Supporting information

Enantioselective Peroxidation of C-Alkynyl Imines Enabled by Chiral BINOL Calcium Phosphate

Zhongwen Sun,*^{a,b} Lijun Chen,^a Kaixiong Qiu,^a Bo Liu,^a Hongtao Li^a and Fang Yu^a

a School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China. E-mail: sunzhongwen@kmmu.edu.cn

b Key Laboratory of State Forestry and Grassland Adminstration on Highly-Efficient Utilization of Forestry Biomass Resources in Southwest China, Southwest Forestry University, Kunming, 650224, China.

Contents:

1.General information	.S2
2 . General procedure for synthesis of <i>C</i> -alkynyl- <i>N</i> -Boc- <i>N</i> , <i>O</i> -acetals 1	. S2
3 . General procedure for synthesis of <i>hydroperoxides</i> 2	S2
4 .Catalytic asymmetric synthesis of chiral <i>C</i> -alkynyl α -amino peroxides 3 , 4	S3
5. Characterization data of the products 3, 4	S4
6. Catalytic asymmetric synthesis of chiral <i>C</i> -aryl α -amino peroxides 6	S25
7. Characterization data of the products 6	S26
8.Large-Scale catalytic asymmetric reactions	S27
9. General procedure for synthesis and characterization data of the products 7	S27
10 . The experiments of non-linear effect and product ee dependence on time	S29
11. Proposed transition states for the asymmetric peroxidation of C-all	kynyl
imines	S30
12. Determination of the Product Stereochemistry	S 30
13. References	S32
14. Copies of NMR and HPLC	S33

General information

¹H-NMR, ¹³C-NMR and ¹⁹F-NMR spectra were recorded on Bruker Avance 400 MHz or spectrophotometer. Chemical shift (δ) are expressed in ppm, and *J* values are given in Hz. The enantiomeric excess was determined by HPLC using Chiralpak AD-H, Chiralpak IC-3, Chiralpak ID-3 columns with *n*-Hexane and 2-propanol as eluents. High-resolution mass spectrometry (HRMS) was recorded on a VG Auto Spec-3000 spectrometer. Optical rotations were measured on a JASCO DIP-370p olarimeter at 589 nm at 20 °C. Flash column chromatography was performed on silica gel (200-300 mesh, Qingdao Marine Chemical Inc.). Toluene, diethyl ether, and THF was distilled from sodium benzophenone ketyl immediately prior to use. MeCN, CHCl₃, and CH₂Cl₂ were all distilled from CaH₂ immediately prior to use. Unless otherwide noted, all chemicals and solvents were purchased from Adama-beta[@], Energy Chemical *et al.* and used as received without further purification. Chiral phosphoric acids were purchased from Daicel Chiral Technologies Co., LTD. *C*-alkynyl-*N*-Boc-*N*,*O*-acetals 1¹ were prepared according to the reported procedures. Hydroperoxides **2** were purchased directly or prepared according to the reported procedures².

General procedure for synthesis of C-alkynyl-N-Boc-N,O-acetals 1

To a solution of ynal (10 mmol) in dichloromethane (80 ml) under an argon atmosphere was added Ti(OEt)₄ (4.26 g, 15 mmol) and BocNH₂ (1.76 g, 15 mmol) at room temperature. The reaction mixture was stirred under an argon atmosphere at 40 °C for 12 h. The reaction was quenched by the addition of saturated Na₂SO₄ solution (20 mL). The resulting white precipitate was isolated, and the aqueous fraction was further extracted with CH₂Cl₂ (20 mL x 3). The combined organic fraction was dried over Na₂SO₄ and the solvent was evaporated to give a residue. The residue was purified by flash column chromatography using AcOEt/hexane as an eluent to afford *C*-alkynyl-*N*-Boc-*N*,*O*-acetal **1**.

General procedure for synthesis of hydroperoxides 2

To a 5 ml vial equipped with a stirring bar, benzyl bromide (0.3 mmol) was dissolved in DMF (1 ml), indium powder (45 mg, 0.39 mmol) was added into the mixture. The resulted mixture was

then stirred at room temperature and monitored by TLC. After consumption of starting material, the reaction mixture was quenched with water, extracted with ethyl acetate, purified by flash chromatography (silica gel, *n*-hexanes/EtOAc) to provide the desired product.

General procedure for synthesis of hydroperoxides 2p.

To a cooled (0 °C) solution of H_2O_2 (65 ml, 1.1 mol, 50% wt in H_2O) and H_2SO_4 (1.0 mL, 19 mmol) was added 4-(tert-butyl)cyclohexan-1-ol (42 mmol). The reaction mixture was stirred vigorously at ambient temperature for 14 hours and then was partitioned between Et₂O (100 mL) and water (100 mL). The aqueous layer was extracted with Et₂O (2 × 50 mL) and the combined organic layers were washed with 1 N NaOH (3 × 25 mL) and brine (50 mL). The resulting solution was dried over MgSO₄ and concentrated *in vacuo* to yield hydroperoxide as a white solid. **Catalytic asymmetric synthesis of chiral** *C***-alkynyl** *α***-amino peroxides 3 and 4 Table S1. Screening of optimal condition for the** *oxa***-Mannich reaction**

	OEt + H O ^O Bu 3A MS Solvent, T				
	1a	2a	38	i [-]	
entry	catalyst	solvent	Yield (%) ^[0]	ee (%) ^[C]	
1	A1	DCM	90	2	
2	A2	DCM	93	5	
3	A3	DCM	92	4	
4	A4	DCM	91	3	
5	B1	DCM	65	21	
6	B2	DCM	77	20	
7	B3	DCM	81	41	
8	B4	DCM	91	22	
9	B5	DCM	80	14	
10	B6	DCM	75	18	
11	C1	DCM	92	77	
12	C2	DCM	90	70	
13	C3	DCM	82	69	
14	C1	CHCl ₃	79	81	
15	C1	DCE	94	90	
16	C1	CCI_4	86	66	
17	C1	toluene	90	72	
18	C1	<i>m</i> -xylene	81	77	
19	C1	THF	N.R.	N.D.	

20	C1	MCPE	83	82
21	C1	ether	46	80
22 ^[d]	C1	DCE	75	55
23 ^[e]	C1	DCE	60	90
24 ^[f]	C1	DCE	94	92
25 ^[g]	C1	DCE	88	90
26 ^[h]	C1	DCE	90	89

[a]General reaction condition: **1a** (0.1 mmol), **2a** (0.2 mmol), catalyst (10 mol%), solvent (1 mL), and 3Å M.S. (100mg), rt, 12h. [b] Isolated yield. [c] Determined by HPLC analysis. [d] Na_2SO_4 replaced 3 Å M. S.. [e] 4 Å M. S. replaced 3 Å M. S.. [f] Volume of solvent was 2 mL. [g] Reaction was carried out at 0 °C. [h] the catalyst loading was reduced to 5 mol%. Boc = *tert*-butoxycarbonyl, DCM = dichloromethane, DCE = 1,2-dichloroethane, M. S. = molecular sieves.

General procedure for synthesis of chiral C-alkynyl α-amino peroxides 3, 4

To a solution of **1** (0.1 mmol) and **2** (0.2 mmol) in DCE (1.0 mL) was added the catalyst **C1** (10 mol %) and 3Å MS (100 mg) at room temperature. After *C*-alkynyl-*N*-Boc-*N*,*O*-acetal **1** was consumed, the mixture was directly purified by silica gel chromatography (ethyl acetate/petroleum ether = 1/40 to 1/20) to afford the product **3** or **4** (the racemic product **3** or **4** was obtained by using 1,1'-binaphthyl-2,2'-diyl hydrogenphosphate as the catalyst).

Characterization data of the products 3, 4

 $tert\mbox{-butyl}\ (R)\mbox{-}(1\mbox{-}(tert\mbox{-butyl}\mbox{-peroxy})\mbox{-}3\mbox{-phenylprop-}2\mbox{-}yn\mbox{-}1\mbox{-}yl)\mbox{carbamate}\ {\bf 3a}$

White Solid, 94% yield, 30.1 mg, $[\alpha]_{D}^{20} = +62.3$ (c 1.00 CHCl₃).

¹**H-NMR**(400 MHz, CDCl3): δ (ppm): 7.46 (d, 2H, J = 6.4 Hz), 7.37-7.30 (m, 3H), 6.23 (d, 1H, J = 9.2 Hz), 5.59 (d, 1H, J = 7.2 Hz), 1.48 (s, 9H), 1.29 (s, 9H).

¹³C-NMR (100 MHz, CDCl3): δ (ppm): 153.91, 131.91, 128.94, 128.29, 121.73, 85.15, 83.20,

81.08, 80.61, 75.55, 28.25, 26.40.

HRMS calcd.for C18H25NO4Na [M+Na]+: 342.1676, found: 342.1672.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ

= 254 nm, retention time: $t_R = 5.7 \text{ min}$ (minor), $t_R = 12.3 \text{ min}$ (major).

tert-butyl (*R*)-(1-(*tert*-butylperoxy)-3-(p-tolyl)prop-2-yn-1-yl)carbamate **3b**

White Solid, 84% yield, 28.3 mg, $[\alpha]_D^{20} = +51.2$ (c 1.25 CHCl₃).

¹**H-NMR**(400 MHz, CDCl3): δ (ppm): 7.35 (d, 2H, J = 8.0 Hz), 7.11 (d, 2H, J = 8.0 Hz), 6.22 (d,

1H, J = 8.8 Hz), 5.58 (d, 1H, J = 7.2 Hz), 2.35 (s, 3H), 1.48 (s, 9H), 1.29 (s, 9H).

¹³C-NMR (100 MHz, CDCl3): δ (ppm): 153.96, 139.15, 131.81, 129.05, 118.64, 85.41, 82.53, 81.03, 80.53, 75.58, 28.26, 26.40, 21.50.

HRMS calcd.for C19H27NO4Na [M+Na]+: 356.1832, found: 356.1827.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R = 7.7 min (minor), t_R = 23.6 min (major).

 $tert\text{-butyl}\ (R) - (1 - (tert\text{-butylperoxy}) - 3 - (4 - ethylphenyl) prop - 2 - yn - 1 - yl) carbamate\ \mathbf{3c}$

White Solid, 80% yield, 27.8 mg, $[\alpha]_{D}^{20} = +80.2$ (c 1.00 CHCl₃).

¹**H-NMR**(400 MHz, CDCl3): δ (ppm): 7.37 (d, 2H, J = 6.8 Hz), 7.14 (d, 2H, J = 8.0 Hz), 6.22 (d,

1H, *J* = 9.2 Hz), 5.59 (d, 1H, *J* = 7.2 Hz), 2.64 (dd, 2H, *J* = 7.6 Hz, *J* = 7.6 Hz), 1.48 (s, 9H), 1.29 (s, 9H), 1.22 (t, 3H, *J* = 7.6 Hz, *J* = 7.6 Hz).

¹³C-NMR (100 MHz, CDCl3): δ (ppm): 153.98, 145.43, 131.90, 127.86, 118.86, 85.43, 82.51, 81.03, 80.53, 75.59, 28.82, 28.26, 26.40, 15.42.

HRMS calcd.for C20H29NO4Na [M+Na]+: 370.1989, found: 370.1984.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ

= 254 nm, retention time: $t_R = 6.9 \text{ min}$ (minor), $t_R = 20.7 \text{ min}$ (major).

 $tert \text{-butyl} \ (R) \text{-} (1 \text{-} (tert \text{-butylperoxy}) \text{-} 3 \text{-} (4 \text{-} methoxyphenyl) prop \text{-} 2 \text{-} yn \text{-} 1 \text{-} yl) carbamate \ \textbf{3d}$

White Solid, 90% yield, 31.5 mg, $[\alpha]_{D}^{20} = +56.3$ (c 1.90 CHCl₃).

¹**H-NMR**(400 MHz, CDCl3): δ (ppm): 7.39 (d, 2H, J = 8.8 Hz), 6.84 (d, 2H, J = 8.8 Hz), 6.22 (d,

1H, *J* = 9.2 Hz), 5.59 (d, 1H, *J* = 8.0 Hz), 3.91 (S, 3H), 1.48 (s, 9H), 1.29 (s, 9H).

¹³**C-NMR** (100 MHz, CDCl3): δ (ppm): 160.09, 153.99, 133.42, 113.94, 113.73, 85.29, 81.84,

81.03, 80.49, 75.60, 55.28, 28.25, 26.40.

HRMS calcd.for C19H27NO5Na [M+Na]+: 372.1781, found: 372.1778.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ

= 254 nm, retention time: $t_R = 15.3 \text{ min (minor)}, t_R = 21.7 \text{ min (major)}.$

tert-butyl (*R*)-(3-([1,1'-biphenyl]-4-yl)-1-(*tert*-butylperoxy)prop-2-yn-1-yl)carbamate **3e**

White Solid, 97% yield, 38.3 mg, $[\alpha]_D^{20} = +83.0$ (c 0.20 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.59-7.51 (m, 6H), 7.44 (t, 2H, J = 7.2 Hz, J = 7.6 Hz),

7.36 (t, 1H, *J* = 7.6 Hz, *J* = 7.2 Hz), 6.26 (d, 1H, *J* = 9.6 Hz), 5.64 (d, 1H, *J* = 9.2 Hz), 1.49 (s, 9H), 1.31 (s, 9H).

¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm): 154.00, 141.71, 140.17, 132.36, 128.89, 127.79, 127.05, 126.99, 120.56, 85.06, 83.83, 81.14, 80.63, 75.53, 28.27, 26.43.

HRMS calcd.for C24H29NO4Na [M+Na]+: 418.1989, found: 418.1983.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ

= 254 nm, retention time: $t_R = 15.3 \text{ min (minor)}, t_R = 21.7 \text{ min (major)}.$

CI.

tert-butyl (*R*)-(1-(*tert*-butylperoxy)-3-(4-chlorophenyl)prop-2-yn-1-yl)carbamate **3f**

white solid, 90% yield, 32.0 mg, $[\alpha]_{D}^{20} = +89.1$ (c 1.30 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.39 (d, 2H, J = 8.8 Hz), 7.29 (d, 2H, J = 8.4 Hz), 6.22 (d,

1H, *J* = 9.2 Hz), 5.61 (d, 1H, *J* = 8.4 Hz), 1.48 (s, 9H), 1.29 (s, 9H).

¹³C-NMR (100 MHz, CDCl₃): δ (ppm): 153.92, 135.10, 133.14, 128.69, 120.20, 84.22, 83.97,

81.16, 80.69, 75.38, 28.24, 26.38.

HRMS calcd.for C18H24ClNO4Na [M+Na]+: 376.1286, found: 376.1286.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ

= 254 nm, retention time: $t_R = 5.7 \text{ min (minor)}, t_R = 14.7 \text{ min (major)}.$

tert-butyl (R)-(1-(tert-butylperoxy)-3-(4-fluorophenyl)prop-2-yn-1-yl)carbamate 3g

White solid, 92% yield, 31.3 mg, $[\alpha]_D^{20} = +59.9$ (c 1.60 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.39-7.35 (m, 2H), 6.96-6.92 (m, 2H), 6.15 (d, 1H, J = 9.2

Hz), 5.53 (d, 1H, *J* = 8.0 Hz), 1.41 (s, 9H), 1.22 (s, 9H).

¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm): 162.89 (d, J = 249 Hz), 153.95, 133.90 (d, J = 8 Hz),

117.80 (d, *J* = 3 Hz), 115.66 (d, *J* = 22 Hz), 84.09, 82.99, 81.12, 80.65, 75.41, 28.24, 26.38.

¹⁹**F NMR** (376 MHz, CDCl₃): δ (ppm): -109.75.

HRMS calcd.for C18H24FNO4Na [M+Na]+: 360.1582, found: 360.1587.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ

= 254 nm, retention time: t_R = 6.1 min (minor), t_R = 16.7 min (major).

tert-butyl (*R*)-(1-(*tert*-butylperoxy)-3-(4-nitrophenyl)prop-2-yn-1-yl)carbamate **3h**

White solid, 98% yield, 35.7 mg, $[\alpha]_D^{20} = +60.6$ (c 1.60 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 8.20 (d, 2H, J = 8.8 Hz), 7.62 (d, 2H, J = 8.8 Hz), 6.27 (d,

1H, *J* = 9.2 Hz), 5.65 (d, 1H, *J* = 8.0 Hz), 1.49 (s, 9H), 1.30 (s, 9H).

¹³C-NMR (100 MHz, CDCl₃): δ (ppm):153.84, 147.61, 132.74, 128.54, 123.56, 88.40, 82.91, 81.33, 80.97, 75.20, 28.22, 26.37.

HRMS calcd.for C18H24N2O6Na [M+Na]+: 387.1527, found: 387.1523.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R =13.4 min (minor), t_R = 28.6 min (major).

tert-butyl (*R*)-(1-(*tert*-butylperoxy)-3-(4-(trifluoromethyl)phenyl)prop-2-yn-1-yl)carbamate **3i** White solid, 92% yield, 35.6 mg, $[\alpha]_D^{20} = +68.9$ (c 0.85 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.58 (t, 4H, J = 9.6 Hz, J = 9.6 Hz), 6.25 (d, 1H, J = 9.6 Hz), 5.55 (d, 1H, J = 9.2 Hz), 1.49 (s, 9H), 1.30 (s, 9H).

¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm): 153.91, 132.19, 130.70 (d, *J* = 33 Hz), 125.25 (t, *J* = 4 Hz, *J* = 13 Hz), 122.41, 85.65, 83.56, 81.25, 80.82, 75.25, 28.23, 26.37.

¹⁹**F NMR** (376 MHz, CDCl₃): δ (ppm): -62.94.

HRMS calcd.for C19H24F3NO4Na [M+Na]+: 410.1550, found: 410.1553.

HPLC analysis: Daicel CHIRALCEL AD-3, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, $\lambda = 254$ nm, retention time: t_R = 8.4 min (minor), t_R = 11.6 min (major).

tert-butyl (*R*)-(1-(*tert*-butylperoxy)-3-(4-(trifluoromethoxy)phenyl)prop-2-yn-1-yl)carbamate **3j** White solid, 84% yield, 34 mg, $[\alpha]_D^{20} = +58.6$ (c 2.00 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.51-7.47 (m, 2H), 7.17 (d, 2H, J = 8.0 Hz), 6.23 (d, 1H, J = 9.2 Hz), 5.62 (d, 1H, J = 8.4 Hz), 1.48 (s, 9H), 1.29 (s, 9H).

¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm): 153.94, 149.40, 133.50, 121.62, 120.62 (d, J = 31 Hz),

119.05, 84.17, 83.64, 81.17, 80.73, 75.33, 28.23, 26.37.

¹⁹**F NMR** (376 MHz, CDCl₃): *δ* (ppm): -57.81.

HRMS calcd.for C19H24F3NO5Na [M+Na]+: 426.1499, found: 426.1495.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ

= 254 nm, retention time: t_R =4.4 min (minor), t_R = 10.4 min (major).

tert-butyl (*R*)-(1-(*tert*-butylperoxy)-3-(4-cyanophenyl)prop-2-yn-1-yl)carbamate **3k**

White solid, 91% yield, 31.3 mg, $[\alpha]_D^{20} = +123.4$ (c 1.54 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.62 (d, 2H, J = 8.4 Hz), 7.55 (d, 2H, J = 8.4 Hz), 6.25 (d, 1H, J = 9.6 Hz), 5.64 (d, 1H, J = 9.2 Hz), 1.48 (s, 9H), 1.29 (s, 9H).

¹³C-NMR (100 MHz, CDCl₃): δ (ppm): 153.86, 132.45, 132.03, 126.61, 118.22, 112.44, 87.60, 83.17, 81.31, 80.92, 75.18, 28.22, 26.37.

HRMS calcd.for C19H24N2O4Na [M+Na]+: 367.1628, found: 367.1621.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R =9.3 min (minor), t_R = 17.3 min (major).

tert-butyl (*R*)-(3-(4-acetylphenyl)-1-(*tert*-butylperoxy)prop-2-yn-1-yl)carbamate **3**

White solid, 95% yield, 34.3mg, $[\alpha]_D^{20} = +82.8$ (c 1.60 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.91 (d, 2H, J = 8.0 Hz), 7.55 (d, 2H, J = 8.4 Hz), 6.26 (d,

1H, *J* = 9.6 Hz), 5.67 (d, 1H, *J* = 8.0 Hz), 2.61 (s, 3H), 1.49 (s, 9H), 1.30 (s, 9H).

¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm): 197.26, 153.92, 136.83, 132.08, 128.18, 126.51, 86.41,

84.12, 81.24, 80.87, 75.31, 28.24, 26.38.

HRMS calcd.for C20H27NO5Na [M+Na]+: 384.1781, found: 384.1777.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ

= 254 nm, retention time: t_R =13.0 min (minor), t_R = 31.3 min (major).

tert-butyl (*R*)-(1-(*tert*-butylperoxy)-3-(o-tolyl)prop-2-yn-1-yl)carbamate **3m**

White solid, 99% yield, 33.0 mg, $[\alpha]_D^{20} = +51.7$ (c 1.35 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.42 (d, 1H, *J* = 7.6 Hz), 7.25-7.18 (m, 2H), 7.13 (t, 1H, *J* = 7.6 Hz, *J* = 7.2 Hz), 6.27 (d, 1H, *J* = 9.6 Hz), 5.61 (d, 1H, 8.4 Hz), 2.43 (s, 3H), 1.49 (s, 9H), 1.29 (s, 9H).

¹³C-NMR (100 MHz, CDCl₃): δ (ppm): 154.02, 140.72, 132.20, 129.46, 128.95, 125.51, 121.49, 86.93, 84.19, 80.98, 80.58, 75.59, 28.26, 26.40, 20.59.

HRMS calcd.for C19H27NO4Na [M+Na]+: 356.1832, found: 356.1830.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ

= 254 nm, retention time: t_R =5.2 min (minor), t_R = 9.7 min (major).

tert-butyl (*R*)-(1-(*tert*-butylperoxy)-3-(2-chlorophenyl)prop-2-yn-1-yl)carbamate **3n**

White solid, 83% yield, 29.4 mg, $[\alpha]_{D}^{20} = +26.8$ (c 1.40 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.49 (dd, 1H, J = 8.0 Hz, J = 7.6 Hz), 7.39 (dd, 1H, J = 8.0 Hz, J = 7.2 Hz), 7.30-7.25 (m, 1H), 7.21 (td, 1H, J = 7.6 Hz, J = 7.6 Hz), 6.28 (d, 1H, J = 9.6 Hz), 5.66 (d, 1H, J = 8.4 Hz), 1.49 (s, 9H), 1.29 (s, 9H).

¹³C-NMR (100 MHz, CDCl₃): δ (ppm): 153.96, 136.330, 133.69, 129.99, 129.32, 126.41, 121.78, 88.36, 81.79, 81.10, 80.67, 75.44, 28.25, 26.40.

HRMS calcd.for C18H24ClNO4Na [M+Na]+: 376.1286, found: 376.1288.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R =4.5 min (minor), t_R = 11.3 min (major).

tert-butyl (R)-(3-(2-bromophenyl)-1-(tert-butylperoxy)prop-2-yn-1-yl)carbamate 30

White solid, 91% yield, 36.4 mg, $[\alpha]_D^{20} = +34.1$ (c 1.50 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.58 (d, 1H, J = 7.6 Hz), 7.50 (dd, 1H, J = 7.6 Hz, J = 7.6 Hz), 7.27 (t, 1H, J = 7.2 Hz, J = 8.0 Hz), 7.21 (td, 1H, J = 8.0 Hz, J = 7.6 Hz), 6.28 (d, 1H, J = 10.0 Hz), 5.67 (d, 1H, J = 9.6 Hz), 1.48 (s, 9H), 1.30 (s, 9H).

¹³C-NMR (100 MHz, CDCl₃): δ (ppm): 153.98, 133.78, 132.48, 130.15, 127.00, 125.75, 123.95, 87.69, 83.49, 81.14, 80.69, 75.43, 28.26, 26.41.

HRMS calcd.for C18H24BrNO4Na [M+Na]+: 420.0781, found: 420.0779.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ

= 254 nm, retention time: t_R =5.8 min (minor), t_R = 18.3 min (major).

tert-butyl (*R*)-(1-(*tert*-butylperoxy)-3-(2-fluorophenyl)prop-2-yn-1-yl)carbamate **3p**

White solid, 92% yield, 31.0 mg, $[\alpha]_D^{20} = +85.3$ (c 0.80 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.45 (td, 1H, J = 7.6 Hz, J = 7.2 Hz), 7.36-7.30 (m, 1H),

7.12-7.05 (m, 2H), 6.26 (d, 1H, *J* = 10.0 Hz), 5.66 (d, 1H, *J* = 9.2 Hz), 1.48 (s, 9H), 1.29 (s, 9H).

¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm): 163.0 (d, J = 251 Hz), 153.95, 133.80, 130.78 (d, J = 8 Hz), 123.95 (d, J = 3 Hz), 115.58 (d, J = 21 Hz), 110.39 (d, J = 16 Hz), 88.37, 81.14, 80.66, 78.60, 75.38, 28.24, 26.38.

¹⁹**F NMR** (376 MHz, CDCl₃): *δ* (ppm): -109.33.

HRMS calcd.for C18H24FNO4Na [M+Na]+: 360.1582, found: 360.1579.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ

= 254 nm, retention time: t_R =7.8 min (minor), t_R = 40.3 min (major).

tert-butyl (*R*)-(1-(*tert*-butylperoxy)-3-(2-(trifluoromethyl)phenyl)prop-2-yn-1-yl)carbamate **3q** White solid, 99% yield, 38.3 mg, $[\alpha]_{D}^{20} = +71.2$ (c 1.80 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.66 (d, 1H, J = 7.6 Hz), 7.61 (d, 1H, J = 7.6 Hz), 7.50 (t, 1H, J = 7.2 Hz, J = 7.6 Hz), 7.46 (t, 1H, J = 7.2 Hz, J = 7.6 Hz), 6.26 (d, 1H, J = 9.6 Hz), 5.61 (d, 1H, J = 8.4 Hz), 1.49 (s, 9H), 1.28 (s, 9H).

¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm): 153.96, 134.27, 131.38(m), 128.75, 125.87 (q, *J* = 5 Hz, *J*)

= 10 Hz), 124.67, 121.95, 120.00, 88.82, 81.06, 80.70, 77.21, 75.35, 28.23, 26.31.

¹⁹**F NMR** (376 MHz, CDCl₃): *δ* (ppm): -62.12.

HRMS calcd.for C19H24F3NO4Na [M+Na]+: 410.1550, found:410.1548.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ

= 254 nm, retention time: t_R =4.6 min (minor), t_R = 7.4 min (major).

tert-butyl (*R*)-(1-(*tert*-butylperoxy)-3-(m-tolyl)prop-2-yn-1-yl)carbamate **3r**

White solid, 96% yield, 32.0 mg, $[\alpha]_{D}^{20} = +40.2$ (c 1.35 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.27 (dd, 2H, J = 8.8 Hz, J = 7.6 Hz), 7.21 (t, 1H, J = 7.6 Hz, J = 7.2 Hz), 7.15 (d, 1H, J = 7.6 Hz), 6.23 (d, 1H, J = 9.6 Hz), 5.59 (d, 1H, J = 8.0 Hz), 2.32 (s, 3H), 1.48 (s, 9H), 1.29 (s, 9H).

¹³C-NMR (100 MHz, CDCl₃): δ (ppm): 153.96, 138.01, 132.47, 129.85, 128.98, 128.20, 121.50, 85.35, 82.83, 81.06, 80.56, 75.53, 28.25, 26.40, 21.17.

HRMS calcd.for C19H27NO4Na [M+Na]+: 356.1832, found: 356.1833.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R =7.0 min (minor), t_R = 19.3 min (major).

tert-butyl (*R*)-(1-(*tert*-butylperoxy)-3-(3-methoxyphenyl)prop-2-yn-1-yl)carbamate **3s** White solid, 94% yield, 33.0 mg, $[\alpha]_{D}^{20} = +74.9$ (c 1.50 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.16 (dd, 1H, J = 9.6 Hz, J = 8.0 Hz), 6.98 (d, 1H, J = 7.6 Hz), 6.91 (s, 1H), 6.83 (dd, 1H, J = 8.4 Hz, J = 8.0 Hz), 6.16 (d, 1H, J = 9.2 Hz), 5.55 (d, 1H, J = 8.4 Hz), 3.72 (s, 9H), 1.41 (s, 9H), 1.22 (s, 9H).

¹³C-NMR (100 MHz, CDCl₃): δ (ppm): 159.25, 153.97, 129.39, 124.43, 122.67, 116.67, 115.64,
85.06, 82.99, 81.10, 80.60, 75.44, 55.29, 28.25, 26.39.

HRMS calcd.for C19H27NO5Na [M+Na]+: 372.1781, found: 372.1583.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R =9.0 min (minor), t_R = 21.1 min (major).

tert-butyl (R)-(1-(tert-butylperoxy)-3-(3-chlorophenyl)prop-2-yn-1-yl)carbamate **3t**

White solid, 90% yield, 31.8 mg, $[\alpha]_D^{20} = +39.4$ (c 1.40 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.45 (s, 1H), 7.35-7.32 (m, 2H), 7.27 (t, 1H, J = 7.6 Hz, J = 6.0 Hz), 6.23 (d, 1H, J = 9.6 Hz), 5.62 (d, 1H, J = 8.8 Hz), 1.48 (s, 9H), 1.29 (s, 9H).

¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm): 153.92, 134.18, 131.77, 130.04, 129.58, 129.29, 123.42, 84.46, 83.60, 81.19, 80.74, 75.31, 28.24, 26.39.

HRMS calcd.for C18H24ClNO4Na [M+Na]+: 376.1286, found: 376.1283.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ

= 254 nm, retention time: t_R =5.9 min (minor), t_R = 11.4 min (major).

 $tert\mbox{-butyl}\ (R)\mbox{-}(1\mbox{-}(tert\mbox{-butylperoxy})\mbox{-}3\mbox{-}(3\mbox{-}fluorophenyl)\mbox{prop-}2\mbox{-}y\mbox{-}1\mbox{-}y\mbox{-})\mbox{carbamate}\ {\bf 3u}$

White solid, 91% yield, 31.0 mg, $[\alpha]_D^{20} = +57.7$ (c 1.00 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.30-7.23 (m, 2H), 7.16 (dd, 1H, J = 9.2 Hz, J = 9.6 Hz), 7.08-7.03 (m, 1H), 6.23 (d, 1H, J = 9.6 Hz), 5.62 (d, 1H, J = 8.8 Hz), 1.48 (s, 9H), 1.29 (s, 9H). ¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm): 162.24 (d, J = 245 Hz), 153.93, 129.95 (d, J = 8 Hz), 128.82 (d, J = 3 Hz), 123.53 (d, J = 10 Hz), 118.74 (d, J = 23 Hz), 116.39 (d, J = 21 Hz), 84.17, 83.76, 81.18, 75.31, 28.24, 26.38.

¹⁹**F NMR** (376 MHz, CDCl₃): δ (ppm): -112.66.

HRMS calcd.for C18H24FNO4Na [M+Na]+: 360.1582, found: 360.1584.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R =5.8 min (minor), t_R = 10.4 min (major).

tert-butyl (*R*)-(1-(*tert*-butylperoxy)-3-(3,5-dimethylphenyl)prop-2-yn-1-yl)carbamate $3\mathbf{v}$ White solid, 89% yield, 31.0 mg, $[\alpha]_{\mathbf{D}}^{20} = +74.4$ (c 1.20 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.09 (s, 2H), 6.97 (s, 1H), 6.22 (d, 1H, J = 9.6 Hz), 5.58 (d,

1H, J = 8.0 Hz), 2.28 (s, 6H), 1.48 (s, 9H), 1.29 (s, 9H).

¹³C-NMR (100 MHz, CDCl₃): δ (ppm): 153.99, 137.88, 130.87, 129.58, 121.30, 85.54, 82.43, 81.04, 80.51, 75.55, 28.26, 26.40, 21.06.

HRMS calcd.for C20H29NO4Na [M+Na]+: 370.1989, found: 370.1989.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ

= 254 nm, retention time: t_R =5.4 min (minor), t_R = 12.9 min (major).

tert-butyl (*R*)-(3-(benzo[d][1,3]dioxol-5-yl)-1-(*tert*-butylperoxy)prop-2-yn-1-yl)carbamate **3w** White solid, 99% yield, 36.0 mg, $[\alpha]_{D}^{20}$ = +50.8 (c 1.70 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 6.99 (d, 1H, J = 8.0 Hz), 6.89 (s, 1H), 6.75 (d, 1H, J = 8.0 Hz), 6.21 (d, 1H, J = 9.6 Hz), 5.98 (s, 2H), 5.61 (d, 1H, J = 8.8 Hz), 1.48 (s, 9H), 1.29 (s, 9H).

¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm): 153.98, 148.43, 147.37, 126.79, 114.85, 111.77, 108.44, 101.40, 85.09, 81.58, 81.07, 80.55, 75.50, 28.25, 26.39.

HRMS calcd.for C19H25NO6Na [M+Na]+: 386.1574, found: 386.1569.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ

= 254 nm, retention time: t_R =8.7 min (minor), t_R = 23.5 min (major).

tert-butyl (*R*)-(1-(*tert*-butylperoxy)-3-(naphthalen-1-yl)prop-2-yn-1-yl)carbamate **3x**

White solid, 86% yield, 31.8 mg, $[\alpha]_D^{20} = +63.7$ (c 1.20 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 8.33 (d, 1H, J = 8.4 Hz), 7.85 (d, 2H, J = 8.4 Hz), 7.69 (d, 1H, J = 7.2 Hz), 7.59-7.50 (m, 2H), 7.42 (t, 1H, J = 8.0 Hz, J = 7.2 Hz), 6.38 (d, 1H, J = 9.6 Hz), 5.74 (d, 1H, J = 8.4 Hz), 1.50 (s, 9H), 1.33 (s, 9H).

¹³C-NMR (100 MHz, CDCl₃): δ (ppm): 154.07, 133.37, 133.07, 130.92, 129.48, 126.96, 126.54,

126.13, 125.09, 119.36, 88.06, 83.43, 81.11, 80.07, 75.66, 28.29, 26.46.

HRMS calcd.for C22H27NO4Na [M+Na]+: 370.2013, found: 370.2008.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ

= 254 nm, retention time: t_R =6.4 min (minor), t_R = 11.9 min (major).

tert-butyl (*R*)-(1-(*tert*-butylperoxy)-3-(naphthalen-2-yl)prop-2-yn-1-yl)carbamate **3y**

White solid, 88% yield, 32.6 mg, $[\alpha]_{D}^{20} = +73.0$ (c 1.58 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.99 (s, 1H), 7.82-7.76 (m, 3H), 7.50 (t, 3H, J = 9.6 Hz, J

= 5.6 Hz), 6.29 (d, 1H, J = 10.0 Hz), 5.67 (d, 1H, J = 9.2 Hz), 1.49 (s, 9H), 1.31 (s, 9H).

¹³C-NMR (100 MHz, CDCl₃): δ (ppm): 154.01, 133.10, 132.78, 132.20, 128.26, 128.04, 127.86,

127.79, 127.02, 126.66, 118.96, 85.51, 83.47, 81.16, 80.63, 75.56, 28.28, 26.44.

HRMS calcd.for C22H27NO4Na [M+Na]+: 370.2013, found: 370.2011.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 85/15, flow rate = 1.0 mL/min, λ

= 254 nm, retention time: t_R =5.8 min (minor), t_R = 12.9 min (major).

tert-butyl (R)-(1-(tert-butylperoxy)-3-(thiophen-2-yl)prop-2-yn-1-yl)carbamate 3z

White solid, 97% yield, 31.5 mg, $[\alpha]_D^{20} = +41.4$ (c 1.30 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.29 (d, 1H, J = 5.2 Hz), 7.26 (d, 1H, J = 3.6 Hz), 6.98 (dd,

1H, *J* = 5.2 Hz, *J* = 5.2 Hz), 6.24 (d, 1H, *J* = 9.6 Hz), 5.61 (d, 1H, *J* = 8.8 Hz), 1.48 (s, 9H), 1.29 (s, 9H).

¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm): 153.91, 133.10, 127.99, 126.99, 121.53, 87.04, 81.19, 80.68, 78.64, 75.50, 28.25, 26.39.

HRMS calcd.for C16H23NO4SNa [M+Na]+: 348.1240, found: 348.1235.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R =7.2 min (minor), t_R = 18.0 min (major).

tert-butyl (R)-(1-(tert-butylperoxy)-3-(quinolin-3-yl)prop-2-yn-1-yl)carbamate 3aa

White solid, 91% yield, 33.7 mg, $[\alpha]_D^{20} = +118.3$ (c 1.30 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 8.93 (s, 1H), 8.23 (s, 1H), 8.11 (d, 1H, J = 8.4 Hz), 7.80-7.60 (m, 2H), 7.58 (t, 1H, J = 7.2 Hz, J = 7.6 Hz), 6.32 (d, 1H, J = 9.6 Hz), 5.88 (s, 1H), 1.50 (s, 9H), 1.31 (s, 9H).

¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm): 153.99, 151.92, 147.13, 139.22, 130.49, 129.45, 127.68, 127.43, 126.99, 115.87, 86.63, 82.32, 81.28, 80.81, 75.36, 28.26, 26.41.

HRMS calcd.for C21H26N2O4Na [M+Na]+: 371.1965, found: 371.1963.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, λ

= 254 nm, retention time: $t_R = 11.8 \text{ min (minor)}, t_R = 17.0 \text{ min (major)}.$

tert-butyl (R)-(1-(tert-butylperoxy)-3-(pyridin-3-yl)prop-2-yn-1-yl)carbamate 3ab

White solid, 89% yield, 28.5 mg, $[\alpha]_D^{20} = +16.5$ (c 1.15 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 8.71 (d, 1H, *J* = 1.2 Hz), 8.58 (dd, 1H, *J* = 4.8 Hz, *J* = 4.8 Hz), 7.77-7.74 (m, 1H), 7.27 (t, 1H, *J* = 7.6 Hz, *J* = 5.2 Hz), 6.26 (d, 1H, *J* = 9.6 Hz), 5.90 (s, 1H), 1.49 (s, 9H), 1.29 (s, 9H).

¹³C-NMR (100 MHz, CDCl₃): δ (ppm): 153.98, 152.49, 149.24, 138.91, 123.02, 118.97, 86.81, 81.66, 81.25, 80.75, 75.24, 28.24, 26.37.

HRMS calcd.for C17H24N2O4Na [M+Na]+: 321.1809, found: 321.1810.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 70/30, flow rate = 1.0 mL/min, λ

= 254 nm, retention time: t_R =8.4 min (minor), t_R = 10.4 min (major).

tert-butyl (*R*)-(1-(*tert*-butylperoxy)-3-(3,4-dihydronaphthalen-1-yl)prop-2-yn-1-yl)carbamate **3ac** Colorless oil, 85% yield, 31.5 mg, $[\alpha]_D^{20}$ = +87.3 (c 0.50 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.55 (d, 1H, J = 7.6 Hz), 7.24-7.16 (m, 2H), 7.10 (d, 1H, J = 7.2 Hz), 6.51 (t, 1H, J = 4.8 Hz, J = 4.8 Hz), 6.23 (d, 1H, J = 9.6 Hz), 5.61 (d, 1H, J = 8.0 Hz),

2.79 (t, 2H, J = 8.0 Hz, J = 8.4 Hz), 2.41-2.36 (m, 2H), 1.48 (s, 9H), 1.29 (s, 9H).

¹³C-NMR (100 MHz, CDCl₃): δ (ppm): 154.02, 137.01, 134.84, 132.11, 127.82, 127.39, 126.64,

125.08, 120.69, 84.11, 83.26, 81.00, 80.57, 75.51, 28.26, 26.97, 26.41, 23.62.

HRMS calcd.for C22H29NO4Na [M+Na]+: 394.1989, found: 394.1982.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R =5.4 min (minor), t_R = 11.0 min (major).

(R)-N-(1-(tert-butylperoxy)-3-phenylprop-2-yn-1-yl)benzamide 3ad

White solid, 90% yield, 29.0 mg, $[\alpha]_D^{20} = +106.5$ (c 0.85 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.86 (d, 2H, J = 7.2 Hz), 7.56-7.53 (m, 1H), 7.50-7.45 (m,

4H), 7.38-7.30 (m, 3H), 7.14 (d, 1H, *J* = 9.2 Hz) 6.76 (d, 1H, *J* = 9.2 Hz), 1.30 (s, 9H).

¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm): 166.16, 133.43, 132.17, 131.95, 129.08, 128.71, 128.36,

127.33, 121.61, 85.52, 83.39, 81.40, 73.86, 26.47.

HRMS calcd.for C20H21NO3Na [M+Na]+: 346.1414, found: 346.1410.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ

= 254 nm, retention time: t_R =13.2 min (minor), t_R = 22.6 min (major).

benzyl (R)-(1-(tert-butylperoxy)-3-phenylprop-2-yn-1-yl)carbamate 3ae

White solid, 90% yield, 31.8 mg, $[\alpha]_{D}^{20} = +86.8$ (c 1.38 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.44 (t, 2H, J = 6.4 Hz, J = 8.0 Hz), 7.37 (d, 3H, J = 6.4 Hz), 7.35-7.29 (m, 4H), 6.30 (d, 1H, J = 9.6 Hz), 5.84 (d, 1H, J = 8.8 Hz), 5.17 (s, 2H), 1.27 (s,

9H).

¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm): 154.80, 135.96, 131.93, 129.09, 128.56, 128.35, 128.31, 128.28, 121.53, 85.54, 82.80, 81.28, 75.90, 67.32, 26.38.

HRMS calcd.for C21H23NO4Na [M+Na]+: 376.1519, found: 376.1515.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ

= 254 nm, retention time: t_R =13.9 min (major), t_R = 15.7 min (minor).

(9H-fluoren-9-yl)methyl (*R*)-(1-(*tert*-butylperoxy)-3-phenylprop-2-yn-1-yl)carbamate **3af** White solid, 91% yield, 40.1 mg, $[\alpha]_D^{20} = +70.9$ (c 1.50 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.77 (d, 2H, *J* = 7.6 Hz), 7.62 (d, 2H, *J* = 7.2 Hz), 7.47 (t, 2H, *J* = 6.8 Hz, *J* = 7.6 Hz), 7.41 (t, 2H, *J* = 7.2 Hz, *J* = 7.6 Hz), 7.35-7.30 (m, 5H), 6.31 (d, 1H, *J* = 9.6 Hz), 5.88 (d, 2H, *J* = 9.6 Hz), 4.57-4.40 (m, 2H), 4.26 (t, 1H, *J* = 6.8 Hz, *J* = 6.8 Hz), 1.28 (s, 9H).

¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm): 154.86, 143.71, 141.34, 131.95, 129.13, 128.38, 127.79, 127.14, 125.12, 121.54, 120.03, 85.63, 82.82, 81.31, 75.92, 67.33, 47.07, 26.44.

HRMS calcd.for C28H27NO4Na [M+Na]+: 464.1832, found: 464.1832.

HPLC analysis: Daicel CHIRALCEL AD-3, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min,

 $\lambda = 254$ nm, retention time: t_R =10.1 min (major), t_R = 13.6 min (minor).

2,2,2-trichloroethyl (*R*)-(1-(*tert*-butylperoxy)-3-phenylprop-2-yn-1-yl)carbamate **3ag**

White solid, 90% yield, 35.6 mg, $[\alpha]_D^{20} = +115.2$ (c 1.64 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.41 (d, 2H, J = 6.8 Hz), 7.31-7.26 (m, 3H), 6.23 (d, 1H, J = 9.6 Hz), 5.65 (d, 1H, J = 8.4 Hz), 4.17 (t, 2H, J = 8.4 Hz, J = 8.0 Hz), 1.25 (s, 9H), 0.97 (t, 2H, J = 8.0 Hz, J = 8.0 Hz), 0.00 (s, 9H).

¹³C-NMR (100 MHz, CDCl₃): δ (ppm): 156.56, 133.38, 130.50, 129.80, 123.09, 86.79, 84.53, 82.70, 77.31, 65.35, 27.88, 19.15, 0.00.

HRMS calcd.for C19H29NO4SiNa [M+Na]+: 386.1758, found: 386.1760.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ

= 254 nm, retention time: t_R =8.0 min (major), t_R = 11.6 min (minor).

tert-butyl (R)-(1-(benzylperoxy)-3-phenylprop-2-yn-1-yl)carbamate 4a

White solid, 89% yield, 31.4 mg, $[\alpha]_D^{20} = +54.5$ (c 1.10 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.45 (dd, 2H, J = 7.6 Hz, J = 8.0 Hz), 7.40 (dd, 2H, J = 8.0 Hz, J = 7.2 Hz), 7.38-7.30 (m, 6H), 6.32 (d, 1H, J = 8.8 Hz), 5.67 (d, 1H, J = 4.8 Hz), 5.13 (d, 2H, J = 2.0 Hz), 1.47 (s, 9H).

¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm): 153.84, 135.25, 131.92, 129.26, 129.13, 128.52, 128.46, 128.39, 121.50, 85.45, 82.87, 80.91, 77.84, 75.55, 28.26.

HRMS calcd.for C21H23NO4Na [M+Na]+: 376.1519, found: 376.1517.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 85/15, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R =8.8 min (minor), t_R = 11.3 min (major).

tert-butyl (R)-(1-((4-methylbenzyl)peroxy)-3-phenylprop-2-yn-1-yl)carbamate 4b

White solid, 90% yield, 33.0 mg, $[\alpha]_D^{20} = +18.9$ (c 0.80 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.46-7.38 (m, 2H), 7.37-7.28 (m, 5H), 7.15 (d, 2H, *J* = 7.6 Hz), 6.31 (d, 1H, *J* = 8.8 Hz), 5.67 (d, 1H, *J* = 5.6 Hz), 5.09 (q, 2H, *J* = 10.4 Hz, *J* = 10.8 Hz), 2.33 (s, 3H), 1.47 (s, 9H).

¹³C-NMR (100 MHz, CDCl₃): δ (ppm): 153.82, 138.38, 132.12, 131.91, 129.42, 129.16, 129.10, 128.38, 121.55, 85.35, 82.98, 80.85, 77.72, 75.52, 28.26, 21.25.

HRMS calcd.for C22H25NO4Na [M+Na]+: 390.1676, found: 390.1672.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 85/15, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R =9.4 min (minor), t_R = 13.8 min (major).

tert-butyl (*R*)-(1-((4-methoxybenzyl)peroxy)-3-phenylprop-2-yn-1-yl)carbamate **4c** White solid, 91% yield, 35.0 mg, $[\alpha]_D^{20} = +81.2$ (c 1.63 CHCl₃). ¹H-NMR (400 MHz, CDCl₃): δ (ppm): 7.46-7.44 (m, 2H), 7.38-7.29 (m, 5H), 6.86 (d, 1H, J = 8.8 Hz), 6.30 (d, 1H, J = 8.4 Hz), 5.06 (q, 2H, J = 10.4 Hz, J = 10.4 Hz), 3.78 (s, 3H), 1.47 (s, 9H).
¹³C-NMR (100 MHz, CDCl₃): δ (ppm): 159.92, 153.84, 131.90, 131.04, 129.10, 128.38, 127.18, 121.54, 113.88, 85.35, 83.01, 80.84, 77.46, 75.51, 55.25, 28.25.

HRMS calcd.for C22H25NO5Na [M+Na]+: 406.1625, found: 406.1626.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 85/15, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R =9.2 min (minor), t_R = 14.4 min (major).

tert-butyl (*R*)-(1-(([1,1'-biphenyl]-4-ylmethyl)peroxy)-3-phenylprop-2-yn-1-yl)carbamate **4d** White solid, 97% yield, 41.7 mg, $[\alpha]_D^{20} = +48.2$ (c 1.65 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.57 (d, 4H, *J* = 7.6 Hz), 7.49-7.41 (m, 6H), 7.37-7.29 (m, 4H), 6.35 (d, 1H, *J* = 9.2 Hz), 5.72 (d, 1H, *J* = 7.6 Hz), 5.18 (t, 2H, *J* = 12.4 Hz, *J* = 11.2 Hz), 1.47 (s, 9H).

¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm): 153.89, 141.48, 140.78, 134.23, 131.93, 129.75, 129.16, 128.80, 128.42, 127.43, 127.25, 127.17, 121.49, 85.49, 82.89, 80.93, 77.55, 75.58, 28.28.

HRMS calcd.for C27H27NO4Na [M+Na]+: 452.1832, found: 452.1836.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 85/15, flow rate = 1.0 mL/min, λ

= 254 nm, retention time: t_R =9.6 min (minor), t_R = 15.1 min (major).

tert-butyl (*R*)-(1-((4-chlorobenzyl)peroxy)-3-phenylprop-2-yn-1-yl)carbamate **4e**

White solid, 90% yield, 35.0 mg, $[\alpha]_D^{20} = +76.5$ (c 1.20 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.46-7.44 (m, 2H), 7.39-7.35 (m, 2H), 7.34-7.30 (m, 5H),

6.30 (d, 1H, *J* = 8.8 Hz), 5.66 (d, 1H, *J* = 6.0 Hz), 5.09 (s, 2H), 1.47 (s, 9H).

¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm): 153.80, 134.39, 133.97, 131.90, 130.53, 129.20, 128.64,

128.41, 121.38, 85.60, 82.65, 80.99, 77.36, 28.24.

HRMS calcd.for C21H22ClNO4Na [M+Na]+: 410.1130, found: 410.1131.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 85/15, flow rate = 1.0 mL/min, λ

= 254 nm, retention time: t_R =6.6 min (minor), t_R = 11.3 min (major).

tert-butyl (R)-(1-((4-bromobenzyl)peroxy)-3-phenylprop-2-yn-1-yl)carbamate **4f**

White solid, 85% yield, 36.7 mg, $[\alpha]_{D}^{20} = +38.8$ (c 1.45 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.47-7.43 (m, 4H), 7.36-7.30 (m, 3H), 7.27 (d, 2H, J = 8.0

Hz), 6.29 (d, 1H, *J* = 9.2 Hz), 5.66 (d, 1H, *J* = 7.6 Hz), 5.06 (s, 2H), 1.47 (s, 9H).

¹³C-NMR (100 MHz, CDCl₃): δ (ppm): 153.80, 134.49, 131.90, 131.60, 130.82, 129.20, 128.42,

122.58, 121.36, 85.60, 82.63, 80.99, 76.90, 75.54, 28.25.

HRMS calcd.for C21H22BrNO4Na [M+Na]+: 454.0624, found: 454.0626.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 85/15, flow rate = 1.0 mL/min, λ

= 254 nm, retention time: t_R =6.7 min (minor), t_R = 11.8 min (major).

tert-butyl (R)-(1-((4-fluorobenzyl)peroxy)-3-phenylprop-2-yn-1-yl)carbamate 4g

White solid, 91% yield, 33.8 mg, $[\alpha]_D^{20} = +63.4$ (c 1.45 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.45-7.43 (m, 2H), 7.39-7.30 (m, 5H), 7.02 (td, 2H, J = 8.8

Hz, J = 8.8 Hz), 6.30 (d, 1H, J = 8.4 Hz), 5.67 (s, 1H), 5.08 (s, 2H), 1.47 (s, 9H).

¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm): 162.90 (d, J = 245 Hz), 153.81, 131.90, 131.15 (d, J = 8

Hz), 129.17, 128.40, 121.42, 115.36 (d, *J* = 21 Hz), 85.55, 82.73, 80.95, 76.95, 75.54, 28.24.

¹⁹**F NMR** (376 MHz, CDCl₃): *δ* (ppm): -113.40.

HRMS calcd.for C21H22FNO4Na [M+Na]+: 394.1425, found: 394.1425.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 85/15, flow rate = 1.0 mL/min, λ

= 254 nm, retention time: t_R =6.7 min (minor), t_R = 10.3 min (major).

 $tert\mbox{-butyl}\ (R)\mbox{-}(1\mbox{-}((3\mbox{-}chlorobenzyl)\mbox{-}peroxy)\mbox{-}3\mbox{-}phenylprop\mbox{-}2\mbox{-}yn\mbox{-}1\mbox{-}yl)\mbox{carbamate}\ {\bf 4h}$

White solid, 92% yield, 35.7 mg, $[\alpha]_{D}^{20}$ = +44.7 (c 1.48 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.47-7.44 (m, 2H), 7.41 (s, 1H), 7.38-7.31 (m, 3H), 7.30-7.26 (m, 3H), 6.31 (d, 1H, J = 8.8 Hz), 5.57 (d, 1H, J = 8.0 Hz), 5.09 (s, 2H), 1.48 (s, 9H).

¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm): 153.81, 137.53, 134.32, 131.93, 129.71, 129.19, 129.08, 128.58, 128.40, 127.06, 121.36, 85.68, 82.60, 81.03, 76.87, 75.57, 28.25.

HRMS calcd.for C21H22ClNO4Na [M+Na]+: 410.1130, found: 410.1128.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 85/15, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R =6.7 min (minor), t_R = 11.0 min (major).

tert-butyl (R)-(1-((3-methylbenzyl)peroxy)-3-phenylprop-2-yn-1-yl)carbamate 4i

White solid, 90% yield, 33.0 mg, $[\alpha]_{D}^{20} = +81.0$ (c 1.20 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.46 (d, 2H, *J* = 7.6 Hz), 7.37-7.30 (m, 3H), 7.24-7.19 (m, 3H), 7.13 (d, 1H, *J* = 7.2 Hz), 6.32 (d, 1H, *J* = 8.8 Hz), 5.70 (s, 1H), 5.10 (t, 2H, *J* = 12.0 Hz, *J* = 12.0 Hz), 2.32 (s, 3H), 1.47 (s, 9H).

¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm): 153.84, 138.09, 135.03, 131.92, 130.03, 129.30, 129.12, 128.39, 128.36, 126.36, 121.53, 85.41, 82.97, 80.88, 77.91, 75.54, 28.26, 21.30.

HRMS calcd.for C22H25NO4Na [M+Na]+: 390.1676, found: 390.1677.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 85/15, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R =8.0 min (minor), t_R = 10.9 min (major).

tert-butyl (*R*)-(1-((2-bromobenzyl)peroxy)-3-phenylprop-2-yn-1-yl)carbamate **4**j

White solid, 99% yield, 42.8 mg, $[\alpha]_{D}^{20} = +67.2$ (c 1.50 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.53 (t, 2H, J = 7.2 Hz, J = 6.0 Hz), 7.45 (d, 2H, J = 7.2 Hz), 7.37-7.25 (m, 4H), 7.16 (t, 1H, J = 7.6 Hz, J = 7.6 Hz), 6.33 (d, 1H, J = 8.4 Hz), 5.74 (s, 1H), 5.26 (s, 2H), 1.48 (s, 9H).

¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm): 153.79, 135.16, 132.73, 131.94, 130.89, 129.77, 129.12, 128.36, 127.41, 123.70, 121.47, 85.55, 82.76, 80.97, 76.95, 75.66, 28.26.

HRMS calcd.for C21H22BrNO4Na [M+Na]+: 454.0624, found: 454.0624.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 85/15, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R =9.3 min (minor), t_R = 18.1 min (major).

 $tert\mbox{-butyl}\ (R)\mbox{-}(1\mbox{-}((2\mbox{-methylbenzyl})\mbox{-penylprop-}2\mbox{-}y\mbox{-}1\mbox{-}y\mbox{-})\mbox{-}carbamate\ {\bf 4k}$

White solid, 95% yield, 35.0 mg, $[\alpha]_D^{20} = +71.6$ (c 1.35 CHCl₃).

¹H-NMR (400 MHz, CDCl₃): δ (ppm): 7.45 (d, 2H, J = 7.2 Hz), 7.32 (q, 4H, J = 7.2 Hz, J = 6.8 Hz), 7.23 (t, 1H, J = 6.0 Hz, J = 7.2 Hz), 7.16 (d, 2H, J = 4.4 Hz), 6.31 (d, 1H, J = 8.4 Hz), 5.67 (s, 1H), 5.17 (q, 2H, J = 10.4 Hz, J = 10.4 Hz), 2.40 (s, 3H), 1.46 (s, 9H).

¹³C-NMR (100 MHz, CDCl₃): δ (ppm): 153.80, 137.93, 132.94, 131.91, 130.77, 130.35, 129.10, 128.88, 128.37, 125.93, 121.54, 85.34, 83.08, 80.90, 75.88, 75.56, 28.25, 19.02.

HRMS calcd.for C22H25NO4Na [M+Na]+: 390.1676, found: 390.1675.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 85/15, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R =8.6 min (minor), t_R = 10.4 min (major).

tert-butyl (*R*)-(1-((naphthalen-1-ylmethyl)peroxy)-3-phenylprop-2-yn-1-yl)carbamate **41** White solid, 95% yield, 38.3 mg, $[\alpha]_D^{20} = +59.4$ (c 1.65 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 8.22 (d, 1H, J = 6.8 Hz), 7.84 (d, 2H, J = 8.4 Hz), 7.54 (d, 1H, J = 6.8 Hz), 7.49-7.41 (m, 5H), 7.38-7.30 (m, 3H), 6.37 (d, 1H, J = 8.4 Hz), 5.70 (s, 1H), 5.61 (dd, 2H, J = 10.4 Hz, J = 10.8 Hz), 1.44 (s, 9H).

¹³C-NMR (100 MHz, CDCl₃): δ (ppm): 153.79, 133.73, 132.26, 131.96, 130.66, 129.63, 129.14, 128.86, 128.53, 128.39, 126.57, 125.87, 125.26, 124.13, 121.49, 85.33, 83.22, 80.92, 75.87, 75.60, 28.23.

HRMS calcd.for C25H25NO4Na [M+Na]+: 402.1711, found: 402.1712.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 85/15, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R =9.8 min (minor), t_R = 18.8 min (major).

tert-butyl (*R*)-(1-((naphthalen-2-ylmethyl)peroxy)-3-phenylprop-2-yn-1-yl)carbamate **4m** White solid, 95% yield, 38.3 mg, $[\alpha]_D^{20} = +57.3$ (c 1.75 CHCl₃). ¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.81 (q, 4H, J = 8.0 Hz, J = 6.8 Hz), 7.53 (d, 1H, J = 8.4 Hz), 7.49-7.43 (m, 4H), 7.37-7.29 (m, 3H), 6.35 (d, 1H, J = 8.8 Hz), 5.67 (s, 1H), 5.29 (s, 2H), 1.45 (s, 9H).

¹³C-NMR (100 MHz, CDCl₃): δ (ppm): 153.85, 133.37, 133.24, 132.83, 131.94, 129.14, 128.52, 128.39, 128.22, 128.07, 127.72, 126.78, 126.26, 126.15, 121.49, 85.52, 82.88, 80.90, 77.94, 75.59, 28.24.

HRMS calcd.for C25H25NO4Na [M+Na]+: 402.1711, found: 402.1708.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 85/15, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R =9.0 min (minor), t_R = 17.2 min (major).

 $tert \text{-butyl} \ (R) \text{-} (1 \text{-} (benzhydrylperoxy) \text{-} 3 \text{-} phenylprop \text{-} 2 \text{-} yn \text{-} 1 \text{-} yl) carbamate \ \textbf{4n}$

White solid, 80% yield, 34.4 mg, $[\alpha]_D^{20} = +38.1$ (c 1.90 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.44 (dd, 2H, *J* = 7.6 Hz, *J* = 7.6 Hz), 7.41 (d, 2H, *J* = 6.8 Hz), 7.37-7.28 (m, 11H), 6.36 (d, 1H, *J* = 9.2 Hz), 6.30 (s, 1H), 5.68 (d, 1H, *J* = 7.6 Hz), 1.46 (s, 9H).

¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm): 153.79, 139.32, 139.13, 131.92, 129.11, 128.39, 128.36, 128.35, 128.14, 128.01, 127.99, 127.75, 121.57, 88.11, 85.51, 83.17, 80.87, 75.76, 28.25.

HRMS calcd.for C27H27NO4Na [M+Na]+: 452.1832, found: 452.1831.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 85/15, flow rate = 1.0 mL/min, λ = 254 nm, retention time: t_R =5.6 min (major), t_R = 10.4 min (minor).

tert-butyl (*R*)-(3-phenyl-1-((2-phenylpropan-2-yl)peroxy)prop-2-yn-1-yl)carbamate **40** White solid, 83% yield, 31.6 mg, $[\alpha]_D^{20} = +73.5$ (c 1.80 CHCl₃).

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm): 7.51 (d, 2H, J = 7.8 Hz), 7.44 (d, 2H, J = 6.6 Hz), 7.43-7.30 (m, 4H), 7.26 (d, 1H, J = 8.4 Hz), 6.27 (d, 1H, J = 8.4 Hz), 5.57 (s, 1H), 1.65 (d, 6H, J = 7.8 Hz), 1.49 (s, 9H).

¹³**C-NMR** (150 MHz, CDCl₃): δ (ppm): 153.99, 144.96, 131.90, 128.99, 128.33, 128.08, 127.20,

125.57, 121.69, 85.31, 83.75, 83.06, 80.62, 75.56, 28.27, 26.58.

HRMS calcd.for C23H27NO4Na [M+Na]+: 404.1832, found: 404.1829.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 85/15, flow rate = 1.0 mL/min, λ

= 254 nm, retention time: t_R =10.0min (major), t_R = 13.2 min (minor).

tert-butyl (*R*)-(1-((4-(tert-butyl)cyclohexyl)peroxy)-3-phenylprop-2-yn-1-yl)carbamate **4p** White solid, 81% yield, 32.5 mg, $[\alpha]_{\rm D}^{20}$ = +92.7 (c 0.60 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.46 (d, 2H, *J* = 6.4 Hz), 7.37-7.30 (m, 3H), 6.55 (d, 1H, *J* = 10.8 Hz), 5.71 (d, 1H, *J* = 10.4 Hz), 2.37-2.32 (m, 2H), 1.68 (q, 2H, *J* = 10.4 Hz, *J* = 10.8 Hz), 1.57 (dd, 1H, *J* = 4.0 Hz, *J* = 4.4 Hz), 1.49 (s, 9H), 1.35-1.25 (m, 3H), 1.08-1.02 (m, 1H), 0.87 (s, 9H).

¹³C-NMR (100 MHz, CDCl₃): δ (ppm): 155.99, 132.02, 129.42, 128.40, 120.98, 87.08, 82.21, 82.16, 81.08, 76.95, 47.49, 32.34, 29.78, 28.18, 27.66, 23.62, 22.98.

HRMS calcd.for C24H35NO4Na [M+Na]+: 424.2458, found: 424.2462.

HPLC analysis: Daicel CHIRALCEL AD-3, *n*-hexane/*i*-PrOH = 85/15, flow rate = 1.0 mL/min,

 $\lambda = 254$ nm, retention time: t_R = 5.8 min (major), t_R = 11.8 min (minor).

tert-butyl (R)-(1-(tert-pentylperoxy)-3-phenylprop-2-yn-1-yl)carbamate 4q

White solid, 82% yield, 27.3 mg, $[\alpha]_D^{20} = +98.8$ (c 0.64 CHCl₃).

¹H-NMR (400 MHz, CDCl₃): δ (ppm): 7.45 (dd, 2H, J = 7.2 Hz, J = 8.0 Hz), 7.37-7.29 (m, 3H),
6.23 (d, 1H, J = 9.6 Hz), 5.59 (d, 1H, 7.6 Hz), 1.60 (q, 2H, J = 7.6 Hz, J = 7.6 Hz), 1.48 (s, 9H),
1.24 (s, 9H), 0.91 (t, 3H, J = 7.6 Hz, J = 7.6 Hz).

¹³C-NMR (100 MHz, CDCl₃): δ (ppm): 153.98, 131.90, 128.94, 128.30, 121.74, 85.12, 83.33, 83.21, 80.55, 75.41, 31.73, 28.25, 23.91, 8.39.

HRMS calcd.for C19H27NO4Na [M+Na]+: 356.1832, found: 356.1838.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 85/15, flow rate = 1.0 mL/min, λ

= 254 nm, retention time: t_R =4.4 min (minor), t_R = 6.8 min (major).

tert-butyl (R)-(1-(benzylperoxy)-3-(trimethylsilyl)prop-2-yn-1-yl)carbamate 4r

Colorless oil, 87% yield, 30.5 mg, $[\alpha]_D^{20} = +183.5$ (c 0.40 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.40-7.37 (m, 2H), 7.36-7.31 (m, 3H), 6.07 (d, 1H, J = 8.8

Hz), 5.55 (d, 1H, *J* = 6.0 Hz), 5.09 (q, 2H, *J* = 10.8 Hz, *J* = 10.4 Hz), 1.44 (s,9H), 0.20 (s, 9H).

¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm): 154.19, 135.58, 129.64, 128.91, 128.82, 98.95, 91.94,

81.26, 78.13, 75.51, 28.63, 0.00.

HRMS calcd.for C18H27NO4SiNa [M+Na]+: 372.1602, found: 372.1608.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 220 nm, retention time: t_R =6.1 min (minor), t_R = 7.6 min (major).

tert-butyl (*R*)-(1-(benzylperoxy)-3-(4-ethynylphenyl)prop-2-yn-1-yl)carbamate **4s**

White solid, 82% yield, 31.0 mg, $[\alpha]_D^{20} = +155.3$ (c 1.35 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.45 (d, 2H, J = 8.4 Hz), 7.41-7.39 (m, 4H), 7.38-7.32 (m,

3H), 6.32 (d, 1H, J = 12.0 Hz), 5.67 (d, 1H, J = 6.4 Hz), 5.13 (s, 2H), 3.19 (s, 1H), 1.47 (s, 9H).

¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm): 153.80, 135.20, 132.08, 131.78, 129.23, 128.55, 128.47,

122.92, 121.88, 84.75, 82.95, 81.00, 79.37, 77.86, 75.47, 28.24.

HRMS calcd.for C23H23NO4Na [M+Na]+: 400.1519, found: 400.1516.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 85/15, flow rate = 1.0 mL/min, λ

= 254 nm, retention time: t_R =9.0 min (minor), t_R = 13.5 min (major).

Catalytic asymmetric synthesis of chiral *C*-aryl α-amino peroxides 6

To a solution of **5** (0.1 mmol) and **2** (0.2 mmol) in DCE (1.0 mL) was added the catalyst **C1** (10 mol %) and 3Å MS (100 mg) at room temperature. After *C*-aryl-*N*-Boc-*N*,*O*-acetal **5** was consumed, the mixture was directly purified by silica gel chromatography (ethyl acetate/petroleum

ether = 1/40 to 1/20) to afford the product **6** (the racemic product **6** was obtained by using 1,1'-binaphthyl-2,2'-diyl hydrogenphosphate as the catalyst).

Characterization data of the products 6

tert-butyl (*R*)-((tert-butylperoxy)(phenyl)methyl)carbamate **6a**

White solid, 90% yield, 26.6 mg, $[\alpha]_D^{20} = +17.8$ (c 0.90 CHCl₃).

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm): 7.36 (d, 2H, J = 7.2 Hz), 7.31-7.19 (m, 3H), 6.34 (d, 1H, J

= 9.6 Hz), 5.24 (d, 1H, *J* = 7.8 Hz), 1.41 (s, 9H), 1.22 (s, 9H).

¹³C-NMR (150 MHz, CDCl₃): δ (ppm): 154.98, 136.78, 128.79, 128.53, 126.49, 85.51, 80.90,

80.06, 28.31, 26.42.

HRMS calcd.for C16H25NO4Na [M+Na]+: 318.1676, found: 318.1680.

HPLC analysis: Daicel CHIRALCEL ID-3, *n*-hexane/*i*-PrOH = 95/5, flow rate = 1.0 mL/min, λ =

215 nm, retention time: $t_R = 8.1 \text{ min (minor)}, t_R = 10.3 \text{ min (major)}.$

tert-butyl (*R*)-((tert-butylperoxy)(p-tolyl)methyl)carbamate **6b**

White solid, 92% yield, 28.5 mg, $[\alpha]_{D}^{20} = +39.3$ (c 0.96 CHCl₃).

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm): 7.31 (d, 2H, J = 7.8 Hz), 7.17 (d, 2H, J = 7.8 Hz), 6.38 (d,

1H, *J* = 9.6 Hz), 5.29 (d, 1H, *J* = 7.2 Hz), 2.35 (s, 3H), 1.48 (s, 9H), 1.29 (s, 9H).

¹³C-NMR (150 MHz, CDCl₃): δ (ppm): 154.98, 138.66, 133.77, 129.19, 126.39, 125.81, 85.47, 80.82, 79.94, 28.30, 26.41, 21.20.

HRMS calcd.for C17H27NO4Na [M+Na]+: 332.1832, found: 332.1829.

HPLC analysis: Daicel CHIRALCEL ID-3, *n*-hexane/*i*-PrOH = 95/5, flow rate = 1.0 mL/min, λ = 220 nm, retention time: t_R =5.4 min (major), t_R = 6.4 min (minor).

(R)-N-((tert-butylperoxy)(phenyl)methyl)benzamide **6c**

White solid, 94% yield, 28.2 mg, $[\alpha]_D^{20} = +28.2$ (c 0.20 CHCl₃).

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm): 7.85 (d, 2H, J = 7.2 Hz), 7.53-7.49 (m, 3H), 7.50-7.43 (m,

2H), 7.41-7.35 (m, 3H), 6.91 (d, 1H, *J* = 9.0 Hz), 6.86 (d, 1H, *J* = 9.0 Hz), 1.30 (s, 9H).

¹³C-NMR (150 MHz, CDCl₃): δ (ppm): 166.96, 136.87, 134.01, 131.93, 128.97, 128.68, 127.18, 126.53, 84.37, 81.31, 26.47.

HRMS calcd.for C18H21NO3Na [M+Na]+: 322.1414, found: 322.1417.

HPLC analysis: Daicel CHIRALCEL ID-3, *n*-hexane/*i*-PrOH = 95/5, flow rate = 1.0 mL/min, λ =

230 nm, retention time: $t_R = 13.0 \text{ min (minor)}, t_R = 18.4 \text{ min (major)}.$

tert-butyl (*R*)-((benzylperoxy)(phenyl)methyl)carbamate **6d**

White solid, 91% yield, 30.0 mg, $[\alpha]_D^{20} = +42.9$ (c 0.57 CHCl₃).

¹**H-NMR** (600 MHz, CDCl₃): δ (ppm): 7.38-7.32 (m, 10H), 6.50 (d, 1H, J = 9.6 Hz), 5.33 (d, 1H,

J = 7.8 Hz), 5.06 (q, 2H, *J* = 11.4 Hz, *J* = 11.4 Hz), 1.48 (s, 9H).

¹³**C-NMR** (150 MHz, CDCl₃): δ (ppm): 154.76, 136.33, 125.67, 129.22, 128.97, 128.59, 128.39, 126.51, 125.94, 85.13, 81.96, 80.39, 63.54, 28.31.

HRMS calcd.for C19H23NO4Na [M+Na]+: 352.1519, found: 352.1517.

HPLC analysis: Daicel CHIRALCEL ID-3, *n*-hexane/*i*-PrOH = 80/20, flow rate = 1.0 mL/min, λ

= 220 nm, retention time: t_R =14.3 min (major), t_R = 15.8 min (minor).

Large-Scale catalytic asymmetric reactions

To a solution of **1a** (4.0 mmol) and **2a** (8.0 mmol) in DCE (40.0 mL) was added the catalyst **C1** (10 mol %) and 3Å MS (4g) at room temperature. After *C*-alkynyl-*N*-Boc-*N*,*O*-acetal **1a** was consumed, the mixture was directly purified by silica gel chromatography (ethyl acetate/petroleum ether = 1/40 to 1/20) to afford the product 3a (1.19 g, 94% yield and 90% ee)

General procedure for synthesis and characterization data of the products 7

An oven-dried 10 mL Schlenk tube equipped with a stirring bar and capped with a rubber septum

was charged with Pd/C (0.01 mmol Pd). The tube was degassed and backfilled with hydrogen gas (3 times). Under a positive hydrogen pressure (hydrogen-filled balloon), degassed EtOAc (1mL) was added into the tube via a syringe, followed by the addition of **3a** (32 mg, 0.1 mmol). The reaction mixture was stirred at room temperature under a hydrogen atmosphere (hydrogen-filled balloon). Upon completion of the reaction in 1 h (monitored by TLC), the reaction mixure was filtered with a pad of celite to remove Linder catalyst, and the filtrate was concentrated in vacuo. The organic layer was further purified by flash column chromatography on silica gel to give **7**.

tert-butyl (R)-(1-(tert-butylperoxy)-3-phenylpropyl)carbamate 7

White solid, 98% yield, 31.7 mg, $[\alpha]_D^{20} = +48.6$ (c 1.50 CHCl₃).

¹**H-NMR** (400 MHz, CDCl₃): δ (ppm): 7.28 (d, 2H, J = 7.2 Hz), 7.19 (d, 3H, J = 6.0 Hz), 5.39 (d, 1H, J = 7.6 Hz), 5.03 (d, 1H, J = 9.2 Hz), 2.73 (t, 2H, J = 7.6 Hz, J = 7.2 Hz), 2.03 (q, 1H, J = 6.8 Hz, J = 6.8 Hz), 1.85-1.79 (m, 1H), 1.46 (S, 9H), 1.24 (s, 9H).

¹³**C-NMR** (100 MHz, CDCl₃): δ (ppm): 155.14, 141.13, 128.45, 128.39, 126.04, 84.44, 80.29, 79.71, 34.22, 31.37, 28.30, 26.38.

HRMS calcd.for C18H29NO4Na [M+Na]+: 346.1989, found: 346.1992.

HPLC analysis: Daicel CHIRALCEL IC-3, *n*-hexane/*i*-PrOH = 90/10, flow rate = 1.0 mL/min, λ = 218 nm, retention time: t_R =4.3 min (minor), t_R = 5.3 min (major).

The experiments of non-linear effect and product ee dependence on time

(1) non-linear effect (NLE)

(2) product ee dependence on time

The enantiopurity of the product was kept with reaction time, indicating the reaction isn't a progress of smiple kinetic resolution.

Proposed transition states for the asymmetric peroxidation of C-alkynyl imines.

A plausible transition state model was proposed on the basis of the absolute configuration of the product, the control experiments and the pervious works of the chiral calcium phosphate catalysts⁴ (Figure 1), demonstrating to account for the chemistry and stereochemistry of the reaction. The chiral calcium phosphate as a bifunctional catalyst is able to simultaneously activate both *C*-alkynyl imine *in situ* generated and hydroperoxide by multiple hydrogen bonds. Subsequently, the interaction could provide an enantioselective environment to urge to hydroperoxide attack the *Si* face of carbon-nitrogen double bond in *C*-alkynyl imine , forming the product with high enantioselectivity.

Figure 1. Plausible transition state model

Determination of the Product Stereochemistry

The absolute stereochemistry of the *C*-alkynynl **4** were based on single crystal X-ray crystallography of **4c**. The X-ray data have been deposited at the Cambridge Crystallographic Data Center (CCDC 2120219). The stereochemistry of other products was assumed by analogy. And the absolute configurations of **6** was comfirmed by comparing of the optical rotation of **6c** with literature value.

(i) X-ray crystallography.

The proper chiral single crystal was obtained by slow evaporation of a i PrOH solution of **4c** at room temperature.

C22 H25 N O5

383.43

298(2) K

1.54178 A

Monoclinic, P2(1)

a = 9.7745(14) A

b = 9.5549(14) Ac = 11.5736(17) A

2, 1.178 Mg/m^3

0.682 mm^-1

408

97.5 %

1.099

-0.03(17)

0.040(12)

0.897 and 0.863

1080.6(3) A^3

0.220 x 0.180 x 0.160 mm

Semi-empirical from equivalents

Full-matrix least-squares on F^2

-11<=h<=9, -11<=k<=11, -13<=l<=13

alpha = 90 deg.

beta = 91.267(9) deg.

gamma = 90 deg.

2

Identification code Empirical formula Formula weight Temperature Wavelength Crystal system, space group Unit cell dimensions

Volume Z, Calculated density Absorption coefficient F(000) Crystal size 3.820 to 65.403 deg. Theta range for data collection Limiting indices 9944 / 3553 [R(int) = 0.0909] Reflections collected / unique Completeness to theta = 65.403Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters 3553 / 21 / 258 Goodness-of-fit on F^2 Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient 0.422 and -0.270 e.A^-3 Largest diff. peak and hole

(ii) Comparison of the optical rotation value with the literature data.

R1 = 0.0811, wR2 = 0.2370

R1 = 0.1146, wR2 = 0.2647

The literature optical rotation value for (*R*)-6c in 86% ee was reported to be $\left[\alpha\right]_{D}^{20} = +32.9$ (c = 1.43, CHCl₃).³ The measured value of our product in 95% ee was $[\alpha]_D^{20}$:+28.2 (c = 0.20, CHCl₃). Thus, the absolute configuration of our product was assigned to be R.

References

[1] Y.-C. Wang, M.-J. Mo, K.-X. Zhu, C. Zheng, H.-B. Zhang, W. Wang and Z.-H. Shao, *Nat. Commun.* 2015, **6**, 8544.

[2] (a) Y.-X. Hou, J.-J. Hu, R.-G. Xu, S.-L. Pan, X.-F. Zeng and G.-F. Zhong, Org. Lett. 2019, 21,

4428. (b) T. G. Driver, J. R. Hason and K. S. Woerpel, J. Am. Chem. Soc. 2007, 129, 3836.

- [3] W. H. Zheng, L. Wojtas and J. C. Antilla, Angew. Chem. Int. Ed. 2010, 49, 6589.
- [4] (a) L. Sim ón and R. S. Paton, J. Am. Chem. Soc., 2018, 140, 5412; (b) X.-T. Fang, Z.-H. Deng,
- W.-H. Zheng and J. C. Antilla, ACS Catal., 2019, 9, 1748; (c) R. Cao and J. C. Antilla, Org. Lett.,

2020, **22**, 5958; (d) R.-H. Liu, S. Krishnamurthy, Z.-W. Wu, K. S. S. Tummalapalli and J. C. Antilla, *Org. Lett.*, **2020**, *22*, 8101.

Copies of NMR and HPLC

S34

S35

S36

Boc NH

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

S53

Boc∖_{NH}

Boc∖NH

//

°___

[₹] へO^{^O}`^tBu

Boc∖ֲNH

^O_^O_⁺Bu

Boc∖ֲNH

Boc∖ֲNH

S72

60 50

40 30 20

0 ppm

10

80 70

170 160 150 140

130 120 110 100 90

Boc

Boc∖_NH

70

60 50 40 30

80

90

180

170 160

130

120 110 100

150 140

10

0 ppm

20

HN^{-Boc}

Entry	Retention time	Area	Height	Area%	Width	Туре
1	5.71	7921954	276397	49.89	1.483	BB
2	12.45	7958419	269596	50.11	2.350	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	5.71	876573	45151	4.11	0.761	BB
2	12.31	20474346	656756	95.89	2.584	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	7.86	16147332	686988	50.79	1.782	BB
2	23.94	15647870	241729	49.21	4.057	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	7.74	1362506	54450	2.99	1.194	BB
2	23.56	4134927	628800	97.01	6.626	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	6.86	4875471	206846	50.35	1.667	BB
2	21.00	4808935	79333	49.65	4.292	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	6.91	3507020	173828	6.10	0.974	BB
2	20.68	54013567	935743	93.90	5.688	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	15.02	10390246	276483	50.83	2.199	BB
2	21.14	10052915	291278	49.17	2.488	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	15.25	455070	14558	6.08	1.46	BB
2	21.71	7027282	177627	93.92	2.707	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	9.52	8477123	324619	49.86	2.660	BB
2	38.48	8523634	76766	50.14	7.302	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	9.55	6693770	269642	8.30	1.565	BB
2	37.82	73943429	644134	91.70	11.293	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	5.69	6671936	297092	50.13	1.589	BB
2	14.74	6638164	181380	49.87	2.535	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	5.69	1097137	51022	6.16	0.859	BB
2	14.71	16714001	462841	93.84	3.223	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	6.07	1664606	74411	9.45	1.038	BB
2	16.66	15947145	372948	90.55	3.323	BB

0.24 (日 0.22) 一 町 0.20 18 0.18 0.16									
0.14									
0.12									
0.10				.42				11	
0.08				4					
0.06				A					
0.04				A					
0.02	M			11			1	1	
0.00	(han			4		6	
0	2 4	6	8 10	12 14 1	6 18 20 时间(min)	22 24	26 2	8 30	32 34
	Entry	Retenti	on time	Area	Height	Area%	Width	Туре	

Entry	Retention time	Area	Height	Area%	Width	Туре
1	13.42	1179914	38176	8.92	1.579	BB
2	28.55	12046658	194568	91.08	5.116	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	8.39	6025940	266586	49.56	1.044	BB
2	11.60	6131945	194164	50.44	1.791	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	8.35	1527669	64434	4.68	0.885	BB
2	11.64	31138132	1002283	95.32	1.977	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	4.36	1516974	55760	6.26	0.856	BB
2	10.39	22722310	539337	93.74	2.537	BB

Entry	Retention time	Retention time Area H		Area%	Width	Туре
1	9.23	12532025	577998	49.03	1.695	BB
2	17.37	13029540	320149	50.97	2.530	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	9.25	993971	38109	6.20	1.248	BB
2	17.29	15049998	370154	93.80	3.508	BB

0.0		~~					6			<u>~~~</u>		·		-	J		(
0	2	4	6	8	10	12	14	16	18 时间	20 (min)	22	24	26	28	30	32	34	36

Entry	Retention time	Area	Height	Area%	Width	Туре
1	12.96	4488181	122824	7.45	2.020	BB
2	31.28	55790503	670010	92.55	6.543	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	5.17	1347345	59654	5.10	0.850	BB
2	9.73	25070532	616917	94.90	2.173	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	5.93	10820196	600121	50.66	1.290	BB
2	24.57	10536706	156180	49.34	4.073	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	5.93	1408840	81295	4.15	1.032	BB
2	24.22	32563273	476403	95.85	5.642	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	5.79	18000276	850218	50.67	1.351	BB
2	18.60	17522051	356892	49.33	4.149	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	5.77	1706660	77881	4.05	0.844	BB
2	18.27	40393317	870572	95.95	4.427	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	7.79	13709906	474291	46.47	3.531	BB
2	40.61	15792885	139515	53.53	5.248	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	7.78	2213968	75553	4.53	4.548	BB
2	40.26	46635735	369756	95.47	10.934	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	4.60	952693	37085	5.41	0.747	BB
2	7.39	16660627	713359	94.59	1.593	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	6.99	14771902	678919	49.41	1.763	BB
2	19.61	15124083	290460	50.59	3.553	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	6.96	2722215	126246	4.48	0.897	BB
2	19.29	58099962	1079898	95.52	4.553	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	8.83	12552145	618835	49.12	1.708	BB
2	21.31	13002713	245436	50.88	3.119	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	9.02	3351692	126183	6.69	1.162	BB
2	21.11	46772600	869324	93.31	3.878	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	5.88	23040545	1053499	49.10	1.528	BB
2	11.51	23880639	869649	50.90	2.316	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	5.85	1247563	54033	5.33	0.891	BB
2	11.42	22157128	809603	94.67	2.292	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	5.52	13136234	534868	51.90	1.264	BB
2	9.78	12172193	738658	48.10	1.462	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	5.76	1045119	45303	5.17	0.798	BB
2	10.38	19170543	716611	94.83	2.173	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	5.40	14054940	829681	50.37	1.224	BB
2	13.00	13849656	357561	49.63	2.495	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	5.38	1958669	105143	6.13	0.782	BB
2	12.85	30001825	813765	93.87	3.702	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	8.62	16990933	769520	50.28	2.223	BB
2	23.62	16800591	281491	49.72	3.483	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	8.67	3704873	163850	5.55	1.420	BB
2	23.49	63098099	1077646	94.45	4.177	BB

【 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 财间(min)

Entry	Retention time	Area	Height	Area%	Width	Туре
1	6.41	289685	11842	6.62	0.910	BB
2	11.94	4085960	126238	93.38	2.192	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	5.84	16554146	733430	46.96	1.979	BB
2	13.01	18700321	495006	53.04	2.078	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	5.78	4194206	178346	9.01	1.022	BB
2	12.91	42366344	1242389	90.99	3.026	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	7.22	15733076	745610	50.60	1.488	BB
2	18.03	15359638	392742	49.40	2.523	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	7.23	969994	45120	5.04	0.878	BB
2	17.99	18268271	464228	94.96	2.989	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	11.67	52729123	1278594	49.04	2.896	BB
2	17.00	54794459	1065647	50.96	4.007	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	11.78	881513	21861	4.45	1.666	BB
2	17.03	18933290	373695	95.55	4.888	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	13.10	21998816	770133	49.35	2.236	BB
2	22.48	22578704	453168	50.65	4.156	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	13.17	632344	21830	5.46	1.399	BB
2	22.59	10950558	219050	94.54	4.752	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	13.86	39522839	1118975	90.26	1.733	BB
2	15.68	4265388	125511	9.74	1.653	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	8.25	4330919	103042	48.66	2.343	BB
2	11.20	4568608	153514	51.34	1.789	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	8.53	16323432	445050	94.14	2.351	BB
2	11.32	1015871	38256	5.86	1.119	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	8.13	21372095	782509	48.37	1.530	BB
2	11.73	22808799	734661	51.63	2.049	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	8.03	1970686	78807	9.41	1.072	BB
2	11.58	18968257	623045	90.59	2.117	BB

 1077-00-000													
1	2	3	4	5	6	7	8	9	10	11	12	13	14
						时间(min)						

Entry	Retention time	Area	Height	Area%	Width	Туре
1	8.76	735583	44812	3.56	0.788	BB
2	11.30	19911820	949117	96.44	1.507	BB

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
							时	间(min)								

Ó

Entry	Retention time	Area	Height	Area%	Width	Туре
1	9.42	643229	35338	4.49	0.726	BB
2	13.82	13678397	535990	95.51	1.712	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	9.35	4236453	252562	48.77	0.913	BB
2	14.78	4449512	174089	51.23	2.205	BB

ntry	Retention time	Area	Height	Area%	Width	Туре
1	9.20	1259912	79725	4.51	0.630	BB
2	14.44	26694009	1039811	95.49	1.828	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	9.56	969084	53170	4.91	0.945	BB
2	15.10	18777371	705091	95.09	1.718	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	6.80	11038914	556794	49.74	1.708	BB
2	11.66	11156367	502777	50.26	1.928	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	6.86	626578	35400	3.99	0.821	BB
2	11.77	15079913	656860	96.01	1.311	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	6.67	522899	29441	4.25	0.767	BB
2	10.32	11788292	672375	95.75	1.550	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	6.73	13427126	914641	50.34	0.991	BB
2	11.13	13245445	712370	49.66	1.434	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	6.71	646683	34991	4.92	0.796	BB
2	11.01	12499744	679180	95.08	1.504	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	8.01	9254821	588662	49.63	1.278	BB
2	10.97	9391481	479441	50.37	1.379	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	7.97	437254	30754	4.35	0.692	BB
2	10.87	9605712	495286	95.65	1.596	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	9.27	16781861	984898	50.94	1.343	BB
2	18.14	16165514	517834	49.06	1.863	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	9.38	1331692	72337	4.47	0.882	BB
2	18.32	28469021	934607	95.53	2.731	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	8.48	21380820	1171178	49.14	1.338	BB
2	10.46	22130952	1087902	50.86	1.554	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	8.55	822791	47824	4.86	0.886	BB
2	10.44	16114982	818780	95.14	1.539	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	9.74	2093911	112178	49.44	1.092	BB
2	18.63	2141654	64090	50.56	2.005	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	9.83	642506	33808	3.72	0.902	BB
2	18.83	16627433	497012	96.28	2.475	BB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 时间(min)

Entry	Retention time	Area	Height	Area%	Width	Туре
1	8.95	127068	70783	3.43	0.751	BB
2	17.15	34537575	1119426	96.57	2.077	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	5.61	10129388	525904	49.45	0.900	BB
2	10.34	10355933	397616	50.55	1.562	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	5.60	22564577	1135252	95.44	0.887	BB
2	10.43	1078184	42750	4.56	0.998	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	9.93	8157730	360508	49.64	1.618	BB
2	13.88	8275513	169235	50.36	3.108	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	10.00	17308990	546022	92.39	1.578	BB
2	13.19	1425097	37113	7.61	1.597	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	5.78	13558828	760316	49.80	0.922	BB
2	11.77	13666577	333002	50.20	2.368	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	5.79	18393855	1107981	92.43	0.838	BB
2	11.77	1505405	41011	7.57	1.524	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	4.42	1095112	53629	16.94	0.603	BB
2	6.75	5369605	921016	83.06	0.787	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	6.06	5103117	275568	53.45	0.892	BB
2	7.61	4444661	261556	46.55	1.354	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	6.07	432105	18677	6.83	0.553	BB
2	7.58	5892391	356865	93.17	1.278	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	9.00	12640017	557604	49.92	1.407	BB
2	13.51	12682036	473436	50.08	1.762	BB

441855

93.24

2.173

BB

10857826

2

13.53

Entry	Retention time	Area	Height	Area%	Width	Туре
1	8.14	14159486	775720	52.25	1.307	BB
2	10.48	12939361	258307	47.75	3.441	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	8.10	627677	26254	3.97	0.907	BB
2	10.30	15180824	298971	96.03	3.278	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	5.43	14087316	756610	50.08	0.963	BB
2	6.37	14041212	752312	49.98	1.213	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	5.44	16554007	727840	98.95	1.254	BB
2	6.38	176318	8394	1.05	0.692	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	13.29	16452627	507804	50.08	2.333	BB
2	19.00	16398860	432046	49.92	2.610	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	13.43	194658	5847	2.64	1.208	BB
2	19.04	7189295	1888699	97.36	1.692	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	14.30	2869484	94041	99.31	1.667	BB
2	15.76	19961	553	0.69	1.278	BB

9 10 11 时间(min)

8

12 13 14 15 16 17 18 19 20

76

0.06 0.04 0.02

0.00

0

3 4

5 6 7

2

Entry	Retention time	Area	Height	Area%	Width	Туре
1	4.29	4108205	225148	51.45	0.852	BB
2	5.31	3876196	242504	48.55	0.789	BB

Entry	Retention time	Area	Height	Area%	Width	Туре
1	4.31	364815	20666	5.23	0.585	BB
2	5.32	6616835	377933	94.77	1.210	BB