Catalytic hydroaminations of alkynes: A facile protocol to vinyl-carbazole derivatives via a frustrated Lewis pair mechanism

Yunbo Zhao, ^a Lvnan Jin, ^a Jing Guo, ^{*a} and Douglas W. Stephan ^{*a,b}

^aInstitute of Drug Discovery Technology, Ningbo University, Ningbo, Zhejiang, China

^bDepartment of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario M5S 3H6, Canada

*Corresponding Author. Dr. Jing Guo *Email*: <u>guojing@nbu.edu.cn</u> Professor Douglas W. Stephan *Email*: <u>dstephan@chem.utoronto.ca</u> *Phone*: 416-946-3294

Supporting Information

Table of Contents

General information	. 2
Standard preparation for catalytic operations	.3
Extra optimization of the reaction conditions	.3
Procedure for the gram-scale version of carbazolation reaction of phenylacetylene	.4
Procedure for carbazolation reaction of 2-methyl-1-buten-3-yne with 3,6-diphenyl-9 <i>H</i> -carbazole	.4
Single crystal X-ray crystallography	.6
Characterization data	. 7
References	22
NMR spectra of isolated compounds	23

General information

All preparative procedures were performed in an inert atmosphere of dry, deoxygenated ($O_2 < 0.5$ ppm) nitrogen, using glovebox techniques or standard Schlenk techniques unless otherwise specified. Solvents were stored over activated 4Å molecular sieves following drying procedures. Benzene was purchased from Alfa Aesar. Deuterated solvents (C₆D₆, CDCl₃, toluene-*d*₈) were purchased from Cambridge Isotope Laboratories, Inc. and used without further purification. Phenylacetylene was purchased from Alfa Aesar. 1-Ethynyl-2-methylbenzene, 1-ehynyl-4-1-ethynyl-4-methoxybenzene, 1-ethyl-4-ethynylbenzene, 1-(tert-butyl)-4methylbenzene, 1-ethynyl-2-fluorobenzene, 1-ethynyl-3-fluorobenzene, ethynylbenzene, 1-bromo-4ethynylbenzene, 1-trifluoromethyl-4-ethynylbenzene 1,4-diethynylbenzene 1,3-diethynylbenzene and 1,3,5-triethynylbenzene were obtained from Adamas-beta. 1-ehynyl-3-methylbenzene, 1ethynyl-4-fluorobenzene, 1-chloro-4-ethynylbenzene, ethynylcyclopropane were purchased from TCI Chemical. Carbazole, 3,6-diphenyl-9H-carbazole, 3,6-dimethyl-9H-carbazole were purchased from Adamas-beta. 3,6-Dimethoxy-9H-carbazole, 3-phenyl-9H-carbazole, 2-phenyl-9H-carbazole were obtained from Ark. 3-Bromo-9H-carbazole, 3,6-di-tert-butyl-9H-carbazole were purchased from Innochem. All the carbazole derivatives were purified by flash chromatography on silica gel. Thin-layer chromatography (TLC) was performed on EMD Silica Gel 60 F254 aluminum plates or EMD basic Aluminium Oxide 60 F254 plastic plates. Silicycle Silia-P Flash Silica Gel was used for all column chromatography.

All NMR spectra were collected at 298 K on Bruker 500 spectrometers in 5 mm diameter NMR tubes. ¹H chemical shifts are reported relative to proteo-solvent signals (CDCl₃, δ = 7.26 ppm). Data are reported as: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, td = triplet of doublets, dt = doublet of triplets, ddd = doublet of doublets), coupling constants (Hz), integration and assignment. ¹³C{¹H} chemical shifts are reported relative to proteo-solvent signals (CDCl₃, δ = 77.00 ppm). ¹⁹F NMR spectra were measured at 376 MHz and CFCl₃ (-63.2 ppm) was used as an external standard. Departmental facilities were used for mass spectrometry (FTMS ESI)

Standard preparation for catalytic operations

In an inert atmosphere glovebox, a 10 mL vial was charged with carbazoles (0.2 mmol). A solution of $B(C_6F_5)_3$ (5.1 mg, 10 mol%) in 1.5 mL toluene was added, and the mixture was stirred at room temperature for 0.5 h. Then, alkynes (0.1 mmol) in 0.5 mL toluene were added under stirring. The reaction mixture was stirred at room temperature for 48 h. The residue was purified by flash chromatography (eluent: hexane/ethyl acetate = 100/1~20/1) on silica gel to afford the desired carbazolated products.

Extra optimization of the reaction conditions

Table S1 Optimization of reaction conditions ^o				
A 0.1 mmol	Ph Ph N H B 0.2 mmol	10 mol% B(C ₆ F ₅) ₃ Solvent, r.t.	$Ph \qquad Ph \qquad Ph \qquad N \qquad I$	
Entry	Solvent	Time (h)	Yield (%)(1 ^b)	
1	THF	48	0	
2	Et ₂ O	48	11	
3	DCM	48	45	
4	CDCI ₃	48	85	
5	C_6H_6	48	95	
6	Toluene	48	97	
7	Toluene	36	93	
8	Toluene	24	85	

^{*a*} All reactions were performed with phenylacetylene (**A**) (0.1 mmol), 3,6-diphenyl-9H-carbazole (**B**) (0.2 mmol), and B(C₆F₅)₃ (10 mol%, 5.1 mg) in solvent (2.0 mL) at room temperature for specified time. ^{*b*} Isolated yield.

Procedure for the gram-scale version of carbazolation reaction of phenylacetylene

In an inert atmosphere glovebox, a flask (200 mL) was charged with 3,6-diphenyl-9*H*-carbazole (3.194 g, 10 mmol). Then, a solution of $B(C_6F_5)_3$ (0.255 g, 10 mol%, 0.5 mmol) in 75 mL toluene was added, and the mixture was stirred at room temperature for 0.5 h. Finally, a solution of phenylacetylene (0.51 g, 5.0 mmol) in 25 mL toluene was added the mixture under stirring. The reaction mixture was stirred at room temperature for 48 h. The residue was purified by flash chromatography (eluent: hexane/ethyl acetate = 50/1) on silica gel to afford product **1** as a white solid (1.91 g, 91% yield).

Procedure for carbazolation reaction of 2-methyl-1-buten-3-yne with 3,6-diphenyl-9*H*-carbazole

In an inert atmosphere glovebox, a 10 mL vial was charged with 3,6-diphenyl-9*H*-carbazole (63.8 mg, 0.2 mmol). A solution of B(C₆F₅)₃ (5.1 mg, 10 mol%) in 1.5 mL toluene was added, and the mixture was stirred at room temperature for 0.5 h. Then, 2-methyl-1-buten-3-yne (6.6 mg, 0.1 mmol) in 0.5 mL toluene were added under stirring. The reaction mixture was stirred at room temperature for 48 h. The residue was purified by flash chromatography (eluent: hexane/ethyl acetate = 50/1) on silica gel to afford the desired carbazolated product as a white solid (8.0 mg, 21% yield). ¹H NMR (500 MHz, CDCl₃), δ : 8.36 (d, *J* = 2.0 Hz, 2H), 7.75 – 7.72 (m, 4H), 7.68 (dd, *J* = 8.5 Hz, 2.0 Hz, 2H), 7.51 – 7.47 (m, 4H), 7.40 (d, *J* = 8.5 Hz, 2H), 7.37 – 7.33 (m, 2H), 5.90 (s, 1H), 5.52 (s, 1H), 5.07 (s, 1H), 4.67 (s, 1H), 2.16 (s, 3H). ¹³C{¹H} NMR (126 MHz, CDCl₃), δ : 143.89, 142.02, 141.04, 138.11, 133.16, 128.75, 127.31, 126.50, 125.55, 123.56, 118.73, 116.65, 115.20, 110.60, 19.89.

Single crystal X-ray crystallography

X-ray crystallographic data were collected on a Bruker D8 QUEST diffractometer using Cu (60W, Diamond, μ K α = 12.894 mm⁻¹) micro-focus X-ray sources at 161 K. The structure was solved and refined using Full-matrix least-squares based on F^2 with program SHELXS and SHELXL¹ within OLEX2.²

Characterization data

Preparation of 3,6-diphenyl-9-(1-phenylvinyl)-9H-carbazole (1)

A 16 mL vial was charged with $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol, 10 mol%) and 3,6-diphenyl-9*H*-carbazole (63.8 mg, 0.2 mmol). Toluene (1.5 mL) was added, and the mixture was stirred at room temperature for 0.5 hour. Then, a solution of phenylacetylene (10.2 mg, 0.1 mmol) in toluene (0.5 mL) was added under stirring. The reaction was complete after 48 hours at room temperature. The residue was purified by flash chromatography (eluent: petroleum ether/ethyl acetate = 50/1) on silica gel to afford product **1** as a white solid (40.9 mg, 97% yield).

¹H NMR (500 MHz, CDCl₃), δ: 8.43 (d, *J* = 2.0 Hz, 2H), 7.77 – 7.74 (m, 4H), 7.65 (dd, *J* = 8.5 Hz, 2.0 Hz, 2H), 7.53 – 7.49 (m, 4H), 7.41 – 7.33 (m, 9H), 6.13 (s, 1H), 5.67 (s, 1H).

 $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl₃), δ : 142.66, 141.86, 140.73, 136.21, 133.49, 129.18, 128.80, 128.76, 127.29, 126.57, 126.27, 125.59, 124.05, 118.72, 112.83, 111.24.

DEPT¹³⁵ NMR (126 MHz, CDCl₃), δ : 129.18, 128.80, 128.76, 127.29, 126.57, 126.27, 125.59, 118.72, 112.83, 111.24.

HRMS (ESI, *m/z*): Calcd. for C₃₂H₂₄N⁺, ([M+H]⁺): 422.1903; Found: 422.1895.

Gram-scale of 3,6-diphenyl-9-(1-phenylvinyl)-9H-carbazole (1)

¹H NMR (500 MHz, CDCl₃), δ: 8.42 (d, *J* = 1.5 Hz, 2H), 7.77 – 7.74 (m, 4H), 7.64 (dd, *J* = 8.5 Hz, 2.0 Hz, 2H), 7.52 – 7.49 (m, 4H), 7.41 – 7.32 (m, 9H), 6.13 (s, 1H), 5.67 (s, 1H).

 $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl₃), δ : 142.67, 141.86, 140.73, 136.22, 133.49, 129.19, 128.80, 128.76, 127.29, 126.57, 126.28, 125.59, 124.05, 118.73, 112.83, 111.24.

DEPT¹³⁵ NMR (126 MHz, CDCl₃), δ : 129.19, 128.80, 128.76, 127.29, 126.57, 126.28, 125.59, 118.73, 112.83, 111.24.

Preparation of 3,6-diphenyl-9-(1-(o-tolyl)vinyl)-9H-carbazole (2)

A 16 mL vial was charged with $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol, 10 mol%) and 3,6-diphenyl-9*H*-carbazole (63.8 mg, 0.2 mmol). Toluene (1.5 mL) was added, and the mixture was stirred at room temperature for 0.5 hour. Then, a solution of 1-ethynyl-2-methylbenzene (11.6 mg, 0.1 mmol) in toluene (0.5 mL) was added under stirring. The reaction was complete after 48 hours at room temperature. The residue was purified by flash chromatography (eluent: petroleum ether/ethyl acetate = 50/1) on silica gel to afford product **2** as a white solid (38.1 mg, 88% yield).

¹H NMR (500 MHz, CDCl₃), δ : 8.38 (d, J = 2.0 Hz, 2H), 7.75 – 7.72 (m, 4H), 7.62 (dd, J = 8.5 Hz, 2.0 Hz, 2H), 7.60 – 7.57 (m, 1H), 7.51 – 7.47 (m, 4H), 7.39 – 7.32 (m, 6H), 7.16 – 7.13 (m, 1H), 5.78 (s, 1H), 5.73 (s, 1H), 1.87 (s, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃), δ: 143.50, 141.73, 140.01, 137.17, 136.51, 133.52, 131.04, 129.82, 129.04, 128.75, 127.22, 126.59, 126.34, 125.52, 124.28, 118.60, 112.98, 111.49, 20.00.

DEPT¹³⁵ NMR (126 MHz, CDCl₃), δ: 131.04, 129.81, 129.04, 128.75, 127.22, 126.58, 126.34, 125.52, 118.60, 112.98, 111.49, 20.00.

HRMS (ESI, *m*/*z*): Calcd. for C₃₃H₂₆N⁺, ([M+H]⁺): 436.2060; Found: 436.2055.

Preparation of 3,6-diphenyl-9-(1-(*m*-tolyl)vinyl)-9*H*-carbazole (3)

A 16 mL vial was charged with $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol, 10 mol%) and 3,6-diphenyl-9*H*-carbazole (63.8 mg, 0.2 mmol). Toluene (1.5 mL) was added, and the mixture was stirred at room temperature for 0.5 hour. Then, a solution of 1-ehynyl-3-methylbenzene (11.6 mg, 0.1 mmol) in toluene (0.5 mL) was added under stirring. The reaction was complete after 48 hours at room temperature. The residue was purified by flash chromatography (eluent: petroleum ether/ethyl acetate = 50/1) on silica gel to afford product **3** as a white solid (36.6 mg, 84% yield).

¹H NMR (500 MHz, CDCl₃), δ : 8.43 (d, J = 2.0 Hz, 2H), 7.78 – 7.74 (m, 4H), 7.65 (dd, J = 8.5 Hz, 1.5 Hz, 2H), 7.53 – 7.49 (m, 4H), 7.40 – 7.34 (m, 4H), 7.26 – 7.20 (m, 3H), 7.14 – 7.11 (m, 1H), 6.10 (s, 1H), 5.64 (s, 1H), 2.34 (s, 3H).

 $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl₃), δ : 142.83, 141.89, 140.78, 138.49, 136.29, 133.42, 130.03, 128.77, 128.70, 127.29, 126.81, 126.56, 125.57, 124.04, 123.52, 118.69, 112.63, 111.29, 21.44.

DEPT¹³⁵ NMR (126 MHz, CDCl₃), δ: 130.03, 128.77, 128.70, 127.29, 126.81, 126.57, 125.58, 123.52, 118.70, 112.63, 111.29, 21.44.

HRMS (ESI, *m/z*): Calcd. for C₃₃H₂₆N⁺, ([M+H]⁺): 436.2060; Found: 436.2055.

Preparation of 3,6-diphenyl-9-(1-(p-tolyl)vinyl)-9H-carbazole (4)

A 16 mL vial was charged with $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol, 10 mol%) and 3,6-diphenyl-9*H*-carbazole (63.8 mg, 0.2 mmol). Toluene (1.5 mL) was added, and the mixture was stirred at room temperature for 0.5 hour. Then, a solution of 1-ehynyl-4-methylbenzene (11.6 mg, 0.1 mmol) in toluene (0.5 mL) was added under stirring. The reaction was complete after 48 hours at room temperature. The residue was purified by flash chromatography (eluent: petroleum ether/ethyl acetate = 50/1) on silica gel to afford product **4** as a white solid (42.1 mg, 97% yield).

¹H NMR (500 MHz, CDCl₃), δ : 8.41 (d, J = 2.0 Hz, 2H), 7.76 – 7.73 (m, 4H), 7.64 (dd, J = 8.5 Hz, 2.0 Hz, 2H), 7.52 – 7.48 (m, 4H), 7.39 – 7.32 (m, 4H), 7.25 – 7.22 (m, 2H), 7.16 – 7.13 (m, 2H), 6.07 (s, 1H), 5.60 (s, 1H), 2.38 (s, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃), δ: 142.58, 141.90, 140.77, 139.25, 133.40, 133.37, 129.50, 128.75, 127.29, 126.55, 126.18, 125.55, 124.00, 118.69, 111.91, 111.28, 21.25.

DEPT¹³⁵ NMR (126 MHz, CDCl₃), δ : 129.50, 128.75, 127.29, 126.55, 126.18, 125.56, 118.69, 111.91, 111.28, 21.25.

HRMS (ESI, *m/z*): Calcd. for C₃₃H₂₆N⁺, ([M+H]⁺): 436.2060; Found: 436.2052.

Preparation of 9-(1-(4-methoxyphenyl)vinyl)-3,6-diphenyl-9H-carbazole (5)

A 16 mL vial was charged with $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol, 10 mol%) and 3,6-diphenyl-9*H*-carbazole (63.8 mg, 0.2 mmol). Toluene (1.5 mL) was added, and the mixture was stirred at room temperature for 0.5 hours. Then, a solution of 1-ethynyl-4-methoxybenzene (13.2 mg, 0.1 mmol) in toluene (0.5 mL) was added under stirring. The reaction was complete after 48 hours at room temperature. The residue was purified by flash chromatography (eluent: petroleum ether/ethyl acetate = 50/1) on silica gel to afford product **5** as a white solid (41.6 mg, 92% yield).

¹H NMR (500 MHz, CDCl₃), δ : 8.32 (d, J = 2.0 Hz, 2H), 7.67 – 7.64 (m, 4H), 7.54 (dd, J = 8.5 Hz, 2.0 Hz, 2H), 7.43 – 7.38 (m, 4H), 7.30 – 7.23 (m, 4H), 7.18 – 7.15 (m, 2H), 6.78– 6.74 (m, 2H), 5.90 (s, 1H), 5.44 (s, 1H), 3.71 (s, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃), δ: 160.37, 142.17, 141.88, 140.76, 133.39, 128.75, 128.67, 127.64, 127.28, 126.55, 125.54, 124.00, 118.68, 114.12, 111.32, 110.78, 55.26.

DEPT¹³⁵ NMR (126 MHz, CDCl₃), δ : 128.75, 127.64, 127.27, 126.55, 125.54, 118.68, 114.12, 111.32, 110.78, 55.26.

HRMS (ESI, *m/z*): Calcd. for C₃₃H₂₆NO⁺, ([M+H]⁺): 452.2009; Found: 452.2004.

Preparation of 9-(1-(4-ethylphenyl)vinyl)-3,6-diphenyl-9H-carbazole (6)

A 16 mL vial was charged with $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol, 10 mol%) and 3,6-diphenyl-9*H*-carbazole (63.8 mg, 0.2 mmol). Toluene (1.5 mL) was added, and the mixture was stirred at room temperature for 0.5 hour. Then, a solution of 1-ethyl-4-ethynylbenzene (13.0 mg, 0.1 mmol) in toluene (0.5 mL) was added under stirring. The reaction was complete after 48 hours at room temperature. The residue was purified by flash chromatography (eluent: petroleum ether/ethyl acetate = 50/1) on silica gel to afford product **6** as a white solid (42.4 mg, 94% yield).

¹H NMR (500 MHz, CDCl₃), δ: 8.41 (d, J = 1.5 Hz, 2H), 7.76 – 7.73 (m, 4H), 7.64 (dd, J = 8.5 Hz, 2.0 Hz, 2H), 7.52 – 7.48 (m, 4H), 7.39 – 7.32 (m, 4H), 7.27 – 7.24 (m, 2H), 7.18 – 7.15 (m, 2H), 6.09 (s, 1H), 5.60 (s, 1H), 2.67 (q, J = 15.0 Hz, 7.5 Hz, 2H), 1.25 (t, J = 7.5 Hz, 3H).

 $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl₃), δ : 145.56, 142.60, 141.91, 140.79, 133.58, 133.39, 128.75, 128.29, 127.29, 126.54, 126.23, 125.56, 124.00, 118.69, 112.03, 111.27, 28.59, 15.33.

DEPT¹³⁵ NMR (126 MHz, CDCl₃), δ : 128.75, 128.29, 127.29, 126.54, 126.24, 125.56, 118.69, 112.03, 111.27, 28.59, 15.33.

HRMS (ESI, *m*/*z*): Calcd. for C₃₄H₂₈N⁺, ([M+H]⁺): 450.2216; Found: 450.2208.

Preparation of 9-(1-(4-(tert-butyl)phenyl)vinyl)-3,6-diphenyl-9H-carbazole (7)

A 16 mL vial was charged with $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol, 10 mol%) and 3,6-diphenyl-9*H*-carbazole (63.8 mg, 0.2 mmol). Toluene (1.5 mL) was added, and the mixture was stirred at room temperature for 0.5 hour. Then, a solution of 1-(*tert*-butyl)-4-ethynylbenzene (15.8 mg, 0.1 mmol) in toluene (0.5 mL) was added under stirring. The reaction was complete after 48 hours at room temperature. The residue was purified by flash chromatography (eluent: petroleum ether/ethyl acetate = 50/1) on silica gel to afford product **7** as a white solid (45.9 mg, 96% yield).

¹H NMR (500 MHz, CDCl₃), δ: 8.44 (d, *J* = 2.0 Hz, 2H), 7.78 – 7.75 (m, 4H), 7.65 (dd, *J* = 8.5 Hz, 1.5 Hz, 2H), 7.54 – 7.49 (m, 4H), 7.41 – 7.35 (m, 6H), 7.29 – 7.26 (m, 2H), 6.11 (s, 1H), 5.62 (s, 1H), 1.35 (s, 9H).

¹³C{¹H} NMR (126 MHz, CDCl₃), δ: 152.40, 142.46, 141.91, 140.83, 133.37, 133.21, 128.75, 127.28, 126.53, 125.90, 125.71, 125.57, 123.98, 118.69, 112.28, 111.25, 34.66, 31.20.

DEPT¹³⁵ NMR (126 MHz, CDCl₃), δ: 128.75, 127.28, 126.53, 125.90, 125.71, 125.56, 118.69, 112.27, 111.25, 31.20.

HRMS (ESI, *m/z*): Calcd. for C₃₆H₃₂N⁺, ([M+H]⁺): 478.2529; Found: 478.2523.

Preparation of 9-(1-(2-fluorophenyl)vinyl)-3,6-diphenyl-9*H*-carbazole (8)

A 16 mL vial was charged with $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol, 10 mol%) and 3,6-diphenyl-9*H*-carbazole (63.8 mg, 0.2 mmol). Toluene (1.5 mL) was added, and the mixture was stirred at room temperature for 0.5 hour. Then, a solution of 2-fluorophenylacetylene (12.0 mg, 0.1 mmol) in toluene (0.5 mL) was added under stirring. The reaction was complete after 48 hours at room temperature. The residue was purified by flash chromatography (eluent: petroleum ether/ethyl acetate = 50/1) on silica gel to afford product **8** as a white solid (41.6 mg, 95% yield).

¹H NMR (500 MHz, CDCl₃), δ : 8.41 (d, J = 2.0 Hz, 2H), 7.77 – 7.73 (m, 4H), 7.66 (dd, J = 8.5 Hz, 2.0 Hz, 2H), 7.53 – 7.48 (m, 4H), 7.40 – 7.35 (m, 4H), 7.35 – 7.31 (m, 1H), 7.20 – 7.15 (m, 1H), 7.05 – 6.98 (m, 2H), 6.27 (d, J = 1.0 Hz, 1H), 5.92 (d, J = 1.5 Hz, 1H).

¹³C{¹H} NMR (126 MHz, CDCl₃), δ: 160.60 (d, J = 252.2 Hz, 1C), 141.83, 140.51, 136.82 (d, J = 2.1 Hz, 1C), 133.58, 130.47 (d, J = 8.7 Hz, 1C), 129.37 (d, J = 2.4 Hz, 1C), 128.76, 127.28, 126.58, 125.67, 124.44 (d, J = 3.7 Hz, 1C), 124.08 (d, J = 11.1 Hz, 1C), 124.01, 118.78, 118.0 (d, J = 8.3 Hz, 1C), 116.40 (d, J = 22.6 Hz, 1C), 110.81.

DEPT¹³⁵ NMR (126 MHz, CDCl₃), δ : 130.47 (d, J = 8.7 Hz, 1C), 129.37 (d, J = 2.4 Hz, 1C), 128.76, 127.28, 126.58, 125.67, 124.44 (d, J = 3.7 Hz, 1C), 118.77, 118.0 (d, J = 8.3 Hz, 1C), 116.40 (d, J = 22.6 Hz, 1C), 110.81.

¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ: -114.55.

HRMS (ESI, *m/z*): Calcd. for C₃₂H₂₂FNNa⁺, ([M+Na]⁺): 462.1628; Found: 462.1622.

Preparation of 9-(1-(3-fluorophenyl)vinyl)-3,6-diphenyl-9*H*-carbazole (9)

A 16 mL vial was charged with $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol, 10 mol%) and 3,6-diphenyl-9*H*-carbazole (63.8 mg, 0.2 mmol). Toluene (1.5 mL) was added, and the mixture was stirred at room temperature for 0.5 hour. Then, a solution of 3-fluorophenylacetylene (12.0 mg, 0.1 mmol) in toluene (0.5 mL) was added under stirring. The reaction was complete after 48 hours at room temperature. The residue was purified by flash chromatography (eluent: petroleum ether/ethyl acetate = 50/1) on silica gel to afford product **9** as a white solid (40.1 mg, 91% yield).

¹H NMR (500 MHz, CDCl₃), δ : 8.42 (d, J = 2.0 Hz, 2H), 7.77 – 7.74 (m, 4H), 7.66 (dd, J = 8.5 Hz, 2.0 Hz, 2H), 7.54 – 7.49 (m, 4H), 7.41 – 7.36 (m, 2H), 7.33 – 7.27 (m, 3H), 7.11 – 7.07 (m, 3H), 6.14 (s, 1H), 5.71 (s, 1H).

¹³C{¹H} NMR (126 MHz, CDCl₃), δ : 163.11 (d, J = 247.2 Hz, 1C), 141.77, 141.66 (d, J = 26.5 Hz, 1C), 140.56, 138.62 (d, J = 7.4 Hz, 1C), 133.71, 130.39 (d, J = 8.3 Hz, 1C), 128.78, 127.30, 126.63, 125.69, 124.12, 121.98 (d, J = 2.9 Hz, 1C), 118.81, 116.15 (d, J = 21.3 Hz, 1C), 113.99, 113.24 (d, J = 22.8 Hz, 1C), 111.07.

DEPT¹³⁵ NMR (126 MHz, CDCl₃), δ: 130.39 (d, *J* = 8.3 Hz, 1C), 128.78, 127.30, 126.63, 125.69, 121.98 (d, *J* = 2.9 Hz, 1C), 118.81, 116.15 (d, *J* = 21.3 Hz, 1C), 113.99, 113.24 (d, *J* = 22.8 Hz, 1C), 111.07.

¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ: -112.23.

HRMS (ESI, *m/z*): Calcd. for C₃₂H₂₃FN⁺, ([M+H]⁺): 440.1809; Found: 440.1803.

Preparation of 9-(1-(4-fluorophenyl)vinyl)-3,6-diphenyl-9*H*-carbazole (10)

A 16 mL vial was charged with $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol, 10 mol%) and 3,6-diphenyl-9*H*-carbazole (63.8 mg, 0.2 mmol). Toluene (1.5 mL) was added, and the mixture was stirred at room temperature for 0.5 hour. Then, a solution of 4-fluorophenylacetylene (12.0 mg, 0.1 mmol) in toluene (0.5 mL) was added under stirring. The reaction was complete after 48 hours at room temperature. The residue was purified by flash chromatography (eluent: petroleum ether/ethyl acetate = 50/1) on silica gel to afford product **10** as a white solid (43.5 mg, 99% yield).

¹H NMR (500 MHz, CDCl₃), δ : 8.41 (d, J = 2.0 Hz, 2H), 7.76 – 7.73 (m, 4H), 7.64 (dd, J = 8.5 Hz, 2.0 Hz, 2H), 7.52 – 7.48 (m, 4H), 7.39 – 7.32 (m, 2H), 7.25 – 7.22 (m, 4H), 7.16 – 7.13 (m, 2H), 6.05 (s, 1H), 5.64 (s, 1H).

¹³C{¹H} NMR (126 MHz, CDCl₃), δ: 163.28 (d, J = 249.7 Hz, 1C), 141.78, 141.71, 140.57, 133.64, 132.36 (d, J = 3.3 Hz, 1C), 128.78, 128.15 (d, J = 8.3 Hz, 2C), 127.29, 126.63, 125.64, 124.10, 118.78, 115.84 (d, J = 21.8 Hz, 2C), 112.51, 111.18.

DEPT¹³⁵ NMR (126 MHz, CDCl₃), δ: 128.78, 128.15 (d, *J* = 8.3 Hz, 2C), 127.29, 126.63, 125.64, 118.78, 115.84 (d, *J* = 21.8 Hz, 2C), 112.51, 111.18.

¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ: -111.81.

HRMS (ESI, *m/z*): Calcd. for C₃₂H₂₃FN⁺, ([M+H]⁺): 440.1809; Found: 440.1801.

Preparation of 9-(1-(4-chlorophenyl)vinyl)-3,6-diphenyl-9H-carbazole (11)

A 16 mL vial was charged with $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol, 10 mol%) and 3,6-diphenyl-9*H*-carbazole (63.8 mg, 0.2 mmol). Toluene (1.5 mL) was added, and the mixture was stirred at room temperature for 0.5 hour. Then, a solution of 4-chlorophenylacetylene (13.6 mg, 0.1 mmol) in toluene (0.5 mL) was added under stirring. The reaction was complete after 48 hours at room temperature. The residue was purified by flash chromatography (eluent: petroleum ether/ethyl acetate = 50/1) on silica gel to afford product **11** as a white solid (45.0 mg, 99% yield).

¹H NMR (500 MHz, CDCl₃), δ: 8.39 (d, *J* = 1.5 Hz, 2H), 7.74 – 7.71 (m, 4H), 7.63 (dd, *J* = 8.5 Hz, 2.0 Hz, 2H), 7.51 – 7.46 (m, 4H), 7.38 – 7.34 (m, 2H), 7.33 – 7.23 (m, 6H), 6.10 (s, 1H), 5.67 (s, 1H).

¹³C{¹H} NMR (126 MHz, CDCl₃), δ: 141.77, 141.70, 140.53, 135.13, 134.71, 133.71, 129.07, 128.79, 127.61, 127.30, 126.65, 125.68, 124.12, 118.81, 113.24, 111.14.

DEPT¹³⁵ NMR (126 MHz, CDCl₃), δ: 129.07, 128.79, 127.61, 127.30, 126.65, 125.68, 118.80, 113.24, 111.14.

HRMS (ESI, m/z): Calcd. for C₃₂H₂₃Cl^{34.9689}N⁺, ([M+H]⁺): 456.1514; Found: 456.1507; C₃₂H₂₃Cl^{35.4500}N⁺, ([M+H]⁺): 457.1547; Found: 457.1541.

Preparation of 9-(1-(4-bromophenyl)vinyl)-3,6-diphenyl-9*H*-carbazole (12)

A 16 mL vial was charged with $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol, 10 mol%) and 3,6-diphenyl-9*H*-carbazole (63.8 mg, 0.2 mmol). Toluene (1.5 mL) was added, and the mixture was stirred at room temperature for 0.5 hour. Then, a solution of 4-bromophenylacetylene (18.1 mg, 0.1 mmol) in toluene (0.5 mL) was added under stirring. The reaction was complete after 48 hours at room temperature. The residue was purified by flash chromatography (eluent: petroleum ether/ethyl acetate = 50/1) on silica gel to afford product **12** as a white solid (49.4 mg, 98% yield).

¹H NMR (500 MHz, CDCl₃), δ: 8.41 (d, J = 1.5 Hz, 2H), 7.76 – 7.73 (m, 4H), 7.64 (dd, J = 8.5 Hz, 1.5 Hz, 2H), 7.52 – 7.45 (m, 6H), 7.40 – 7.36 (m, 2H), 7.30 (s, 1H), 7.29 (s, 1H), 7.21 – 7.17 (m, 2H), 6.10 (s, 1H), 5.68 (s, 1H).

¹³C{¹H} NMR (126 MHz, CDCl₃), δ: 141.74, 140.51, 135.16, 133.71, 132.01, 128.78, 127.86, 127.28, 126.64, 125.67, 124.11, 123.36, 118.80, 113.31, 111.13.

DEPT¹³⁵ NMR (126 MHz, CDCl₃), δ: 132.01, 128.78, 127.86, 127.28, 126.64, 125.67, 118.80, 113.31, 111.13.

HRMS (ESI, m/z): Calcd. for C₃₂H₂₂Br^{79.9183}NNa⁺, ([M+Na]⁺): 522.0828; Found: 522.0828; C₃₂H₂₂Br^{80.9163}NNa⁺, ([M+Na]⁺): 524.0807; Found: 524.0804.

Preparation of 3,6-diphenyl-9-(1-(4-(trifluoromethyl)phenyl)vinyl)-9*H*-carbazole (13)

A 16 mL vial was charged with $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol, 10 mol%) and 3,6-diphenyl-9*H*-carbazole (63.8 mg, 0.2 mmol). Toluene (1.5 mL) was added, and the mixture was stirred at room temperature for 0.5 hour. Then, a solution of 4-trifluoromethylphenylacetylene (17.0 mg, 0.1 mmol) in toluene (0.5 mL) was added under stirring. The reaction was complete after 48 hours at room temperature. The residue was purified by flash chromatography (eluent: petroleum ether/ethyl acetate = 50/1) on silica gel to afford product **13** as a white solid (36.1 mg, 74% yield).

¹H NMR (500 MHz, CDCl₃), δ : 8.42 (d, J = 2.0 Hz, 2H), 7.76 – 7.72 (m, 4H), 7.64 (dd, J = 8.5 Hz, 2.0 Hz, 2H), 7.60 (d, J = 8.5 Hz, 2H), 7.53 – 7.48 (m, 4H), 7.44 (d, J = 8.0 Hz, 2H), 7.40– 7.36 (m, 2H), 7.29 (s, 1H), 7.27 (s, 1H), 6.21 (s, 1H), 5.79 (s, 1H).

¹³C{¹H} NMR (126 MHz, CDCl₃), δ: 141.70, 141.57, 140.46, 139.68, 133.87, 131.08 (dd, $J_{C-F} = 65.4$ Hz, 32.6 Hz), 128.80, 127.30, 126.64 (d, $J_{C-F} = 13.9$ Hz, 1C), 125.86 (dd, $J_{C-F} = 7.6$ Hz, 3.8 Hz, 2C), 125.77, 124.18, 123.90 (d, $J_{C-F} = 272.7$ Hz, 1C), 118.87, 115.04, 111.02.

DEPT¹³⁵ NMR (126 MHz, CDCl₃), δ : 128.80, 127.30, 126.64 (d, J_{C-F} = 13.9 Hz, 1C), 125.86 (dd, J_{C-F} = 7.6 Hz, 3.8 Hz, 2C), 125.77, 118.88, 115.04, 111.02.

¹⁹F{¹H} NMR (471 MHz, CDCl₃) δ: -62.63.

HRMS (ESI, *m/z*): Calcd. for C₃₃H₂₂F₃NNa⁺, ([M+Na]⁺): 512.1597; Found: 512.1594.

Preparation of 9-(1-cyclopropylvinyl)-3,6-dimethyl-9*H*-carbazole (14)

A 16 mL vial was charged with $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol, 10 mol%) and 3,6-diphenyl-9*H*-carbazole (63.8 mg, 0.2 mmol). Toluene (1.5 mL) was added, and the mixture was stirred at room temperature for 0.5 hour. Then, a solution of ethynylcyclopropane (6.6 mg, 0.10 mmol) in toluene (0.5 mL) was added under stirring. The reaction was complete after 48 hours at room temperature. The residue was purified by flash chromatography (eluent: petroleum ether/ethyl acetate = 100/1) on silica gel to afford product **14** as a colorless oil (11.2 mg, 29% yield).

¹H NMR (500 MHz, CDCl₃), δ : 8.36 (d, J = 1.5 Hz, 2H), 7.76 – 7.73 (m, 4H), 7.72 (dd, J = 8.5 Hz, 1.5 Hz, 2H), 7.58 (d, J = 8.5 Hz, 2H), 7.52 – 7.47 (m, 4H), 7.38 – 7.34 (m, 2H), 5.52 (s, 1H), 5.27(s, 1H), 1.90 – 1.8 4 (m, 1H), 0.91 – 0.86 (m, 2H), 0.73 – 0.69 (m, 2H).

¹³C{¹H} NMR (126 MHz, CDCl₃), δ: 145.90, 141.99, 140.81, 133.10, 128.76, 127.30, 126.51, 125.54, 123.70, 118.70, 110.87, 110.71, 15.39, 8.09.

DEPT¹³⁵ NMR (126 MHz, CDCl₃), δ: 128.76, 127.29, 126.50, 125.53, 118.70, 110.86, 110.71, 15.39, 8.09.

HRMS (ESI, *m/z*): Calcd. for C₂₉H₂₃NNa⁺, ([M+Na]⁺): 408.1723; Found: 408.1718.

Preparation of 1,4-bis(1-(3,6-diphenyl-9H-carbazol-9-yl)vinyl)benzene (15)

A 16 mL vial was charged with $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol, 10 mol%) and 3,6-diphenyl-9*H*-carbazole (127.6 mg, 0.4 mmol). Toluene (2 mL) was added, and the mixture was stirred at room temperature for 0.5 hour. Then, a solution of 1,4-diethynylbenzene (12.6 mg, 0.1 mmol) in toluene (2 mL) was added under stirring. The reaction was complete after 48 hours at room temperature. The residue was purified by flash chromatography (eluent: petroleum ether/ethyl acetate/DCM = 40/1/2) on silica gel to afford product **15** as a white solid (63.9 mg, 84% yield).

¹H NMR (500 MHz, CDCl₃), δ : 8.38 (s, 4H), 7.71 (d, *J* = 7.5 Hz, 8H), 7.62 (d, *J* = 8.5 Hz, 4H), 7.48 (t, *J* = 7.5 Hz, 8H), 7.36 (t, *J* = 7.5 Hz, 4H), 7.29 (d, *J* = 8.5 Hz, 4H), 7.24 (s, 4H), 6.09 (s, 2H), 5.65 (s, 2H).

 $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl₃), δ : 141.99, 141.80, 140.59, 136.92, 133.62, 128.77, 127.29, 126.75, 126.60, 125.61, 124.06, 118.79, 113.53, 111.14.

DEPT¹³⁵ NMR (126 MHz, CDCl₃), δ : 128.77, 127.29, 126.75, 126.60, 125.61, 118.79, 113.54, 111.14.

HRMS (ESI, *m/z*): Calcd. for C₅₈H₄₁N₂⁺, ([M+H]⁺): 765.3264; Found: 765.3260.

Preparation of 1,3-bis(1-(3,6-diphenyl-9H-carbazol-9-yl)vinyl)benzene (16)

A 16 mL vial was charged with $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol, 10 mol%) and 3,6-diphenyl-9*H*-carbazole (127.6 mg, 0.4 mmol). Toluene (2 mL) was added, and the mixture was stirred at room temperature for 0.5 hour. Then, a solution of 1,3-diethynylbenzene (12.6 mg, 0.1 mmol) in toluene (2 mL) was added under stirring. The reaction was complete after 48 hours at room temperature. The residue was purified by flash chromatography (eluent: petroleum ether/ethyl acetate = 40/1) on silica gel to afford product **16** as a white solid (71.9 mg, 94% yield).

¹H NMR (500 MHz, CDCl₃), δ : 8.33(s, 4H), 7.71 (d, *J* = 7.5 Hz, 8H), 7.59 (dd, *J* = 8.5 Hz, 1.5 Hz, 4H), 7.50 (t, *J* = 7.5 Hz, 8H), 7.39 (t, *J* = 7.5 Hz, 4H), 7.34 – 7.27 (m, 3H), 7.23 (d, *J* = 8.5 Hz, 4H), 7.15 (s, 1H), 5.99 (s, 2H), 5.62 (s, 2H).

¹³C{¹H} NMR (126 MHz, CDCl₃), δ: 142.08, 141.75, 140.50, 137.04, 133.43, 129.36, 128.79, 127.23, 127.00, 126.57, 125.45, 124.38, 124.00, 118.71, 113.43, 111.03.

DEPT¹³⁵ NMR (126 MHz, CDCl₃), δ : 129.36, 128.79, 127.23, 127.00, 126.57, 125.45, 124.38, 118.71, 113.43, 111.03.

HRMS (ESI, *m/z*): Calcd. for C₅₈H₄₀N₂Na⁺, ([M+Na]⁺): 787.3084; Found: 787.3078.

Preparation of 1,3,5-tris(1-(3,6-diphenyl-9*H*-carbazol-9-yl)vinyl)benzene (17)

A 16 mL vial was charged with $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol, 10 mol%) and 3,6-diphenyl-9*H*-carbazole (191.4 mg, 0.6 mmol). Toluene (4.5 mL) was added, and the mixture was stirred at room temperature for 0.5 hour. Then, a solution of 1,3,5-triethynylbenzene (15.0 mg, 0.1 mmol) in toluene (1.5 mL) was added under stirring. The reaction was complete after 48 hours at room temperature. The residue was purified by flash chromatography (eluent: petroleum ether/ethyl acetate = 20/1) on silica gel to afford product **17** as a white solid (75.3 mg, 68% yield).

¹H NMR (500 MHz, CDCl₃), δ : 8.25 (s, 6H), 7.67 (d, J = 7.5 Hz, 12H), 7.54 (d, J = 8.5 Hz, 6H), 7.49 (t, J = 7.5 Hz, 12H), 7.40 (t, J = 7.5 Hz, 6H), 7.12 (d, J = 8.0 Hz, 9H), 5.87 (s, 3H), 5.57 (s, 3H).

¹³C{¹H} NMR (126 MHz, CDCl₃), δ: 141.63, 141.58, 140.28, 138.00, 133.37, 128.83, 127.17, 126.57, 125.33, 125.04, 123.97, 118.69, 113.97, 110.86.

DEPT¹³⁵ NMR (126 MHz, CDCl₃), δ : 128.83, 127.17, 126.57, 125.33, 125.04, 118.69, 113.97, 110.86.

HRMS (ESI, *m/z*): Calcd. for C₈₄H₅₈N₃⁺, ([M+H]⁺): 1108.4625; Found: 1108.4616.

Preparation of 9-(1-(4-chlorophenyl)vinyl)-3,6-dimethyl-9H-carbazole (18)

A 16 mL vial was charged with $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol, 10 mol%) and 3,6-dimethyl-9*H*-carbazole (39.0 mg, 0.2 mmol). Toluene (1.5 mL) was added, and the mixture was stirred at room temperature for 0.5 hour. Then, a solution of 4-chlorophenylacetylene (13.6 mg, 0.1 mmol) in toluene (0.5 mL) was added under stirring. The reaction was complete after 48 hours at room temperature. The residue was purified by flash chromatography (eluent: petroleum ether/ethyl acetate = 100/1) on silica gel to afford product **18** as a white solid (31.5 mg, 95% yield).

¹H NMR (500 MHz, CDCl₃), δ: 7.90 (s, 2H), 7.326 (dd, *J* = 8.5 Hz, 1.5 Hz, 2H), 7.18 (td, *J* = 8.5 Hz, 1.5 Hz, 4H), 7.11 – 7.06 (m, 2H), 5.99 (s, 1H), 5.58 (s, 1H), 2.54 (s, 6H).

 $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl₃), δ : 141.95, 139.10, 135.09, 134.83, 129.13, 128.90, 127.62, 127.04, 123.48, 120.10, 112.49, 110.46, 21.34.

DEPT¹³⁵ NMR (126 MHz, CDCl₃), δ: 128.89, 127.62, 127.04, 120.10, 112.49, 110.46, 21.34.

HRMS (ESI, m/z): Calcd. for $C_{22}H_{19}CI^{34.9689}N^+$, ([M+H]⁺): 332.1201; Found: 332.1198; $C_{22}H_{19}CI^{35.4500}N^+$, ([M+H]⁺): 334.1171; Found: 334.1169.

Preparation of 9-(1-(4-chlorophenyl)vinyl)-3,6-dimethoxy-9H-carbazole (19)

A 16 mL vial was charged with $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol, 10 mol%) and 3,6-dimethoxy-9*H*-carbazole (45.4 mg, 0.2 mmol). Toluene (1.5 mL) was added, and the mixture was stirred at room temperature for 0.5 hour. Then, a solution of 4-chlorophenylacetylene (13.6 mg, 0.1 mmol) in toluene (0.5 mL) was added under stirring. The reaction was complete after 48 hours at room temperature. The residue was purified by flash chromatography (eluent: petroleum ether/ethyl acetate = 50/1) on silica gel to afford product **19** as a white solid (29.5 mg, 81% yield).

¹H NMR (500 MHz, CDCl₃), δ: 7.54 (d, *J* = 2.5 Hz, 2H), 7.27 – 7.24 (m, 2H), 7.19 – 7.15 (m, 2H), 7.08 (d, *J* = 9.0 Hz, 2H), 7.08 (dd, *J* = 8.5 Hz, 2.0 Hz, 2H), 5.94 (s, 1H), 5.55 (s, 1H), 3.94 (s, 6H).

 $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl₃), δ : 153.99, 142.02, 136.06, 135.18, 134.90, 128.91, 128.88, 127.69, 123.74, 115.06, 112.07, 111.78, 102.85, 56.04.

DEPT¹³⁵ NMR (126 MHz, CDCl₃), δ: 128.91, 127.69, 115.06, 112.07, 111.78, 102.85, 56.04.

HRMS (ESI, m/z): Calcd. for C₂₂H₁₉Cl^{34.9689}NO₂⁺, ([M+H]⁺): 364.1099; Found: 364.1094; C₂₂H₁₉Cl^{35.4500}NO₂⁺, ([M+H]⁺): 366.1069; Found: 366.1065.

Preparation of 3,6-di-tert-butyl-9-(1-(4-chlorophenyl)vinyl)-9H-carbazole (20)

A 16 mL vial was charged with $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol, 10 mol%) and 3,6-di-*tert*-butyl-9*H*-carbazole (55.8 mg, 0.2 mmol). Toluene (1.5 mL) was added, and the mixture was stirred at room temperature for 0.5 hour. Then, a solution of 4-chlorophenylacetylene (13.6 mg, 0.1 mmol) in toluene (0.5 mL) was added under stirring. The reaction was complete after 48 hours at room temperature. The residue was purified by flash chromatography (eluent: petroleum ether/ethyl acetate = 100/1) on silica gel to afford product **20** as a white solid (41.2 mg, 99% yield).

¹H NMR (500 MHz, CDCl₃), δ : 8.12 (d, J = 2.0 Hz, 2H), 7.40 (dd, J = 9.0 Hz, 2.0 Hz, 2H), 7.29 – 7.25 (m, 2H), 7.24–7.20 (m, 2H), 7.11 (d, J = 8.5 Hz, 2H), 5.96 (s, 1H), 5.56 (s, 1H), 1.46 (s, 18H).

 $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl₃), δ : 142.81, 142.08, 139.06, 135.23, 134.82, 128.89, 127.74, 123.56, 123.43, 116.11, 112.21, 110.27, 34.69, 31.98.

DEPT¹³⁵ NMR (126 MHz, CDCl₃), δ: 128.89, 127.74, 123.56, 116.11, 112.21, 110.27, 31.98.

HRMS (ESI, m/z): Calcd. for C₂₈H₃₁Cl^{34.9689}N⁺, ([M+H]⁺): 416.2140; Found: 416.2135; C₂₈H₃₁Cl^{35.4500}N⁺, ([M+H]⁺): 418.2110; Found: 418.2101.

Preparation of 9-(1-(4-chlorophenyl)vinyl)-3-phenyl-9H-carbazole (21)

A 16 mL vial was charged with $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol, 10 mol%) and 3-phenyl-9*H*-carbazole (48.6 mg, 0.2 mmol). Toluene (1.5 mL) was added, and the mixture was stirred at room temperature for 0.5 hour. Then, a solution of 4-chlorophenylacetylene (13.6 mg, 0.1 mmol) in toluene (0.5 mL) was added under stirring. The reaction was complete after 48 hours at room temperature. The residue was purified by flash chromatography (eluent: petroleum ether/ethyl acetate = 100/1) on silica gel to afford product **21** as a white solid (35.1 mg, 92% yield).

¹H NMR (500 MHz, CDCl₃), δ : 8.36 (d, J = 2.0 Hz, 1H), 8.19 (dd, J = 8.0 Hz, 3.0 Hz, 1H), 7.74 – 7.71 (m, 2H), 7.62 (dt, J = 8.5 Hz, 2.0 Hz, 1H), 7.52 – 7.47 (m, 2H), 7.42 – 7.34 (m, 2H), 7.33 – 7.27 (m, 4H), 7.26 – 7.22 (m, 3H), 6.09 (s, 1H), 5.65 (s, 1H).

 $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl₃), δ : 141.85, 141.68, 141.05, 140.09, 135.05, 134.76, 133.57, 129.01, 128.77, 127.57, 127.31, 126.60, 126.12, 125.50, 123.97, 123.57, 120.30, 120.14, 118.75, 113.26, 110.96, 110.90.

DEPT¹³⁵ NMR (126 MHz, CDCl₃), δ : 129.01, 128.76, 127.57, 127.30, 126.60, 126.12, 125.50, 120.30, 120.14, 118.75, 113.26, 110.96, 110.90.

HRMS (ESI, m/z): Calcd. for C₂₆H₁₉Cl^{34.9689}N⁺, ([M+H]⁺): 380.1201; Found: 380.1194; C₂₆H₁₉Cl^{35.4500}N⁺, ([M+H]⁺): 382.1171; Found: 382.1162.

Preparation of 9-(1-(4-chlorophenyl)vinyl)-2-phenyl-9*H*-carbazole (22)

A 16 mL vial was charged with $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol, 10 mol%) and 2-phenyl-9*H*-carbazole (48.6 mg, 0.2 mmol). Toluene (1.5 mL) was added, and the mixture was stirred at room temperature for 0.5 hour. Then, a solution of 4-chlorophenylacetylene (13.6 mg, 0.1 mmol) in

toluene (0.5 mL) was added under stirring. The reaction was complete after 48 hours at room temperature. The residue was purified by flash chromatography (eluent: petroleum ether/ethyl acetate = 100/1) on silica gel to afford product **22** as a white solid (25.9 mg, 68% yield).

¹H NMR (500 MHz, CDCl₃), δ : 8.18 (d, *J* = 8.0 Hz, 1H), 8.14 (d, *J* = 7.5 Hz, 1H), 7.62 – 7.59 (m, 2H), 7.55 – 7.52 (m, 1H), 7.48 – 7.42 (m, 3H), 7.39 – 7.32 (m, 2H), 7.31 – 7.26 (m, 3H), 7.24 – 7.17 (m, 3H), 6.12 (s, 1H), 5.67 (s, 1H).

¹³C{¹H} NMR (126 MHz, CDCl₃), δ: 141.81, 141.63, 141.26, 141.06, 139.44, 135.04, 134.70, 129.02, 128.73, 127.51, 127.47, 127.10, 125.96, 123.21, 122.68, 120.50, 120.28, 120.13, 119.71, 113.68, 110.79, 109.08.

DEPT¹³⁵ NMR (126 MHz, CDCl₃), δ : 129.02, 128.73, 127.51, 127.48, 127.09, 125.96, 120.50, 120.28, 120.13, 119.71, 113.68, 110.79, 109.08.

HRMS (ESI, m/z): Calcd. for C₂₆H₁₉Cl^{34.9689}N⁺, ([M+H]⁺): 380.1201; Found: 380.1194; C₂₆H₁₉Cl^{35.4500}N⁺, ([M+H]⁺): 382.1171; Found: 382.1163.

Preparation of 9-(1-(4-chlorophenyl)vinyl)-9H-carbazole (24)

A 16 mL vial was charged with $B(C_6F_5)_3$ (5.1 mg, 0.01 mmol, 10 mol%) and carbazole (33.4 mg, 0.2 mmol). Toluene (1.5 mL) was added, and the mixture was stirred at room temperature for 0.5 hour. Then, a solution of 4-chlorophenylacetylene (13.6 mg, 0.1 mmol) in toluene (0.5 mL) was added under stirring. The reaction was complete after 48 hours at room temperature. The residue was purified by flash chromatography (eluent: petroleum ether/ethyl acetate = 100/1) on silica gel to afford product **24** as a white solid (24.6 mg, 81% yield).

¹H NMR (500 MHz, CDCl₃), δ: 8.15 (d, *J* = 8.0 Hz, 2H), 7.41 – 7.37 (m, 2H), 7.32 – 7.23 (m, 6H), 7.23 – 7.18 (m, 2H), 6.08 (s, 1H), 5.64 (s, 1H).

 $^{13}C\{^{1}H\}$ NMR (126 MHz, CDCl_3), δ : 141.68, 140.58, 134.96, 134.82, 128.96, 127.53, 125.91, 123.44, 120.23, 119.97, 113.28, 110.72.

DEPT¹³⁵ NMR (126 MHz, CDCl₃), δ: 128.96, 127.53, 125.91, 120.23, 119.97, 113.28, 110.72.

HRMS (ESI, m/z): Calcd. for C₂₀H₁₅Cl^{34.9689}N⁺, ([M+H]⁺): 304.0888; Found: 304.0881; C₂₀H₁₅Cl^{35.4500}N⁺, ([M+H]⁺): 306.0858; Found: 306.0852.

Preparation of 3-bromo-9-(1-(4-chlorophenyl)vinyl)-9*H*-carbazole (25)

A 16 mL vial was charged with $B(C_6F_{5)3}$ (5.1 mg, 0.01 mmol, 10 mol%) and 3-Bromo-9*H*-carbazole (49.2 mg, 0.2 mmol). Toluene (1.5 mL) was added, and the mixture was stirred at room temperature for 0.5 hour. Then, a solution of 4-chlorophenylacetylene (13.6 mg, 0.1 mmol) in toluene (0.5 mL) was added under stirring. The reaction was complete after 5 days at room temperature. The residue was purified by flash chromatography (eluent: petroleum ether/ethyl acetate = 100/1) on silica gel to afford product **25** as a white solid (23.0 mg, 60% yield).

¹H NMR (500 MHz, CDCl₃), δ : 8.22 (d, J = 2.0 Hz, 1H), 8.06 (dt, J = 7.5 Hz, 1.0 Hz, 1H), 7.42 (dd, J = 8.5 Hz, 2.0 Hz, 1H, 7.40 - 7.35 (m, 1H), 7.29 - 7.24 (m, 3H), 7.21 (dt, J = 8.5 Hz, 1.0 Hz, 1H),7.16 – 7.12 (m, 2H), 7.07 (d, J = 8.5 Hz, 1H), 6.07 (s, 1H), 5.59 (s, 1H).

¹³C{¹H} NMR (126 MHz, CDCl₃), δ: 141.40, 140.91, 139.23, 135.20, 134.44, 129.07, 128.64, 127.45, 126.69, 125.19, 123.02, 122.38, 120.44, 120.42, 113.58, 112.87, 112.20, 110.91.

DEPT¹³⁵ NMR (126 MHz, CDCl₃), δ: 129.07, 128.64, 127.45, 126.69, 123.01, 120.43, 120.41, 113.58, 112.20, 110.91.

HRMS (ESI, *m/z*): Calcd. for C₂₀H₁₄Cl^{34.9689}Br^{79.9183}N⁺, ([M+H]⁺): 381.9993; Found: 381.9990; C₂₀H₁₄Cl^{35.4500}Br^{80.9163}N⁺, ([M+H]⁺): 383.9972; Found: 383.9966.

References

- G. M. Sheldrick, Acta Crystallographica Section A, 2008, 64, 112.
 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Crystallogr., 2009, 42, 339.

NMR spectra of isolated compounds

1 ¹H NMR (500 MHz, CDCl₃)

1 (Gram-scale) ¹³C{¹H} NMR (126 MHz, CDCl₃)

CDC13

3 ¹³C{¹H} NMR (126 MHz, CDCl₃)

Ó 120 110 f1 (ppm)

5 ¹³C{¹H} NMR (126 MHz, CDCl₃)

120 110 f1 (ppm) Ó

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 f1 (ppm)

128 127 f1 (ppm)

126

125

130

129

Ó

141.990 141.803 140.593 136.919 136.691 125.603 125.603 125.603 125.603 1125.603 1125.613 1125.613 1125.613 1125.613 1125.613 1125.613 1125.613 1125.613 1125.613 1125.613 1125.613 1125.613 1125.613 1125.613 1125.713 110

-8.333 -8.333 -7.722 -7.727 -7.7604 -7.7601 -7.7512 -7.7512 -7.7512 -7.7512 -7.7333 -7.7333 -7.7329 -7.7329 -7.7329 -7.7329 -7.7329 -7.7329 -7.7296 -7.7207 -7.7296 -7.7207 -7.7296 -7.7207 -7.7207 -7.7207 -7.7207 -7.7207 -7.7207 -7.7207 -7.7207 -7.7207 -7.7207 -7.7207 -7.7207 -7.7207 -7.7207 -7.7207 -7.7207 -7.7206 -7.7207 -7.7206 -7.7207 -7.7206 -7.7207 -7.7206 -7.7206 -7.7207 -7.7206 -7

18 DEPT¹³⁵{¹H} NMR (126 MHz, CDCl₃)

-21.342

-1.462

f1 (ppm) Ó

210 200 190 180 170 160 150 140 130 120 110 100 f1 (ppm)

90 80 70 60 50 40 30

20 10 0

24 ¹³C{¹H} NMR (126 MHz, CDCI₃)

110 100 f1 (ppm) 210 200 Ó

25 DEPT¹³⁵{¹H} NMR (126 MHz, CDCl₃)

