x}W_xSe_2$ crystals. Typical plot of the transverse Hall resistance R versus an external magnetic field (B) for the $Re_{1-x}W_xSe_2$ (x = 0.3, 0.2, 0.1 and 0) crystals.

Figure S4. The temperature-dependent resistivity (R-T) curves of $Re_{0.7}W_{0.3}Se_2$, $Re_{0.8}W_{0.2}Se_2$, $Re_{0.9}W_{0.1}Se_2$ and $ReSe_2$.

Figure S5. Geometrically optimized cells of $WSe_2(a)$, $ReSe_2(b)$ and W-doped $ReSe_2(c)$.

Figure S6. (a) Linear sweep voltammetry (LSV) curves of $Re_{0.6}W_{0.4}Se_2$. (b) Tafel plots derived from the LSV curves.

Figure S7. Cyclic voltammograms (CVs) of as-prepared samples: (a) $\text{Re}_{0.7}W_{0.3}\text{Se}_2$, (b) $\text{Re}_{0.8}W_{0.2}\text{Se}_2$, (c) $\text{Re}_{0.9}W_{0.1}\text{Se}_2$, (d) ReSe_2 , (e) 2H-MoS₂ and (f) WSe₂. Current density is the difference between anodic and cathodic current densities at 0.06 V (*vs* RHE). In the plot, the capacitance was normalized by the geometric surface area of electrodes.

Figure S8. HER performance in 0.5M H₂SO₄. (a) Linear sweep voltammetry (LSV) curves of bulk Re_{1-x}W_xSe₂. (b) Tafel plots derived from the LSV curves. (c) ECSA at E=0.06 V versus RHE (reversible hydrogen electrode) for Re_{1-x}W_xSe₂. (d) Electrochemical impedance spectroscopy Nyquist plots of Re_{1-x}W_xSe₂ samples.

Figure S9. Cyclic voltammograms (CVs) of as-prepared samples: (a) bulk $\text{Re}_{0.7}W_{0.3}\text{Se}_2$, (b) bulk $\text{Re}_{0.8}W_{0.2}\text{Se}_2$, (c) bulk $\text{Re}_{0.9}W_{0.1}\text{Se}_2$ and (d) bulk ReSe_2 . Current density is the difference between anodic and cathodic current densities at 0.06 V (*vs* RHE). In the plot, the capacitance was normalized by the geometric surface area of electrodes.

Figure S10. (a) XRD patterns and (b) Raman spectra of $Re_{0.7}W_{0.3}Se_2$ before and after long-term HER test. (c-d) Comparison of morphology before and after long-term HER test.

Cell parameter

Table S1. Comparison of cell parameters between calculated WSe2, ReSe2 and W-dopedReSe2.

Parameters	WSe ₂	ReSe ₂	$Re_{0.7}W_{0.3}Se_2$
<i>a</i> (Å)	3.30694	6.65953	6.53146
<i>b</i> (Å)	3.30694	6.78769	6.81014
<i>c</i> (Å)	14.47976	7.51733	7.59956
α (°)	90.0000	91.9787	93.0375
β (°)	90.0000	103.6890	102.9353
γ (°)	120.0000	118.8190	118.4648