Supporting Information

Organic Photoredox Catalytic Amino-heteroarylation of Unactivated Olefins to Access Distal Amino Ketones

Ji-Hua Zhang,^[a] Teng-Fei Xiao,^[a] Zi-Qin Ji,^[a] Han-Nan Chen,^[a] Pen-Ji Yan,^[b] Yong-Chun Luo,^[a] Peng-Fei Xu,^{[a][c]} and Guo-Qiang Xu^[a]*

^[a] State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P.R. China, E-mail: gqxu@lzu.edu.cn;
^[b] College of Chemistry and Chemical Engineering, Key Laboratory of Hexi Corridor Resources Utilization of Gansu Universities, Hexi University, Zhangye 734000, P.R. China;
^[c] State Key Laboratory of Veterineers Eticlesical Bicleses, College of Veterineers Medicine, Langheur

^[c] State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000 (P.R. China).

This PDF file includes

Materials and Methods Figures S1 to S7 Tables S1 to S9 NMR Spectra References

Table of Contents

General information
Experimental Procedures4
1. Synthesis of substrates4
1.1 Synthesis of N-protected 1-aminopyridinium salts4
1.2 Synthesis of heteroaryl-substituted tertiary bishomoallylic alcohols4
2. Synthesis of Photocatalyst
3. Screening of Reaction Conditions
4. General procedure for the synthesis of product and analytical data8
5. The Gram Scale Reaction
6. Transformations of Product
7. Mechanistic Investigations
7.1 Luminescence Quenching Experiments
7.2 Capture of Radical Species
8. X-Ray Crystallographic Data of product 3ab33
9. Mechanistic Computational Analysis
10. NMR spectra of compound
11. References

General information

All glassware was thoroughly oven-dried. Chemicals and solvents were either purchased from commercial suppliers or purified by standard techniques. Thin-layer chromatography (TLC) plates were visualized by exposure to ultraviolet light and/or staining with phosphomolybdic acid followed by heating on a hot plate. Flash chromatography was carried out using silica gel (200-300 mesh). ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AM-400 (400 MHz) or Agilent Inova 600 MHz. The spectra were recorded in CDCl₃ as solvent at room temperature, ¹H and ¹³C NMR chemical shifts are reported in ppm relative to the residual solvent peak. The residual solvent signals were used as references and the chemical shifts were converted to the TMS scale (CDCl₃: $\delta_{\rm H} = 7.26$ ppm, $\delta_{\rm C} = 77.00$ ppm). Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q=quartet, m = multiplet, dd = doublet), integration, coupling constant (Hz) and assignment. Data for ¹³C NMR are reported as chemical shift. HRMS were performed on a Bruker Apex II mass instrument (ESI).

Experimental Procedures

1. Synthesis of substrates

1.1 Synthesis of N-protected 1-aminopyridinium salts

N-protected 1-aminopyridinium salts were synthesized according to reported procedures with some modifications.¹

General Procedure:

Step 1: To a mixture of 1-aminopyridinium iodide (1 equiv) and distilled-CH₃CN (0.13 M) were added DMAP (10 mol%), K_2CO_3 (3.6 equiv) and sulfonyl chloride (1 equiv) at 0 °C (ice water bath) under N₂. Then, the cooling bath was removed and the reaction mixture was stirred at rt for 6 h. The suspension was filtered and concentrated in vacuo. The residue was suspended in CH₂Cl₂ and filtered to remove inorganic impurities. After the solvent was removed under reduced pressure, the crude product was purified by silica gel flash column chromatography (CH₂Cl₂/MeOH = 10/1) and washed with a small amount of CH₂Cl₂ to afford aminopyridinium ylide.

Step 2: The ylide product (1 equiv) was diluted with CH_2Cl_2 (0.3M) and tetrafluoroboric acid solution (40 wt.% in H_2O) (1.3 equiv) was added to the solution at rt. The mixture was stirred for 30 min, then the product was precipitated. The mixture was filtered, washed with diethyl ether and pentane, and dried in vacuo. The pure product was obtained as a white solid.

1.2 Synthesis of heteroaryl-substituted tertiary bishomoallylic alcohols

Heteroaryl-substituted tertiary bishomoallylic alcohols were synthesized according to reported procedures with modifications.²

General procedure:

Step 1: A mixture of acetophenone **S2** (1.0 mmol), benzothiazole **S1** (1.5 mmol), I₂ (1.5 mmol), and KOH (1.0 mmol) in solvent 4.0 mL (DMSO/H₂O = 3:1) was stirred at 100 °C (oil bath). After the disappearance of the reactant (monitored by TLC), 50 mL of water was added to the mixture, which was then extracted with ethyl acetate 3 times $(3 \times 20.0 \text{ mL})$. The extract was washed with Na₂S₂O₃ solution, dried over anhydrous Na₂SO₄, and evaporated. The residue was purified by column chromatography on silica gel and eluted with ethyl acetate/petroleum ether (1/50) to afford yellow solid **S3** in 78% yield (0.19 g).

Step 2: To an oven-dried 100 mL double-neck round bottom flask, vinyl magnesium bromide (3.0 equiv) was added dropwise to a solution of ketone **S3** (1.0 equiv) in dry THF (0.2 M) under N₂ atmosphere at 0 °C (ice water bath). The resulting mixture was warmed gradually to room temperature and stirred for 6 - 8 h. After completion of the reaction, the reaction mixture was quenched with a saturated NH₄Cl solution, extracted with ethyl acetate, and dried before being purified on a silica column using an eluent of ethyl acetate/petroleum ether (1/20) to afford the desired product **S4**.

2. Synthesis of Photocatalyst ³

General procedure: 4-Bromo-1,8-naphthalic anhydride (3.0 g, 10.83 mmol) was dissolved in distilled ethanol (150 mL). n-Butylamine (1.28 mL, 12.99 mmol) was added to the solution, and then the solution was refluxed overnight under nitrogen. The solution was cooled and the precipitate was filtered with no further purification. The product was an ivory powder (2.94 g, 82% yield)

CuI (0.7 g, 3.68 mmol), 18-crown-6 (0.026 g, 0.1 mmol), K_2CO_3 (1.53 g, 11 mmol), carbazole (0.47 g, 2.8 mmol) dissolved in DMA (10 mL) and the mixture was stirred at 165 °C (oil bath) under argon. After 2 h a solution of 1 (0.5 g, 1.4 mmol) in hot DMA (5 mL) was added into the mixture slowly. The final mixture was heated to reflux for 16 h. The reaction solution was poured into 500 ml of ice water and the precipitated crude product was collected, dried and purified by column chromatography (silica gel, 1/20; PE/EA). Cz-NI was obtained as a yellow solid in 43% yield; mp = 136 – 137 °C.

3. Screening of Reaction Conditions

OH S 1a	+ PC (1 mol %) - DCM (0.1 M), N ₂ white light, rt, 12 h 2a	
Entry	PC (mol %)	Yield (%) ^b
1	Cz-NI	44
2	4CzIPN	19
3	Ir(ppy) ₃	27
4	$Ru(bpy)_3(PF_6)_2$	4
5	$[Ir(dtbbpy)(ppy)_2]PF_6$	34

^{*a*} Reaction condition: **1a** (0.1 mmol), **2a** (0.1 mmol), and PC (1 mol %) in DCM (1 mL) at 25 °C for 12 h under irradiation with white light. ^{*b*} Isolated yield.

Table S2. Optimization of solvent. a

2	CHCl ₃	52
3	DCE	55
4	n-hexane	14
5	CH ₃ CN	11
6	CCl_4	Trace
7	EA	Trace

^a Reaction condition: **1a** (0.1 mmol), **2a** (0.1 mmol), and **Cz-NI** (1 mol %) in Solvent (1 mL) at 25 °C for 12 h under irradiation with white light. ^b Isolated yield.

OH S 1a	+	NHTs SN 3aa
Entry	1a	Yield (%) ^b
1	1.2 equiv	67
2	1.4 equiv	81
3	1.5 equiv	83
4	1.6 equiv	84
5	1.8 equiv	77

Table S3. Optimization of the loading of 1a. a

ОН

^a Reaction condition: 1a, 2a (0.1 mmol), and Cz-NI (1 mol %) in DCE (1 mL) at 25 °C for 12 h under irradiation with white light. ^b Isolated yield.

Table S4. Optimization of concentration. a

1	0.5 ml	84	
2	2 ml	91	
3	4 ml	92	
4	6 ml	84	

^{*a*} Reaction condition: **1a** (0.16 mmol), **2a** (0.1 mmol), and **Cz-NI** (1 mol %) in DCE at 25 °C for 12 h under irradiation with white light. ^{*b*} Isolated yield.

Table S5. Optimization of reaction time. ^a

Entry	Time	Yield (%) ^b
1	6 h	60
2	8 h	81
3	9 h	96
4	10 h	92
5	12 h	91
6	18 h	90
7	24 h	91

^{*a*} Reaction condition: **1a** (0.16 mmol), **2a** (0.1 mmol), and **Cz-NI** (1 mol %) in DCE (2 ml) at 25 °C under irradiation with white light. ^{*b*} Isolated yield.

4. General procedure for the synthesis of products and analytical data

Figure S1. Thermostatic photoreaction device

General catalysis procedure: A dried 10 mL reaction tube was charged with the photocatalyst (0.001 mmol, 0.42 mg), the heteroaryl-substituted tertiary bishomoallylic alcohol **1a** (0.16 mmol, 1.6 equiv), N-protected 1-aminopyridinium **2a** (0.1 mmol, 1 equiv) and 2.0 mL DCE. The reaction mixture was degassed by three cycles of freeze-pump-thaw. After the mixture was thoroughly degassed, the vial was placed beside a white LED light. The reaction was stirred at 25 °C for 9 h. After completion of the reaction as checked by TLC. The reaction mixture was purified by silica gel flash column chromatography (petroleum ether/EtOAc) to give the corresponding product **3aa**.

N-(2-(benzo[d]thiazol-2-yl)-5-oxo-5-phenylpentyl)-4-methylbenzenesulfonamide (3aa)

Following the general procedure, compound **3aa** was obtained as a yellow oil in 96% yield (44.6 mg); $R_f = 0.48$ (PE/EA = 1/1).

¹**H** NMR (400 MHz, CDCl₃): δ 7.89 (dd, J = 13.7, 5.2 Hz, 3H), 7.80 (d, J = 8.1 Hz, 1H), 7.69 (d, J = 7.5 Hz, 2H), 7.57 – 7.49 (m, 1H), 7.48 – 7.30 (m, 4H), 7.18 (d, J = 6.6 Hz, 2H), 5.91 – 5.69 (m, 1H), 3.69 – 3.15 (m, 3H), 3.08 – 2.86 (m, 2H), 2.34 (s, 3H), 2.27 (dd, J = 12.8, 6.7 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃): δ 198.9, 172.3, 152.7, 143.3, 136.7, 136.5, 134.5, 133.2, 129.6, 128.6, 128.0, 126.9, 126.2, 125.2, 122.8, 121.6, 45.8, 42.9, 35.2, 26.9, 21.4.
HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₅H₂₅N₂O₃S₂ 465.1301, found: 465.1304.

N-(2-(benzo[*d*]thiazol-2-yl)-5-oxo-5-(4-methoxylphenylpentyl))-4methylbenzenesulfonamide (3ab)

Following the general procedure, compound **3ab** was obtained as a white solid in 85% yield (42.0 mg); mp= 111 - 112 °C; R_f = 0.36 (PE/EA = 1/1).

¹**H NMR (400 MHz, CDCl₃):** δ 7.94 (dt, J = 8.2, 0.9 Hz, 1H), 7.91 – 7.86 (m, 2H), 7.85 – 7.80 (m, 1H), 7.73 – 7.67 (m, 2H), 7.48 (m, J = 8.3, 7.2, 1.2 Hz, 1H), 7.38 (m, J = 8.2, 7.2, 1.2 Hz, 1H), 7.20 (d, J = 8.0 Hz, 2H), 6.94 – 6.87 (m, 2H), 5.67 (d, J = 6.0 Hz, 1H), 3.86 (s, 3H), 3.49 – 3.36 (m, 3H), 2.99 (t, J = 7.1 Hz, 2H), 2.36 (s, 3H), 2.27 (m, J = 6.8, 4.5 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 197.5, 172.5, 163.6, 152.7, 143.3, 136.8, 134.6, 130.3, 129.7, 128.6 127.9, 126.2, 125.2, 122.8, 121.6, 114.1, 77.3, 77.0, 76.7, 55.4, 45.8, 42.9, 34.81, 27.1, 21.4.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₆H₂₇N₂O₄S₂ 495.1407, found:495.1409.

N-(2-(benzo[*d*]thiazol-2-yl)-5-oxo-5-(4-flurophenylpentyl))-4methylbenzenesulfonamide (3ac)

Following the general procedure, compound **3ac** was obtained as a yellow solid in 80% yield (38.6 mg); mp = 104 - 105 °C; R_f = 0.55 (PE/EA = 1/1).

¹**H NMR (400 MHz, CDCl₃):** δ 7.95 (d, J = 2.4 Hz, 1H), 7.94 – 7.90 (m, 2H), 7.83 (dt, J = 8.0, 0.9 Hz, 1H), 7.74 – 7.67 (m, 2H), 7.48 (m, J = 8.3, 7.2, 1.3 Hz, 1H), 7.39 (m, J = 8.3, 7.2, 1.2 Hz, 1H), 7.24 – 7.19 (m, 2H), 7.14 – 7.07 (m, 2H), 5.60 (t, J = 5.9 Hz, 1H), 3.51 – 3.37 (m, 3H), 3.03 (t, J = 7.1 Hz, 2H), 2.37 (s, 3H), 2.29 (m, J = 7.0, 2.2 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 197.4, 172.2, 166.3 (C-F, J_{C-F} = 253.4), 152.7, 143.4, 136.7, 134.5, 132.8 (C-F, J_{C-F} = 4.1), 130.6 (C-F, J_{C-F} = 8.3), 129.6, 126.9, 126.3 (C-F, J_{C-F} = 19.8), 125.2, 122.8, 121.6, 115.6 (C-F, J_{C-F} = 20.6), 45.9, 42.9, 35.1, 26.9, 21.4. ¹⁹F NMR (376 MHz, CDCl₃): δ -104.85. **HRMS (ESI-TOF) m/z:** $[M+H]^+$ calcd for $C_{25}H_{24}FN_2O_3S_2$ 483.1207, found: 483.1209.

N-(2-(benzo[d]thiazol-2-yl)-5-oxo-5-(4-chlorophenylpentyl))-4-

methylbenzenesulfonamide (3ad)

Following the general procedure, compound **3ad** was obtained as a yellow solid in 85% yield (42.4 mg); mp = 131 - 132 °C; R_f = 0.61(PE/EA = 2/1).

¹**H NMR (400 MHz, CDCl₃):** δ 7.94 (d, *J* = 7.8 Hz, 1H), 7.89 – 7.80 (m, 3H), 7.74 – 7.67 (m, 2H), 7.49 (m, *J* = 8.3, 7.2, 1.3 Hz, 1H), 7.45 – 7.35 (m, 3H), 7.22 (d, *J* = 8.1 Hz, 2H), 5.57 (t, *J* = 6.0 Hz, 1H), 3.51 – 3.36 (m, 3H), 3.03 (t, *J* = 7.1 Hz, 2H), 2.37 (s, 3H), 2.29 (m, *J* = 7.0, 2.3 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 197.8, 172.2, 152.7, 143.4, 139.7, 136.7, 134.8, 134.5, 129.6, 129.4, 128.9, 126.9, 126.2, 125.2, 122.8, 121.6, 45.9, 42.9, 35.2, 26.9, 21.4. C₂₅H₂₄ClN₂O₃S₂ 499.0911, found: 499.0915.

HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{25}H_{24}ClN_2O_3S_2$ 499.0911, found: 499.0915.

N-(2-(benzo[d]thiazol-2-yl)-5-oxo-5-(4-trifluoromethylphenylpentyl))-4-

methylbenzenesulfonamide (3ae)

Following the general procedure, compound **3ae** was obtained as a gray solid in 90% yield (47.9 mg); mp = 156 - 157 °C; R_f = 0.54 (PE/EA = 2/1).

¹**H NMR (400 MHz, CDCl₃):** δ 8.00 (d, J = 8.1 Hz, 2H), 7.95 – 7.89 (m, 1H), 7.83 (dd, J = 8.1, 1.2 Hz, 1H), 7.74 – 7.66 (m, 4H), 7.47 (m, J = 8.3, 7.2, 1.3 Hz, 1H), 7.38 (td, J = 7.6, 1.2 Hz, 1H), 7.21 (d, J = 8.0 Hz, 2H), 5.67 (t, J = 6.1 Hz, 1H), 3.46 (m, J = 12.6, 6.3, 4.2 Hz, 3H), 3.08 (t, J = 7.1 Hz, 2H), 2.36 (s, 3H), 2.31 (q, J = 7.0 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 198.1, 172.1, 152.7, 143.4, 139.1, 136.8, 134.9 (C-F, J_{C-F} =32.9), 134.5, 129.7, 128.4, 126.9, 126.2, 125.7 (C-F, J_{C-F} =3.3), 122.9, 121.6, 45.9, 42.9, 35.6, 26.9, 21.5.

¹⁹F NMR (**376** MHz, CDCl₃): δ -63.14.

HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{26}H_{24}F_3N_2O_3S_2$ 533.1175, found: 533.1179.

N-(2-(benzo[d]thiazol-2-yl)-5-oxo-5-Biphenyl)-4-methylbenzenesulfonamide (3af)

Following the general procedure, compound **3af** was obtained as a white solid in 84% yield (45.4 mg); mp = 131 - 132 °C; R_f = 0.51 (PE/EA = 1/1).

¹**H NMR (600 MHz, CDCl₃):** δ 7.99 – 7.94 (m, 2H), 7.95 – 7.91 (m, 1H), 7.82 (dd, *J* = 8.0, 1.2 Hz, 1H), 7.73 – 7.69 (m, 2H), 7.66 – 7.63 (m, 2H), 7.60 (dd, *J* = 8.2, 1.4 Hz, 2H), 7.49 – 7.44 (m, 3H), 7.41 – 7.36 (m, 2H), 7.20 (d, *J* = 8.0 Hz, 2H), 5.71 (q, *J* = 6.0, 5.5 Hz, 1H), 3.51 – 3.39 (m, 3H), 3.07 (t, *J* = 6.9 Hz, 2H), 2.35 (s, 3H), 2.30 (m, *J* = 12.1, 7.0 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃): δ 198.6, 172.3, 152.7, 145.8, 143.3, 139.7, 136.7, 135.1, 134.5, 129.6, 128.9, 128.6, 128.2, 127.2, 126.9, 126.1, 125.1, 122.8, 121.6, 77.2, 77.0, 76.7, 45.9, 43.0, 35.2, 27.0, 21.4.

HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{31}H_{29}N_2O_3S_2$ 541.1614, found: 541.1614.

N-(2-(benzo[*d*]thiazol-2-yl)-5-oxo-5-(3-methylphenylpentyl))-4methylbenzenesulfonamide (3ag)

Following the general procedure, compound **3ag** was obtained as a yellow oil in 93% yield (44.5 mg); $R_f = 0.53$ (PE/EA = 2/1).

¹**H NMR (600 MHz, CDCl₃):** δ 7.96 – 7.90 (m, 1H), 7.84 – 7.80 (m, 1H), 7.72 – 7.66 (m, 4H), 7.47 (m, *J* = 8.3, 7.2, 1.3 Hz, 1H), 7.40 – 7.34 (m, 2H), 7.31 (t, *J* = 7.6 Hz, 1H), 7.19 (d, *J* = 8.0 Hz, 2H), 5.69 (t, *J* = 6.0 Hz, 1H), 3.48 – 3.37 (m, 3H), 3.02 (t, *J* = 7.1 Hz, 2H), 2.38 (s, 3H), 2.35 (s, 3H), 2.26 (m, *J* = 16.1, 9.3, 8.1 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃): δ 199.2, 172.3, 152.7, 143.3, 138.3, 136.7, 136.5, 134.0, 133.9, 129.7, 129.5, 128.5, 127.0, 126.9, 126.8, 125.2, 122.8, 121.6, 77.2, 77.0, 76.8, 45.9, 43.0, 35.2, 27.0, 21.4, 21.2.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₆H₂₇N₂O₃S₂ 479.1458, found: 479.1459.

N-(2-(benzo[*d*]thiazol-2-yl)-5-oxo-5-(3-methoxylhenylpentyl))-4methylbenzenesulfonamide (3ah)

Following the general procedure, compound **3ah** was obtained as a yellow oil in 94% yield (46.4 mg); $R_f = 0.45$ (PE/EA = 2/1).

¹**H NMR (600 MHz, CDCl₃):** δ 7.93 (dt, J = 8.2, 1.0 Hz, 1H), 7.83 (dt, J = 7.9, 1.0 Hz, 1H), 7.72 – 7.67 (m, 2H), 7.50 – 7.44 (m, 2H), 7.43 (dd, J = 2.7, 1.6 Hz, 1H), 7.38 (m, J = 8.2, 7.2, 1.2 Hz, 1H), 7.34 (t, J = 7.9 Hz, 1H), 7.24 – 7.18 (m, 2H), 7.09 (m, J = 8.2, 2.7, 1.0 Hz, 1H), 5.64 (t, J = 5.9 Hz, 1H), 3.83 (s, 3H), 3.48 – 3.38 (m, 3H), 3.06 – 2.99 (m, 2H), 2.36 (s, 3H), 2.28 (m, J = 6.9 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃): δ 198.8, 172.3, 159.8, 152.7, 143.3, 137.8, 136.7, 134.5, 129.7, 129.6, 126.9, 126.2, 125.2, 122.8, 121.6, 120.6, 119.7, 112.2, 55.4, 45.9, 42.9, 35.3, 27.0, 21.4.

HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{26}H_{27}N_2O_4S_2$ 495.1407, found: 495.1411.

N-(2-(benzo[*d*]thiazol-2-yl)-5-oxo-5-(3-bromophenylpentyl))-4methylbenzenesulfonamide (3ai)

Following the general procedure, compound **3ai** was obtained as a yellow oil in 78% yield (42.3 mg); $R_f = 0.42$ (PE/EA = 1/1).

¹**H NMR (400 MHz, CDCl₃):** δ 8.00 (t, *J* = 1.9 Hz, 1H), 7.93 (d, *J* = 8.1 Hz, 1H), 7.82 (td, *J* = 7.2, 6.5, 1.2 Hz, 2H), 7.72 – 7.68 (m, 2H), 7.66 (dt, *J* = 8.1, 1.2 Hz, 1H), 7.50 – 7.44 (m, 1H), 7.40 – 7.35 (m, 1H), 7.31 (t, *J* = 7.8 Hz, 1H), 7.21 (d, *J* = 8.0 Hz, 2H), 5.66 (t, *J* = 6.0 Hz, 1H), 3.51 – 3.36 (m, 3H), 3.00 (t, *J* = 7.1 Hz, 2H), 2.36 (s, 3H), 2.28 (q, *J* = 6.9 Hz, 2H)

¹³C NMR (101 MHz, CDCl₃): δ 197.6, 172.1, 152.7, 143.4, 138.2, 136.7, 136.1, 134.5, 131.0, 130.2, 129.7, 126.9, 126.6, 126.2, 125.3, 122.9, 122.8, 121.6, 45.9, 42.9, 35.3, 26.8, 21.5.

HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{25}H_{24}BrN_2O_3S_2$ 543.0406, found: 543.0409.

N-(2-(benzo[*d*]thiazol-2-yl)-5-oxo-5-(3-flurophenylpentyl))-4methylbenzenesulfonamide (3aj)

Following the general procedure, compound **3aj** was obtained as a yellow solid in 87% yield (42.0 mg); mp = 92 – 93 °C; $R_f = 0.49$ (PE/EA = 1/1).

¹**H NMR (400 MHz, CDCl₃):** δ 7.93 (d, J = 8.1 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.69 (dd, J = 10.9, 8.1 Hz, 3H), 7.57 (dt, J = 9.5, 2.1 Hz, 1H), 7.55 – 7.44 (m, 1H), 7.39 (m, J = 7.9, 1.9 Hz, 2H), 7.25 (d, J = 2.6 Hz, 1H), 7.21 (d, J = 8.2 Hz, 2H), 5.63 (t, J = 6.0 Hz, 1H), 4.20 – 3.34 (m, 3H), 3.42 – 2.76 (m, 2H), 2.36 (s, 3H), 2.28 (m, J = 7.0, 2.0 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 197.7, 172.1, 162.8 (C-F, 1 J_{C-F} = 248.0 Hz), 152.7, 143.4, 138.5 (C-F, 3 J_{C-F} = 6.1 Hz), 136.7, 134.5, 130.3 (C-F, 3 J_{C-F} = 7.6 Hz), 129.6,

126.9, 126.2, 125.2, 123.8 (C-F, 4 J_{C-F} = 3.1 Hz), 122.8, 121.6, 120.2 (C-F, 2 J_{C-F} = 21.6 Hz), 114.7 (C-F, 2 J_{C-F} = 22.3 Hz), 45.9, 42.9, 35.4, 26.8, 21.4. ¹⁹F NMR (565 MHz, CDCl₃): δ -111.67, -111.68, -111.69, -111.70. HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₅H₂₄FN₂O₃S₂ 483.1207, found: 483.1209.

N-(2-(benzo[*d*]thiazol-2-yl)-5-oxo-5-(3,4-bimethoxylphenylpentyl))-4methylbenzenesulfonamide (3ak)

Following the general procedure, compound **3ak** was obtained as a yellow oil in 81% yield (42.5 mg); $R_f = 0.41$ (PE/EA = 1/1).

¹**H NMR (600 MHz, CDCl₃):** δ 7.92 (dd, *J* = 19.0, 8.3 Hz, 1H), 7.83 (d, *J* = 8.0 Hz, 1H), 7.70 (d, *J* = 8.2 Hz, 2H), 7.54 (dd, *J* = 8.4, 2.0 Hz, 1H), 7.50 – 7.44 (m, 2H), 7.41 – 7.37 (m, 1H), 7.21 (d, *J* = 7.9 Hz, 2H), 6.86 (d, *J* = 8.4 Hz, 1H), 5.67 (q, *J* = 6.1 Hz, 1H), 3.93 (s, 3H), 3.92 (s, 3H), 3.54 – 3.37 (m, 3H), 3.03 (t, *J* = 7.1 Hz, 2H), 2.37 (s, 3H), 2.35 – 2.22 (m, *J* = 7.0 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃): δ 197.7, 172.4, 153.4, 152.7, 149.0, 143.3, 136.8, 134.7, 134.6, 133.2, 129.8, 129.6, 126.9, 126.2, 125.2, 122.8, 121.6, 110.0, 56.1, 55.9, 45.8, 43.0, 34.7, 27.3, 21.4.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₇H₂₉N₂O₅S₂ 525.1512, found: 525.1515.

N-(2-(benzo[d]thiazol-2-yl)-5-oxo-5-(o-tolyl)pentyl)-4-methylbenzenesulfonamide

Following the general procedure, compound **3al** was obtained as a yellow oil in 31% yield (14.8 mg); $R_f = 0.41$ (PE/EA = 2/1).

¹**H** NMR (400 MHz, CDCl₃): δ 7.92 (dt, J = 8.2, 0.9 Hz, 1H), 7.87 – 7.75 (m, 2H), 7.69 (d, J = 8.3 Hz, 2H), 7.57 (dd, J = 8.1, 1.4 Hz, 1H), 7.47 (ddd, J = 8.3, 7.2, 1.3 Hz, 1H), 7.43 – 7.31 (m, 2H), 7.21 (dd, J = 9.5, 7.5 Hz, 4H), 5.68 (t, J = 6.2 Hz, 1H), 3.53 – 3.27 (m, 3H), 2.96 (t, J = 7.1 Hz, 2H), 2.46 (s, 3H), 2.36 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 202.7, 172.2, 152.7, 143.3, 138.2, 137.2, 134.5, 131.9, 131.4, 129.6, 128.5, 126.9, 126.3, 126.1, 125.7, 125.1, 122.7, 121.5, 77.2, 77.0, 76.6, 46.0, 43.0, 37.9, 27.1, 21.4, 21.3.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₆H₂₇N₂O₃S₂ 479.1458, found: 479.1456.

N-(2-(benzo[*d*]thiazol-2-yl)-5-oxo-5-Naphthyl)-4-methylbenzenesulfonamide (3am)

Following the general procedure, compound **3am** was obtained as a yellow oil in 67% yield (34.5 mg); $R_f = 0.51$ (PE/EA = 1/1).

¹**H NMR (400 MHz, CDCl₃):** δ 8.42 (d, *J* = 1.7 Hz, 1H), 8.01 – 7.89 (m, 3H), 7.90 – 7.75 (m, 3H), 7.71 (d, *J* = 8.3 Hz, 2H), 7.60 (m, *J* = 8.2, 6.8, 1.4 Hz, 1H), 7.54 (m, *J* = 8.2, 6.9, 1.3 Hz, 1H), 7.48 (m, *J* = 8.3, 7.2, 1.3 Hz, 1H), 7.38 (td, *J* = 7.7, 1.2 Hz, 1H), 7.20 (d, *J* = 8.1 Hz, 2H), 5.66 (t, *J* = 5.9 Hz, 1H), 3.47 (pd, *J* = 7.1, 4.5 Hz, 3H), 3.19 (t, *J* = 7.1 Hz, 2H), 2.43 – 2.28 (m, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 199.0, 172.3, 152.7, 143.3, 136.8, 135.6, 134.6, 133.8, 132.4, 129.8, 129.6, 129.6, 128.5, 128.4, 127.7, 127.0, 126.8, 126.2, 125.2, 123.6, 122.8, 121.6, 45.8, 43.0, 35.3, 27.2, 21.4.

HRMS (ESI–TOF) m/z: [M+H]⁺ calcd for C₂₉H₂₇N₂O₃S₂ 515.1458, found: 515.1460.

N-(2-(benzo[d]thiazol-2-yl)-5-oxo-5-thienyl)-4-methylbenzenesulfonamide (3an)

Following the general procedure, compound **3an** was obtained as a yellow oil in 61% yield (28.7 mg); $R_f = 0.33$ (PE/EA = 2/1).

¹**H NMR (600 MHz, CDCl₃):** δ 7.94 (d, J = 8.2 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.70 (d, J = 8.0 Hz, 2H), 7.68 (d, J = 3.8 Hz, 1H), 7.63 (d, J = 5.1 Hz, 1H), 7.48 (t, J = 7.7 Hz, 1H), 7.39 (t, J = 7.6 Hz, 1H), 7.22 (d, J = 8.0 Hz, 2H), 7.11 (t, J = 4.3 Hz, 1H), 5.65 – 5.58 (m, 1H), 3.51 – 3.38 (m, 3H), 3.00 (t, J = 7.1 Hz, 2H), 2.37 (s, 3H), 2.28 (dh, J = 21.1, 7.0 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃): δ 191.9, 172.2, 152.7, 143.8, 143.4, 136.8, 134.5, 133.8, 132.2, 129.6, 128.1, 126.9, 126.2, 125.2, 122.8, 121.6, 45.7, 42.8, 35.8, 27.2, 21.4.
HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₃H₂₃N₂O₃S₃ 471.0865, found: 471.0868.

N-(2-(benzo[*d*]thiazol-2-yl)-5-oxo-5-Cyclohexyl)-4-methylbenzenesulfonamide (3ao)

Following the general procedure, compound **3ao** was obtained as a yellow oil in 62% yield (29.2 mg); $R_f = 0.48$ (PE/EA = 2/1).

¹**H NMR (400 MHz, CDCl₃)**: δ 8.01 – 7.89 (m, 1H), 7.84 (dd, J = 8.0, 1.3 Hz, 1H), 7.69 (d, J = 8.3 Hz, 2H), 7.48 (m, J = 8.3, 7.2, 1.3 Hz, 1H), 7.39 (td, J = 7.6, 7.2, 1.2 Hz, 1H), 7.22 (d, J = 8.0 Hz, 2H), 5.56 (t, J = 5.9 Hz, 1H), 3.53 – 3.18 (m, 3H), 2.51 (t, J = 7.0 Hz, 2H), 2.39 (s, 3H), 2.32 – 2.21 (m, 1H), 2.14 – 2.04 (m, 2H), 1.75 (tq, J = 6.2, 3.1 Hz, 4H), 1.70 – 1.61 (m, 2H), 1.39 – 1.12 (m, 6H).

¹³C NMR (101 MHz, CDCl₃): δ 213.0, 172.3, 152.7, 143.3, 136.8, 134.5, 129.6, 126.9, 126.1, 125.1, 122.8, 121.6, 50.7, 45.8, 42.9, 37.1, 28.4, 26.4, 25.7, 25.5, 21.48.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₅H₃₁N₂O₃S₂ 471.1771, found: 471.1772.

N-(2-(5-bromobenzo[*d*]thiazol-2-yl)-5-oxo-5-phenylpentyl)-4methylbenzenesulfonamide (3ap)

Following the general procedure, compound **3ap** was obtained as a white solid as in 70% yield (38.1 mg); mp = 154 - 155 °C; R_f = 0.42 (PE/EA = 2/1).

¹**H NMR (400 MHz, CDCl₃):** δ 8.04 (d, *J* = 1.8 Hz, 1H), 7.92 – 7.86 (m, 2H), 7.69 (t, *J* = 8.2 Hz, 3H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.51 – 7.40 (m, 3H), 7.28 – 7.18 (m, 2H), 5.60 (t, *J* = 6.2 Hz, 1H), 3.43 (m, *J* = 10.2, 6.8 Hz, 3H), 3.04 (td, *J* = 6.9, 1.5 Hz, 2H), 2.37 (s, 3H), 2.27 (q, *J* = 8.3, 7.1 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃): δ 197.9, 173.2, 152.9, 142.4, 135.8, 135.4, 132.4, 132.3, 128.6, 127.6, 127.3, 127.0, 125.9, 125.4, 121.6, 118.8, 44.7, 42.1, 34.1, 25.9, 20.4.

HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{25}H_{24}BrN_2O_3S_2$ 543.0406, found: 543.0410.

N-(2-(5-chlorobenzo[d]thiazol-2-yl)-5-oxo-5-phenylpentyl)-4-

methylbenzenesulfonamide (3aq)

Following the general procedure, compound **3aq** was obtained as a yellow solid in 89% yield (44.4 mg); mp = 124 - 125 °C; R_f = 0.50 (PE/EA = 2/1).

¹**H NMR (600 MHz, CDCl₃):** δ 7.89 (dd, J = 8.3, 1.4 Hz, 2H), 7.87 (d, J = 2.0 Hz, 1H), 7.72 (d, J = 8.5 Hz, 1H), 7.69 (d, J = 8.3 Hz, 2H), 7.58 – 7.52 (m, 1H), 7.43 (t, J = 7.8 Hz, 2H), 7.34 (dd, J = 8.5, 2.0 Hz, 1H), 7.21 (d, J = 8.0 Hz, 2H), 5.65 (t, J = 6.2 Hz, 1H), 3.50 – 3.37 (m, 3H), 3.04 (td, J = 7.0, 2.5 Hz, 2H), 2.36 (s, 3H), 2.27 (m, J = 7.1, 2.4 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃): δ 198.9, 174.5, 153.6, 143.4, 136.8, 136.5, 133.3, 132.9, 132.2, 129.7, 128.6, 128.0, 127.0, 125.7, 122.7, 122.3, 45.9, 43.3, 35.1, 26.9, 21.5.

HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{25}H_{24}ClN_2O_3S_2$ 499.0911, found: 499.0913.

N-(2-(benzoxazole-2-yl)-5-oxo-5-phenylpentyl)-4-methylbenzenesulfonamide (3ar)

Following the general procedure, compound **3ar** was obtained as a yellow oil in 58% yield (26.1 mg); $R_f = 0.31$ (PE/EA = 2/1).

¹H NMR (600 MHz, CDCl₃): δ 7.91 – 7.86 (m, 2H), 7.72 (d, J = 8.2 Hz, 2H), 7.42 (m, J = 8.6, 6.0, 2.0 Hz, 2H), 7.30 (m, J = 5.4, 2.9, 2.5 Hz, 5H), 7.23 – 7.19 (m, 2H), 5.76 (dd, J = 28.9, 14.5 Hz, 1H), 3.48 (dt, J = 13.9, 7.1 Hz, 3H), 3.36 (m, J = 7.2, 5.0 Hz, 2H), 3.05 (m, J = 8.8, 5.6, 1.9 Hz, 3H), 2.36 (s, 1H), 2.23 (m, J = 14.0, 6.9 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃): δ 198.8, 166.6, 150.4, 143.3, 140.5, 136.8, 136.4, 134.0, 133.2, 129.6, 128.5, 127.9, 126.9, 125.0, 124.4, 119.7, 110.5, 77.2, 77.0, 76.7, 44.3, 38.8, 35.1, 24.5, 21.4.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₅H₂₅N₂O₄S 449.1530, found: 449.1531.

N-(2-(thiazol-2-yl)-5-oxo-5-phenylpentyl)-4-methylbenzenesulfonamide (3as)

Following the general procedure, compound **3as** was obtained as a yellow oil in 70% yield (29.0 mg); $R_f = 0.35$ (PE/EA = 1/1).

¹**H NMR (400 MHz, CDCl₃):** δ 7.94 – 7.87 (m, 2H), 7.75 – 7.70 (m, 2H), 7.68 (d, *J* = 3.3 Hz, 1H), 7.59 – 7.53 (m, 1H), 7.48 – 7.42 (m, 2H), 7.29 – 7.25 (m, 2H), 7.24 (d, *J* = 3.3 Hz, 1H), 5.71 – 5.64 (m, 1H), 3.43 – 3.28 (m, 3H), 3.00 (t, *J* = 7.1 Hz, 2H), 2.39 (s, 3H), 2.21 (q, *J* = 6.9 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃): δ 199.1, 171.4, 143.3, 142.3, 136.9, 136.5, 133.2, 129.7, 128.6, 128.0, 127.0, 118.7, 46.0, 41.8, 35.1, 27.2, 21.4.

HRMS (ESI–TOF) m/z: [M+H]⁺ calcd for C₂₁H₂₃N₂O₃S₂ 415.1145, found: 415.1147.

N-(2-(oxazole-2-yl)-5-oxo-5-phenylpentyl)-4-methylbenzenesulfonamide (3at)

Following the general procedure, compound **3at** was obtained as a yellow solid in 79% yield (31.5 mg); mp = 114 - 115 °C; R_f = 0.54 (PE/EA = 1/1).

¹**H NMR (600 MHz, CDCl₃):** δ 7.91 (d, *J* = 8.0 Hz, 2H), 7.74 (d, *J* = 8.1 Hz, 2H), 7.60 – 7.53 (m, 2H), 7.45 (t, *J* = 7.6 Hz, 2H), 7.28 – 7.24 (m, 1H), 6.99 (d, *J* = 9.7 Hz, 1H), 5.62 (t, *J* = 6.5 Hz, 1H), 3.38 – 3.25 (m, 2H), 3.24 – 3.14 (m, 1H), 3.00 (t, *J* = 7.1 Hz, 2H), 2.39 (s, 3H), 2.16 (m, *J* = 34.9, 14.1, 7.1 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃): δ 198.9, 164.7, 143.4, 138.8, 136.9, 136.5, 133.2, 129.74, 128.6, 128. 0, 127.0, 126.7, 44.4, 38.2, 35.1, 24.7, 21.4.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₁H₂₃N₂O₄S 399.1373, found: 399.1375.

N-(2-(pyridine-2-yl)-5-oxo-5-phenylpentyl)-4-methylbenzenesulfonamide (3au)

Following the general procedure, compound **3au** was obtained as a yellow oil in 74% yield (30.3 mg); $R_f = 0.32$ (PE/EA = 1/1).

¹**H NMR (400 MHz, CDCl₃):** δ 8.49 (dt, J = 4.7, 1.5 Hz, 1H), 7.91 – 7.84 (m, 2H), 7.70 (d, J = 8.3 Hz, 2H), 7.63 – 7.51 (m, 2H), 7.44 (dd, J = 8.4, 7.0 Hz, 2H), 7.25 (d, J = 8.1 Hz, 2H), 7.15 (m, J = 7.6, 4.9, 1.2 Hz, 1H), 7.10 (dd, J = 7.9, 1.1 Hz, 1H), 5.88 (t, J = 6.4 Hz, 1H), 3.37 (dt, J = 12.4, 7.1 Hz, 1H), 3.25 (m, J = 12.4, 5.2, 3.9 Hz, 1H), 3.05 (m, J = 7.2, 3.8 Hz, 1H), 2.89 (td, J = 7.1, 1.3 Hz, 2H), 2.38 (s, 3H), 2.12 (q, J = 7.3 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃): δ 199.6, 161.9, 149.2, 143.1, 136.9, 136.8, 136.6, 133.1, 129.6, 128.5, 128.0, 127.0, 123.5, 122.0, 45.7, 44.6, 35.4, 27.0, 21.4.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₃H₂₅N₂O₃S 409.1580, found: 409.1582.

N-(2-cyano-5-oxo-5-phenylpentyl)-4-methylbenzenesulfonamide (3av)

Following the general procedure, compound **3av** was obtained as a yellow oil in 38% yield (13.6 mg); $R_f = 0.36$ (PE/EA = 2/1).

¹**H NMR (600 MHz, CDCl₃):** δ 7.90 (dd, J = 8.3, 1.4 Hz, 2H), 7.73 (d, J = 8.3 Hz, 1H), 7.65 (d, J = 8.0 Hz, 1H), 7.58 – 7.48 (m, 1H), 7.42 (t, J = 7.8 Hz, 1H), 7.23 (d, J = 8.1 Hz, 1H), 7.13 (dd, J = 8.0, 1.7 Hz, 1H), 7.07 (d, J = 1.7 Hz, 1H), 5.13 (dd, J = 10.4, 5.1 Hz, 2H), 3.87 (m, J = 14.8, 10.5, 4.1 Hz, 1H), 3.36 (m, J = 15.1, 5.2, 3.8 Hz, 1H), 3.28 – 2.96 (m, 2H), 2.78 (dd, J = 9.9, 4.5 Hz, 1H), 2.30 (s, 3H), 2.26 – 2.12 (m, 1H), 2.05 (m, J = 14.7, 7.4, 5.2 Hz, 1H).

¹³C NMR (151 MHz, CDCl₃): δ 199.3, 142.7, 139.0, 136.3, 134.5, 133.6, 129.6, 128.7, 128.0, 126.4, 124.4, 44.5, 36.6, 35.3, 27.2, 21.5.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₉H₂₁N₂O₃S 357.1267, found: 357.1268.

N-(2-(benzofuran-2-yl)-5-oxo-5-phenylpentyl)-4-methylbenzenesulfonamide (3aw)

Following the general procedure, compound **3aw** was obtained as a yellow oil in 73% yield (32.7 mg); $R_f = 0.32$ (PE/EA = 2/1).

¹**H NMR (400 MHz, CDCl₃):** δ 7.93 – 7.78 (m, 2H), 7.66 (d, *J* = 8.2 Hz, 2H), 7.60 – 7.48 (m, 1H), 7.46 (dd, *J* = 7.2, 1.8 Hz, 1H), 7.40 (t, *J* = 7.7 Hz, 2H), 7.34 (dd, *J* = 8.8, 4.2 Hz, 1H), 7.27 – 7.12 (m, 5H), 4.87 (q, *J* = 6.5, 4.9 Hz, 1H), 3.39 – 3.18 (m, 2H), 3.11 (ddt, *J* = 13.0, 6.4, 3.8 Hz, 1H), 2.90 (t, *J* = 7.5 Hz, 2H), 2.36 (s, 3H), 2.25 – 1.97 (m, 3H).

¹³C NMR (101 MHz, CDCl₃): 199.2, 157.1, 154.6, 143.3, 136.6, 136.5, 133.1, 129.6, 128.5, 127.9, 126.9, 126.2, 123.8, 122.7, 120.6, 110.9, 104.5, 45.8, 39.0, 35.4, 24.7, 21.4.

HRMS (ESI–TOF) m/z: [M+H]⁺ calcd for C₂₆H₂₆NO₄S 448.1577, found: 448.1579.

4-methyl-N-(5-oxo-5-phenyl-2-(thiophen-2-yl)pentyl)benzenesulfonamide (3ax)

Following the general procedure, compound **3ax** was obtained as a yellow oil in 53% yield (21.9 mg); $R_f = 0.32$ (PE/EA = 2/1).

¹H NMR (400 MHz, CDCl₃): δ 7.9 – 7.8 (m, 3H), 7.8 – 7.6 (m, 2H), 7.6 – 7.5 (m, 1H), 7.4 (t, *J*=7.7 Hz, 2H), 7.3 (d, *J*=8.3 Hz, 3H), 7.2 (dd, *J*=5.1, 1.1 Hz, 1H), 6.9 (dd, *J*=5.1, 3.4 Hz, 1H), 6.8 (dd, *J*=3.5, 1.2 Hz, 1H), 4.6 (dd, *J*=8.1, 4.7 Hz, 1H), 3.3 (ddd, *J*=12.3, 8.2, 5.5 Hz, 1H), 3.2 (tt, *J*=9.9, 4.2 Hz, 1H), 3.0 (ddd, *J*=12.7, 8.3, 4.7 Hz, 1H), 2.9 (dd, *J*=8.0, 6.5 Hz, 2H), 2.4 (s, 3H), 2.2 (dtd, *J*=14.9, 7.6, 4.6 Hz, 1H), 1.9 (ddt, *J*=13.8, 9.9, 6.9 Hz, 1H)¹³C NMR (101 MHz, CDCl₃): δ 199.3, 144.3, 143.5, 136.7, 133.1, 129.7, 129.7, 128.5, 127.93, 127.1, 127.0, 126.4, 125.6, 124.5, 49.1, 40.6, 35.6, 28.5, 21.5. HRMS (ESI–TOF) m/z: [M+H]⁺ calcd for C₂₂H₂₄NO₃S₂ 414.1192, found: 414.1195.

N-(2-(benzo[d]thiazol-2-yl)-5-oxo-5-phenylpentyl)-4-

methoxylbenzenesulfonamide (3ba)

Following the general procedure, compound **3ba** was obtained as a white solid in 88% yield (42.3 mg); mp = 127 - 128 °C; $R_f = 0.47$ (PE/EA = 1/1).

¹**H NMR (600 MHz, CDCl₃):** δ 7.92 (d, *J* = 8.2 Hz, 1H), 7.89 – 7.86 (m, 2H), 7.82 (d, *J* = 8.0 Hz, 1H), 7.74 (d, *J* = 8.3 Hz, 2H), 7.54 (td, *J* = 7.5, 1.2 Hz, 1H), 7.48 – 7.45 (m, 1H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.39 – 7.35 (m, 1H), 6.88 – 6.85 (m, 2H), 5.66 (t, *J* = 4.4 Hz, 1H), 3.80 (d, *J* = 1.0 Hz, 3H), 3.43 (m, *J* = 22.1, 15.7, 12.1, 5.9 Hz, 3H), 3.05 – 3.01 (m, 2H), 2.28 (m, *J* = 7.1, 2.8 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃): δ 198.9, 172.3, 162.7, 152.7, 136.4, 134.5, 133.2, 131.3, 129.0, 128.5, 127.9, 126.1, 125.1, 122.8, 121.6, 114.1, 55.4, 45.9, 43.0, 35.2, 26.9.
HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₅H₂₅N₂O₄S₂ 481.1250, found: 481.1255.

N-(2-(benzo[*d*]thiazol-2-yl)-5-oxo-5-phenylpentyl)-4-fluorobenzenesulfonamide (3ca)

Following the general procedure, compound **3ca** was obtained as a white solid in 85% yield (39.8 mg); mp = 113 - 114 °C; R_f = 0.52 (PE/EA = 2/1).

¹H NMR (400 MHz, CDCl₃): δ 7.94 – 7.86 (m, 3H), 7.85 – 7.77 (m, 3H), 7.54 (t, J = 7.4 Hz, 1H), 7.50 – 7.34 (m, 4H), 7.05 (t, J = 8.5 Hz, 2H), 5.86 (s, 1H), 3.46 (m, J = 8.0, 3.0 Hz, 1H), 3.05 (t, J = 7.1 Hz, 2H), 2.28 (q, J = 6.9 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 198.9, 172.1, 164.8 (C-F, $1J_{C-F} = 254.5$ Hz), 152.6, 136.4, 135.8 (C-F, $4J_{C-F} = 3.3$ Hz), 134.4, 133.2, 129.6 (C-F, $3J_{C-F} = 9.4$ Hz), 128.5, 127.9, 126.2, 125.2, 122.7, 121.6, 116.1 (C-F, $2J_{C-F} = 22.6$ Hz), 46.0, 43.0, 35.1, 26.9. ¹⁹F NMR (376 MHz, CDCl₃): δ -105.33

HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{24}H_{22}FN_2O_3S_2$ 469.1050, found: 469.1052.

N-(2-(benzo[*d*]thiazol-2-yl)-5-oxo-5-phenylpentyl)-4-chlorobenzenesulfonamide (3da)

Following the general procedure, compound **3da** was obtained as a yellow solid in 85% yield (41.3 mg); mp = 114 - 115 °C; R_f = 0.57 (PE/EA = 2/1).

¹**H NMR (400 MHz, CDCl₃):** δ 7.91 (d, *J* = 8.2 Hz, 1H), 7.89 – 7.87 (m, 2H), 7.83 – 7.80 (m, 1H), 7.72 (d, *J* = 8.6 Hz, 2H), 7.58 – 7.52 (m, 1H), 7.47 (m, *J* = 8.3, 7.2, 1.3 Hz, 1H), 7.43 (t, *J* = 7.7 Hz, 2H), 7.38 (td, *J* = 7.6, 7.1, 1.2 Hz, 1H), 7.34 (d, *J* = 8.6 Hz, 2H), 5.86 (t, *J* = 5.9 Hz, 1H), 3.51 – 3.40 (m, 3H), 3.10 – 2.96 (m, 2H), 2.28 (m, *J* = 7.0, 3.9 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃): δ 198.9, 172.1, 152.6, 138.9, 138.3, 136.4, 134.5, 133.3, 129.2, 128.6, 128.3, 127.9, 126.2, 125.2, 122.7, 121.6, 46.1, 43. 0, 35.1, 26.9.

HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{24}H_{22}ClN_2O_3S_2$ 485.0755, found: 485.0757.

N-(2-(benzo[*d*]thiazol-2-yl)-5-oxo-5-phenylpentyl)-4-bromobenzenesulfonamide (3ea)

Following the general procedure, compound **3ea** was obtained as a white solid in 96% yield (51.0 mg); mp = 131 - 132 °C; R_f = 0.40 (PE/EA = 2/1).

¹**H NMR (600 MHz, CDCl₃):** δ 7.90 (d, J = 8.3 Hz, 1H), 7.88 (d, J = 7.1 Hz, 2H), 7.81 (d, J = 8.0 Hz, 1H), 7.64 (d, J = 8.6 Hz, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.49 (d, J = 8.5 Hz, 2H), 7.46 (td, J = 8.3, 1.1 Hz, 1H), 7.42 (t, J = 7.6 Hz, 2H), 7.40 – 7.35 (m, 1H), 5.90 (t, J = 5.9 Hz, 1H), 3.45 (m, J = 12.8, 11.2, 6.6 Hz, 3H), 3.04 (t, J = 7.0 Hz, 2H), 2.35 – 2.20 (m, 2H).

¹³C NMR (151 MHz, CDCl₃): δ 198.9, 172.1, 152.6, 138.8, 136.4, 134.4, 133.2, 132.2, 128.5, 128.4, 127.9, 127.4, 126.2, 125.2, 122.7, 121.6, 46.1, 43.0, 35.1, 26.9.

HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{24}H_{22}BrN_2O_3S_2$ 529.0250, found: 529.0254.

N-(2-(benzo[d]thiazol-2-yl)-5-oxo-5-phenylpentyl)-1-naphthylsulfonamide (3fa)

Following the general procedure, compound **3fa** was obtained as a white solid in 78% yield (39.1 mg); mp = 141 - 142 °C; R_f = 0.48 (PE/EA = 2/1).

¹H NMR (400 MHz, CDCl₃): δ 8.40 (d, J = 1.7 Hz, 1H), 7.95 – 7.70 (m, 8H), 7.67 – 7.49 (m, 4H), 7.48 – 7.29 (m, 4H), 5.92 (t, J = 6.0 Hz, 1H), 3.57 – 3.41 (m, 3H), 2.99 (t, J = 7.1 Hz, 2H), 2.26 (q, J = 6.8 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 198.9, 172.2, 152.6, 136.5, 136.4, 134.6, 134.4, 133.1, 132.0, 129.4, 129.1, 128.6, 128.5, 128.2, 127.9, 127.8, 127.4, 126.1, 125.1, 122.7, 122.1, 121.5, 46.0, 43.0, 35.1, 26.9.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₈H₂₅N₂O₃S₂ 501.1301, found: 501.1304.

N-(2-(benzo[d]thiazol-2-yl)-5-oxo-5-phenylpentyl)-2-thienylsulfonamide (3ga)

Following the general procedure, compound **3ga** was obtained as a yellow oil in 92% yield (42.0 mg); $R_f = 0.32$ (PE/EA = 2/1).

¹**H NMR (600 MHz, CDCl₃):** δ 7.94 – 7.91 (m, 1H), 7.91 – 7.88 (m, 2H), 7.84 – 7.80 (m, 1H), 7.57 (dd, J = 3.7, 1.3 Hz, 1H), 7.56 – 7.51 (m, 1H), 7.50 (dd, J = 5.0, 1.3 Hz, 1H), 7.45 (m, J = 8.5, 7.3, 1.3 Hz, 1H), 7.42 (t, J = 7.8 Hz, 2H), 7.36 (m, J = 8.2, 7.2, 1.2 Hz, 1H), 7.00 (dd, J = 5.0, 3.7 Hz, 1H), 5.98 (t, J = 6.2 Hz, 1H), 3.59 – 3.46 (m, 3H), 3.06 (t, J = 7.1 Hz, 2H), 2.37 – 2.24 (m, J = 7.1 Hz, 2H).

¹³C NMR (151 MHz, CDCl₃): δ 198.9, 172.2, 152.6, 140.7, 136.4, 134.5, 133.2, 131.9, 131.7, 128.5, 127.9, 127.3, 126.1, 125.1, 122.8, 121.6, 46.1, 42.8, 35.1, 27.0.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₂H₂₁N₂O₃S₃ 457.0709, found: 457.0711.

N-(2-(benzo[*d*]thiazol-2-yl)-5-oxo-5-phenylpentyl)trifluoroacetylbenzenesulfonamide (3ha)

Following the general procedure, compound **3ha** was obtained as a yellow oil in 61% yield (24.8 mg); $R_f = 0.46$ (PE/EA = 1/1).

¹**H NMR (600 MHz, CDCl₃):** δ 8.00 – 7.97 (m, 1H), 7.95 – 7.92 (m, 2H), 7.91 (s, 1H), 7.89 – 7.86 (m, 1H), 7.56 (m, *J* = 8.8, 7.0, 1.3 Hz, 1H), 7.50 (m, *J* = 8.3, 7.2, 1.2 Hz, 1H), 7.45 (t, *J* = 7.8 Hz, 2H), 7.41 (m, *J* = 8.3, 7.2, 1.2 Hz, 1H), 3.95 (dt, *J* = 13.4, 6.6 Hz, 1H), 3.82 (dt, *J* = 13.7, 4.8 Hz, 1H), 3.58 (m, *J* = 6.9, 4.4 Hz, 1H), 3.15 (td, *J* = 6.9, 2.0 Hz, 2H), 2.40 (m, *J* = 14.0, 7.0 Hz, 1H), 2.24 (m, *J* = 14.0, 7.0 Hz, 1H).

¹³C NMR (151 MHz, CDCl₃): δ 198.9, 172.2, 157.4 (C-F, 2 J_{C-F} = 37.1 Hz), 152.7, 136.4, 134.4, 133.3, 128.6, 128.0, 126.3, 125.4, 122.9, 121.7, 115.8 (C-F, 1 J_{C-F} = 287.7 Hz), 42.1, 42.0, 35.2, 26.9.

¹⁹F NMR (**376** MHz, CDCl₃): δ -75.98.

HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{20}H_{18}F_3N_2O_2S$ 407.1036, found: 407.1040.

N-(2-(benzo[*d*]thiazol-2-yl)-3-oxo-3-phenylpropyl)-4-methylbenzenesulfonamide (4aa)

Following the general procedure, compound **4aa** was obtained as a yellow oil in 59% yield (25.8 mg); $R_f = 0.42$ (PE/EA = 2/1).

¹**H NMR (600 MHz, CDCl₃):** δ 8.00 – 7.92 (m, 3H), 7.79 (d, J = 8.0 Hz, 2H), 7.68 (t, J = 9.8 Hz, 2H), 7.57 – 7.52 (m, 4H), 7.44 (dt, J = 15.2, 5.9 Hz, 2H), 7.35 (dd, J = 13.1, 5.5 Hz, 3H), 7.18 (t, J = 12.0 Hz, 1H), 5.38 (t, J = 6.7 Hz, 1H), 3.81 (dt, J = 13.8, 7.0 Hz, 1H), 3.69 (dd, J = 13.5, 6.7 Hz, 1H), 2.36 (s, 3H).

¹³C NMR (151 MHz, CDCl₃):δ 195.3, 164.6, 155.3, 152.7, 144.7, 143.5, 136.8, 135.3, 135.1, 134.0, 129.7, 129.0, 128.8, 126.9, 126.2, 125.5, 123.3, 121.5, 77.2, 77.00, 76.79, 52.3, 44.8, 21.4.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₃H₂₁N₂O₃S₂ 437.0988, found:437.0992.

N-(2-(benzo[*d*]thiazol-2-yl)-6-oxo-6-phenylhexyl)-4-methylbenzenesulfonamide (4ac)

Following the general procedure, compound **4ac** was obtained as a colorless oil in 79% yield (37.8 mg); $R_f = 0.53$ (PE/EA = 1/1).

¹**H NMR (600 MHz, CDCl₃):** δ 7.96 (t, *J* = 8.5 Hz, 1H), 7.89 (d, *J* = 7.9 Hz, 3H), 7.82 – 7.71 (m, 3H), 7.67 (d, *J* = 7.8 Hz, 4H), 7.52 (t, *J* = 7.3 Hz, 1H), 7.42 (dd, *J* = 16.7, 8.6 Hz, 4H), 7.34 (dd, *J* = 16.5, 8.5 Hz, 3H), 7.22 (d, *J* = 7.9 Hz, 1H), 7.16 (d, *J* = 7.9 Hz, 2H), 5.76 (s, 1H), 3.39 (t, *J* = 6.1 Hz, 3H), 3.36 – 3.22 (m, 1H), 2.93 (dd, *J* = 17.1, 7.5 Hz, 2H), 2.33 (s, 3H), 1.94 – 1.83 (m, 2H), 1.81 – 1.66 (m, 3H).

¹³C NMR (151 MHz, CDCl₃): δ 199.6, 172.6, 152.6, 143.2, 136.7, 136.6, 134.4, 133.0, 129.5, 128.5, 127.9, 126.8, 126.2, 126.0, 125.0, 122.6, 121.5, 60.3, 46.2, 43.9, 37.8, 32.3, 21.3.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₆H₂₇N₂O₃S₂ 479.1458, found: 479.1460.

5. The Gram Scale Reaction

General Procedure: A dried 100 mL round bottom flask was charged with the photocatalyst (0.03 mmol, 12.6 mg), the heteroaryl-substituted tertiary bishomoallylic alcohol **1a** (4.8 mmol, 1.6 equiv), N-protected 1-aminopyridinium **2a** (3 mmol, 1 equiv) and 60 mL DCE. The reaction mixture was degassed by three cycles of freeze-pump-thaw. After the mixture was thoroughly degassed, the vial was placed beside a white LED light. The reaction was stirred at 25 °C for 24 h. After completion of the reaction as checked by TLC. The reaction mixture was purified by silica gel flash column chromatography (petroleum ether/EtOAc) to give the corresponding product.

6. Transformations of Product

A solution of compound **3aa** (46.4 mg, 0.1 mmol) in H₂SO₄ (1 mL) (98 wt%) was stirred at 110 °C (oil bath) for 1 hour to give a black-brown solution.⁴ TLC showed the reaction was completed. The reaction solution was cooled to 0 - 10 °C with ice-water

(3 mL), neutralized to pH = 7 - 8 with Na₂CO₃ (solid) and extracted with EtOAc (5 mL x 2). The combined extracts were collected, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure to give compound **5** as a gray solid (96% yield, 28.2 mg).

3-(2-(benzo[d]thiazol-2-yl)-6-phenyl-2,3,4,5-tetrahydropyridine (5)

Compound 5 was obtained in 96% yield (28.1 mg) as a gray solid; mp= 115-116 °C; $R_f = 0.54$ (PE/EA = 10/1).

¹**H NMR (400 MHz, CDCl₃):** δ 10.05 (s, 1H), 8.07 – 7.99 (m, 2H), 7.12 (d, *J* = 8.3 Hz, 2H), 6.99 (d, *J* = 8.8 Hz, 1H), 6.55 (s, 1H), 6.44 (d, *J* = 8.2 Hz, 2H), 3.96-3.87 (m, 2H) 3.62-3.56 (m, 2H), 3.08-3.01 (m, 1H) 2.05-2.04 (m, 2H), 1.94-1.83 (m, 2H), 1.30 (s, 9H).

¹³C NMR (101 MHz, CDCl₃): δ 174.7, 161.5, 145.7, 140.3, 129.6, 129.4, 129.2, 126.3, 124.0, 115.4, 113.1, 64.6, 51.3, 49.8, 35.3, 31.2, 28.4, 24.0.

HRMS (ESI–TOF) m/z: [M+Na]⁺ calcd for C₁₈H₁₆N₂SNa 293.1107, found: 293.1111.

To a solution of **3aa** (46.4 mg, 0.1 mmol) in 1,4-dioxane (1 ml), NCS (0.3 mmol) was added, and the resulted mixture was sequentially stirred under reflux temperature until the complete conversion was detected by TLC analysis. Finally, the reaction was quenched with saturated sodium bicarbonate solution, extracted with EtOAc (3×5 mL), washed with saturated brine (3×5 mL), dried over anhydrous Na₂SO₄and concentrated in vacuo to give a residue. The residue was purified by silica gel with petroleum ether/EtOAc as the elute to afford product **3** (65% yield, 19.1 mg).

4-(benzo[d]thiazol-2-yl)-1-phenylpent-4-en-1-one (6)

Compound **6** was obtained in 65% yield (19.1 mg) as a yellow oil; $R_f = 0.59$ (PE/EA = 10/1).

¹**H NMR (400 MHz, CDCl₃):** δ 8.05 – 7.96 (m, 3H), 7.85 (d, *J* = 7.9 Hz, 1H), 7.61 – 7.52 (m, 1H), 7.50 – 7.42 (m, 3H), 7.42 – 7.33 (m, 1H), 5.99 (s, 1H), 5.62 (s, 1H), 3.40 (t, *J* = 7.5 Hz, 2H), 3.17 (t, *J* = 7.5 Hz, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 199.3, 168.5, 153.7, 142.5, 136.8, 134.7, 133.0, 128.5, 128.1, 126.0, 125.5, 123.3, 121.4, 120.4, 77.3, 77.0, 76.6, 37.8, 28.9.

HRMS (ESI-TOF) m/z: $[M+H]^+$ calcd for $C_{25}H_{24}ClN_2O_3S_2$ 294.0947, found: 294.0950.

To a solution of **3aa** (46.4 mg, 0.1 mmol) in dichloromethane (0.5 ml) and methanol (0.5 ml) was added sodium borohydride (11.4 mg, 0.3 mmol) at 0 °C (ice water bath). The reaction mixture was then allowed to warm to room temperature. After stirring for 1.5 h, the reaction mixture was quenched with water. The resulting solution was extracted three times with dichloromethane. The combined organic phases were dried over sodium sulfate and filtered. The filtrate was concentrated in vacuo and the residue was purified by flash column chromatography (PE/EA = 1/1) to give **2**(46.6 mg, 100%) as a colorless liquid.

N-(2-(benzo[*d*]thiazol-2-yl)-5-hydroxyl-5-phenylpentyl)-4methylbenzenesulfonamide (7)

Compound 7 was obtained in 100% yield (46.6 mg) as a colorless oil (dr = 1:1); $R_f = 0.61$ (PE/EA = 1/1).

¹**H NMR (600 MHz, CDCl₃):** δ 7.90 (d, *J* = 8.5 Hz, 1H), δ 7.80 (d, *J* = 8.5 Hz, 1H), δ 7.66 (d, *J* = 8.2 Hz, 2H), 7.46 (t, *J* = 7.7 Hz, 1H), 7.40 (d, *J* = 7.6 Hz, 2H), 7.37 (t, *J* = 7.6 Hz, 1H), 7.33 – 7.29 (m, 2H), 7.28 (dd, *J* = 6.1, 3.5 Hz, 2H), 7.19 (d, *J* = 8.1 Hz, 2H), 5.65 – 5.46 (m, 1H), 4.64 (dt, *J* = 12.5, 5.6 Hz, 1H), 3.45 (t, *J* = 6.6 Hz, 3H), 3.33 (m, *J* = 16.5, 12.5, 6.2 Hz, 3H), 2.37 (s, 3H), 1.95 (d, *J* = 6.5 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 172.8, 172.7, 152.6, 144.1, 143.2, 136.8, 134.5, 129.61, 128.5, 127.6, 126.9, 126.1, 125.7, 125.1, 122.7, 121.5, 77.3, 77.0, 76.6, 73.9, 73.8, 46.2, 46.1, 43.9, 43.7, 36.0, 35.8, 29.3, 29.2, 21.4.

HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₅H₂₇N₂O₃S₂ 467.1458, found: 467.1461.

7. Mechanistic Investigations

7.1 Luminescence Quenching Experiments

Stern-Volmer experiments were conducted on an Agilent Technologies Cary Eclipse Fluorescence Spectrophotometer using the Cary Eclipse Scan Application. Rigorously purged (with nitrogen) solutions of each component were prepared before each set of experiments. Luminescence quenching experiments were run with CH₃CN as the solvent. The solutions were irradiated at 420 nm and the luminescence was measured from 400 nm to 800 nm (emission maximum is at 550 nm). The concentration of Cz-NI stock solution was 0.3 mM in CH₃CN. After being stirred with a thin glass rod, the emission spectrum was collected. Linear regression of I₀/I against concentration is done in Origin.

Figure S2: Fluorescence quenching data with Cz-NI and variable N-Ts pyridinium

Figure S3: Stern-Volmer plot of Cz-NI with variables 1a and 2a

7.2 Capture of Radical Species

A dried 10 mL reaction tube was charged with the **Cz-NI** (0.001 mmol, 0.42 mg), the heteroaryl-substituted tertiary bishomoallylic alcohol **1a** (0.16 mmol, 1.6 equiv), N-protected 1-aminopyridinium **2a** (0.1 mmol, 1.0 equiv), TEMPO (3.0 equiv) and 2.0 mL DCE. The reaction mixture was degassed by three cycles of freeze-pump-thaw. After the mixture was thoroughly degassed, the vial was placed beside a white LED

light. The reaction was stirred at 25 °C for 9 h. We found that the product sites are close to disappearing, proving that the reaction is a free radical course.

A dried 10 mL reaction tube was charged with the Cz-NI (0.001 mmol, 0.42 mg), the heteroaryl-substituted tertiary bishomoallylic alcohol 1a (0.16 mmol, 1.6 equiv), N-protected 1-aminopyridinium 2a (0.1 mmol, 1.0 equiv), DMPO (3.0 equiv) and 2.0 mL DCE. The reaction mixture was degassed by three cycles of freeze-pump-thaw. After the mixture was thoroughly degassed, the vial was placed beside a white LED light. The reaction was stirred at 25 °C for 9 h, the reaction mixture was measured by EPR, indicating there existed nitrogen radical species in the reaction mixture. Finally, the reaction mixture was concentrated and purified by flash chromatography (silica gel, mixtures of petroleum ether/ethyl acetate) to afford compound 9 (13.1 mg, 46% yield) as a purple-black oil, the yield of 3aa is only 9% (4.1 mg). Radical species 8:

HRMS (ESI-TOF) m/z: $[M]^+$ Calcd for 283.1111, found 283.1111 g = 2.00541, a(N) = 12.79, a(H^{β}) = 4.19.

8. X-Ray Crystallographic Data of product 3ab

Single crystals of **3ab** were grown from slow evaporation of dichloromethane solution at room temperature. The data was collected on an XtaLAB Synergy R, HyPix diffractometer. The crystal was kept at 292 K during data collection. The data of the crystal structure **3ab** has been deposited at the Cambridge Crystallographic Data Centre and allocated the deposition number: CCDC 2121369.

and anotated the deposition number. CODC 212150).

Figure S4: ORTEP diagram of 3ab. The thermal ellipsoids are drawn at the 50% probability level

Bond precision:	C-C = 0.0024 A	Wavelength=1.54184				
Cell:	a=9.8319(3)	b=11.5048(3)	c=21.1845(6)			
	alpha=90	beta=96.606(3)	gamma=90			
Temperature:	150 K		8			
1	Calculated	Reported				
Volume	2380.36(12)	2380.36(12)				
Space group	P 21/c	P 1 21/c 1				
Hall group	-P 2ybc	-P 2ybc				
Moiety formula	C26 H26 N1.95 O4 S2.05	C26 H26 N1.95 O4 S	2.05			
Sum formula	C26 H26 N1.95 O4 S2.05	C26 H26 N1.95 O4 S	2.05			
Mr	495.51	495.51				
Dx,g cm-3	1.383	1.383				
Z	4	4				
Mu (mm-1)	0.265	0.265				
F000	1041.8	1042.0				
F000'	1043.24					
h, k, lmax	14,16,30	13,16,29				
Nref	7349	6031				
Tmin, Tmax	0.984,0.992	0.625,1.000				
Tmin'	0.982					
Tmax = 1.000						
AbsCorr = MULTI-SCAN						
Data completeness= 0.821 Theta(max)= 30.648						

Table 50. A-ivay Ci ystanogi aprile Data of Sat	Table	S6:	X-Ray	Crystall	ographic	Data	of 3ab
---	-------	------------	-------	----------	----------	------	--------

R(reflections)= 0.0486(4789)	wR2(reflections)= 0.1309(6031)
S = 1.074	Npar= 327

9. Mechanistic Computational Analysis

All the DFT calculations at the M062X(D3)/6-31G(d)⁸⁻⁹ level for neutral molecules or UM062X(D3)/6-31G(d) level for radical ions with the SMD¹⁰ solvation model and DCM as the solvent were carried out to study the mechanism by Gaussian 09¹¹. Frequency calculations were carried out at the same level of theory to confirm their character as minima (no imaginary frequencies) or transition states (a single imaginary frequency). And the intrinsic reaction coordinate (IRC) calculations have confirmed that all stationary points were smoothly connected. We have used GaussView¹² programs to generate ball and stick geometries of optimized structures. The electron spin density with the value of 0.02 is visualized by wave function analysis software Multiwfn-3.8¹³ program and visualization software VMD¹⁴ to generate the scheme of the electron spin density.

Figure S5. a) Free energy profiles from TsNH radical ion and reactant **1a** to **VI**. Free energies are given in kcal/mol at the UM062X(D3)/6-31G(d)/SMD(CH₂Cl);

Figure S6. Optimized structures of reaction, production, and the transition state at M062X(D3)/6-31g(d) level with the SMD solvation model and dichloroethane as the solvent. UM062X(D3) functional was used for radical structure optimization. The data in brackets is the unique virtual frequency of the transition state. The bond length in Å.

Table S7. Standard orientation of All Stationary Points and the only imaginary frequencies of each transition state

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	1	0	-3.087571	-3.646564	1.775734
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	1	0	-4.256053	-3.926876	-0.400988
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11	1	0	-4.014984	-2.186225	-2.156116
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	6	0	-1.148590	0.410821	0.539992
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	8	0	-1.253005	0.728507	1.912444
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	1	0	-0.348604	0.875062	2.246461
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15	6	0	-1.499064	1.658187	-0.298346
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	1	0	-1.385019	1.442402	-1.366598
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	1	0	-2.557254	1.882653	-0.120979
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	6	0	-0.643550	2.876451	0.064165
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	1	0	-0.762744	3.104722	1.128302
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	1	0	0.416528	2.639910	-0.105106
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	6	0	-1.021871	4.072362	-0.761699
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	1	0	-0.889017	3.970071	-1.839805
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	6	0	-1.511061	5.207222	-0.268537
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	1	0	-1.659948	5.341898	0.801098
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	1	0	-1.777850	6.041801	-0.911033
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	6	0	2.433020	-0.709264	-0.687614
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	6	0	2.462516	-0.207682	0.627153
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	6	0	3.675352	-0.136523	1.320991
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	6	0	4.829475	-0.567331	0.685831
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	6	0	4.788420	-1.066685	-0.626259
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	6	0	3.593254	-1.145166	-1.328474
33 1 0 3.691224 0.251846 2.334292 34 1 0 5.779316 -0.518670 1.208528 35 1 0 5.706105 -1.397844 -1.101926 36 1 0 3.563613 -1.531943 -2.341875 37 7 0 1.226622 0.187831 1.124813 38 16 0 0.788982 -0.686095 -1.279148	32	6	0	0.291959	0.001377	0.257944
34 1 0 5.779316 -0.518670 1.208528 35 1 0 5.706105 -1.397844 -1.101926 36 1 0 3.563613 -1.531943 -2.341875 37 7 0 1.226622 0.187831 1.124813 38 16 0 0.788982 -0.686095 -1.279148	33	1	0	3.691224	0.251846	2.334292
35 1 0 5.706105 -1.397844 -1.101926 36 1 0 3.563613 -1.531943 -2.341875 37 7 0 1.226622 0.187831 1.124813 38 16 0 0.788982 -0.686095 -1.279148	34	1	0	5.779316	-0.518670	1.208528
36 1 0 3.563613 -1.531943 -2.341875 37 7 0 1.226622 0.187831 1.124813 38 16 0 0.788982 -0.686095 -1.279148	35	1	0	5.706105	-1.397844	-1.101926
37 7 0 1.226622 0.187831 1.124813 38 16 0 0.788982 -0.686095 -1.279148	36	1	0	3.563613	-1.531943	-2.341875
38 16 0 0.788982 -0.686095 -1.279148	37	7	0	1.226622	0.187831	1.124813
	38	16	0	0.788982	-0.686095	-1.279148

0 imaginary frequencies

Zero-point Energies=	-1223.635168
Thermal Energies=	-1223.616689
Thermal Enthalpies=	-1223.615745
Thermal Free Energies=	-1223.683855

2.	N−NTs 2a Ci	harge	e = 0 Multip	olicity = 1	
Center Number	Atomic Numbe	A er	tomic Type	Coordinate X Y	s (Angstroms) Z
1 2 3 4	6 6 6	0 0 0 0	2.897355 4.276779 4.968061 4.256019	1.107402 1.130486 -0.064078 -1.256885	-0.666926 -0.581325 -0.398449 -0.306671
5	6	0	2.877033	-1.230319	-0.398031
6	1	0	6.050725	-0.065942	-0.333007
----	----	---	-----------	-----------	-----------
7	1	0	2.275851	1.981085	-0.813723
8	1	0	4.792701	2.079819	-0.659585
9	1	0	4.755612	-2.207789	-0.165797
10	1	0	2.240163	-2.103401	-0.343231
11	7	0	2.228023	-0.061107	-0.578916
12	7	0	0.831706	-0.066906	-0.730586
13	16	0	0.170605	0.106845	0.753361
14	8	0	0.464333	-1.038001	1.637246
15	8	0	0.444404	1.429020	1.348375
16	6	0	-1.540834	0.040618	0.291953
17	6	0	-2.244870	1.225721	0.107587
18	6	0	-2.151286	-1.198855	0.121835
19	6	0	-3.585248	1.162475	-0.260106
20	1	0	-1.747237	2.179062	0.254681
21	6	0	-3.490760	-1.244357	-0.247318
22	1	0	-1.584017	-2.110866	0.280905
23	6	0	-4.224951	-0.068223	-0.441166
24	1	0	-4.145066	2.082081	-0.408438
25	1	0	-3.977802	-2.206021	-0.385544
26	6	0	-5.684073	-0.127476	-0.807408
27	1	0	-6.305922	-0.149261	0.095057
28	1	0	-5.981069	0.747743	-1.391546
29	1	0	-5.910958	-1.027150	-1.385864

Zero-point Energies=	-1121.985069
Thermal Energies=	-1121.970123
Thermal Enthalpies=	-1121.969179
Thermal Free Energies=	-1122.031198

Center Number	Aton Nu	nic At mber	omic Type	Coordinate X Y	s (Angstroms) Z
1	6	0	0.708539	2.046906	1.186658
2	6	0	0.632279	1.755805	-0.190018
3	6	0	0.976595	2.736595	-1.128188
4	6	0	1.394999	3.976998	-0.673512
5	6	0	1.481699	4.250929	0.702261
6	6	0	1.138746	3.292956	1.646984
7	6	0	-0.046091	-0.204812	0.571256
8	1	0	0.916113	2.506246	-2.187634

9	1	0	1.666265	4.747797	-1.388309
10	1	0	1.816784	5.228886	1.033635
11	1	0	1.201144	3.507625	2.709037
12	7	0	0.207893	0.471297	-0.498404
13	16	0	0.210999	0.643153	2.090446
14	6	0	-0.531738	-1.631105	0.546093
15	1	0	-0.795848	-1.934394	1.567144
16	6	0	0.603593	-2.530647	0.046219
17	1	0	0.244075	-3.555578	-0.093100
18	1	0	0.942649	-2.157163	-0.925928
19	6	0	-1.762610	-1.777935	-0.356384
20	1	0	-2.064756	-2.830217	-0.367219
21	1	0	-1.489618	-1.511884	-1.383249
22	7	0	1.729092	-2.484523	0.984298
23	1	0	1.636069	-3.100488	1.792470
24	16	0	3.259533	-2.618747	0.358855
25	8	0	3.295811	-3.529631	-0.783300
26	8	0	4.118142	-2.884073	1.509985
27	6	0	3.565592	-0.982671	-0.251299
28	6	0	3.642418	-0.763158	-1.623100
29	6	0	3.750698	0.052120	0.664289
30	6	0	3.925791	0.519728	-2.080765
31	1	0	3.492245	-1.586020	-2.314405
32	6	0	4.038732	1.325425	0.187517
33	1	0	3.681207	-0.139918	1.731209
34	6	0	4.141257	1.573658	-1.186840
35	1	0	3.990300	0.704194	-3.149864
36	1	0	4.186235	2.141088	0.890396
37	6	0	4.494634	2.943041	-1.701385
38	1	0	5.527873	2.957385	-2.066971
39	1	0	3.848135	3.227940	-2.537221
40	1	0	4.402062	3.698078	-0.916795
41	6	0	-2.929518	-0.915891	0.105011
42	1	0	-2.673518	0.151048	0.051270
43	1	0	-3.172632	-1.116307	1.157510
44	6	0	-4.176969	-1.141282	-0.725108
45	8	0	-4.180295	-1.930525	-1.652080
46	6	0	-5.416509	-0.371216	-0.378853
47	6	0	-5.448787	0.563609	0.661013
48	6	0	-6.573847	-0.608536	-1.128666
49	6	0	-6.625905	1.251223	0.945601
50	1	0	-4.559949	0.763178	1.251504
51	6	0	-7.748179	0.077073	-0.843379
52	1	0	-6.533342	-1.336458	-1.932833
53	6	0	-7.775000	1.008242	0.195749
54	1	0	-6.645391	1.976270	1.753328
55	1	0	-8.643159	-0.112463	-1.428030
56	1	0	-8.692137	1.544745	0.420214

Zero-point Energies=	-2097.623894
Thermal Energies=	-2097.595398
Thermal Enthalpies=	-2097.594454
Thermal Free Energies=	-2097.686423

4

Charge = 0 Multiplicity = 2

Center Number	Aton Nur	nic nber	Atomic Type	Coordinate X Y	es (Angstroms) Z Z
1	7	0	-2.309295	-0.002082	1.532549
2	16	0	-1.901626	0.000110	-0.097575
3	8	0	-2.371241	-1.264092	-0.655551
4	8	0	-2.371452	1.265552	-0.652500
5	6	0	-0.138754	0.000208	-0.060390
6	6	0	0.536661	1.217645	-0.039176
7	6	0	0.536760	-1.217324	-0.039322
8	6	0	1.925442	1.205789	0.007192
9	1	0	-0.014029	2.152556	-0.063817
10	6	0	1.925399	-1.205403	0.007058
11	1	0	-0.013908	-2.152248	-0.064091
12	6	0	2.636296	0.000262	0.029317
13	1	0	2.468211	2.146624	0.024082
14	1	0	2.468256	-2.146210	0.023850
15	6	0	4.140661	-0.000317	0.045327
16	1	0	4.531614	-0.013522	-0.978618
17	1	0	4.531413	0.894114	0.537383
18	1	0	4.530125	-0.883049	0.559209
19	1	0	-3.343842	-0.002288	1.559737

0 imaginary frequencies

-874.449590
-874.438703
-874.437759
-874.488320

2	6	0	1.373342	2.338404	0.513998
3	6	0	0.571187	2.811291	-0.528365
4	6	0	0.741429	4.102837	-1.017758
5	6	0	1.721040	4.935104	-0.477665
6	6	0	2.526307	4.467729	0.557136
7	1	0	2.986597	2.835006	1.867135
8	1	0	-0.193806	2.163039	-0.943228
9	1	0	0.106911	4.460235	-1.823390
10	1	0	1.853678	5.942542	-0.860270
11	1	0	3.289948	5.108665	0.987237
12	6	0	1.197788	0.898388	0.991705
13	8	0	-0.150739	0.528730	0.802679
14	1	0	-0.183602	-0.434763	0.616073
15	6	0	1.594888	0.711194	2.475745
16	1	0	2.684556	0.743594	2.566493
17	1	0	1.201751	1.565706	3.038613
18	6	0	1.058220	-0.595733	3.085552
19	1	0	1.015056	-1.404884	2.345312
20	1	0	1.771111	-0.922908	3.854973
21	6	0	-0.267340	-0.438108	3.767162
22	1	0	-0.398964	0.481983	4.338027
23	6	0	-1.270191	-1.344877	3.773546
24	1	0	-1.161724	-2.300581	3.265653
25	1	0	-2.130062	-1.220575	4.422170
26	6	0	3.810303	-1.206843	-1.098032
27	6	0	2.545809	-1.823622	-1.060901
28	6	0	2.345897	-3.051911	-1.700081
29	6	0	3.414320	-3.636575	-2.361398
30	6	0	4.672339	-3.012368	-2.393309
31	6	0	4.886846	-1.792678	-1.765471
32	6	0	2.049560	-0.024075	0.123731
33	1	0	1.367140	-3.519656	-1.663519
34	1	0	3.279178	-4.590050	-2.861867
35	1	0	5.493573	-3.490819	-2.917508
36	1	0	5.859964	-1.313319	-1.792288
37	7	0	1.576475	-1.120378	-0.357183
38	16	0	3.741182	0.307749	-0.230162
39	7	0	-2.664877	-0.264468	2.166694
40	1	0	-1.901693	0.363984	1.862558
41	16	0	-2.720533	-1.498887	1.048159
42	8	0	-3.673464	-2.491179	1.533789
43	8	0	-1.376919	-1.966102	0.665735
44	6	0	-3.408734	-0.641391	-0.341618
45	6	0	-4.781786	-0.396256	-0.370904
46	6	0	-2.563578	-0.192673	-1.354137
47	6	0	-5.310609	0.310264	-1.442198
48	1	0	-5.419633	-0.758627	0.429706
49	6	0	-3.114881	0.512795	-2.418589
50	1	0	-1.497873	-0.395919	-1.311253
51	6	0	-4.487903	0.773527	-2.477869

52	1	0	-6.378489	0.507631	-1.480210
53	1	0	-2.468801	0.864799	-3.218083
54	6	0	-5.082447	1.517269	-3.642661
55	1	0	-4.315399	2.061683	-4.198836
56	1	0	-5.567853	0.819161	-4.334202
57	1	0	-5.843546	2.227902	-3.307684

1 imaginary frequencies (-263.61)

Zero-point Energies=	-2098.097746
Thermal Energies=	-2098.06841
Thermal Enthalpies=	-2098.067466
Thermal Free Energies=	-2098.163058

Center Number	Ator Nu	nic A mber	tomic Type	Coordinate X Y	es (Angstroms) Z
	6	0	-1.182977	2.688153	-0.871851
2	6	0	-1.592074	2.095544	0.324746
3	6	0	-2.009490	2.912795	1.379911
4	6	0	-2.011638	4.296951	1.243991
5	6	0	-1.599747	4.884392	0.047832
6	6	0	-1.187084	4.076880	-1.007484
7	1	0	-0.851649	2.080778	-1.708173
8	1	0	-2.322814	2.450535	2.310313
9	1	0	-2.335208	4.918844	2.073420
10	1	0	-1.600217	5.964924	-0.059128
11	1	0	-0.861836	4.523677	-1.942185
12	6	0	-1.660511	0.577351	0.510596
13	8	0	-1.354875	0.280090	1.857247
14	1	0	-2.005935	-0.377935	2.164486
15	6	0	-0.684278	-0.183950	-0.411653
16	1	0	-0.932764	-0.004004	-1.463158
17	1	0	0.314842	0.232920	-0.238019
18	6	0	-0.680384	-1.700708	-0.153379
19	1	0	-0.459505	-1.884576	0.904470
20	1	0	-1.690380	-2.092933	-0.345145
21	6	0	0.310061	-2.412010	-1.014210
22	1	0	0.197773	-2.353821	-2.092940
23	6	0	1.597346	-2.918994	-0.465253
24	1	0	1.435928	-3.427305	0.495020
25	1	0	2.073827	-3.617353	-1.156501
26	6	0	-5.272231	-0.458347	-0.697502

27	6	0	-4.970885	-0.991626	0.569803
28	6	0	-5.903530	-1.800965	1.227462
29	6	0	-7.114546	-2.058604	0.604556
30	6	0	-7.405548	-1.520023	-0.659534
31	6	0	-6.491817	-0.714142	-1.325297
32	6	0	-3.083380	0.109962	0.232973
33	1	0	-5.664208	-2.209842	2.203913
34	1	0	-7.849726	-2.685159	1.099252
35	1	0	-8.361220	-1.736338	-1.126432
36	1	0	-6.719043	-0.298466	-2.301585
37	7	0	-3.716938	-0.647403	1.060542
38	16	0	-3.928576	0.511426	-1.252192
39	7	0	2.547139	-1.777018	-0.292649
40	1	0	2.174941	-1.091323	0.370474
41	16	0	4.077780	-2.222340	0.210950
42	8	0	4.566429	-3.177099	-0.781416
43	8	0	4.104671	-2.617551	1.620529
44	6	0	4.937032	-0.681881	0.052048
45	6	0	5.130265	-0.145278	-1.221887
46	6	0	5.413551	-0.045589	1.191102
47	6	0	5.810389	1.056972	-1.342699
48	1	0	4.751665	-0.662757	-2.098365
49	6	0	6.095646	1.161131	1.048476
50	1	0	5.254428	-0.488597	2.168795
51	6	0	6.300689	1.726830	-0.211427
52	1	0	5.968373	1.487947	-2.327832
53	1	0	6.474177	1.668686	1.931144
54	6	0	7.028147	3.034854	-0.367861
55	1	0	7.412587	3.393025	0.590017
56	1	0	7.868693	2.932021	-1.061672
57	1	0	6.360759	3.800912	-0.777188

0 imaginary frequencies Zero-point Energies= -2098.129726 Thermal Energies= -2098.099892 Thermal Enthalpies= -2098.098948 Thermal Free Energies= -2098.198310

2	6	0	-4 104880	-1 644195	-0 117122
3	6	0	-4 812615	-1.016516	-1 148533
<u>л</u>	6	0	-6 200849	-1 072980	-1 194062
5	6	0	-6 906036	-1 759914	-0 205142
6	6	0	-6 210567	-2 385326	0.824473
7	1	0	-4 295083	-2 824145	1 681362
8	1	0	-4 271951	-0 476448	-1 921787
0	1	0	-6 733836	-0.770440	-2.001656
10	1	0	-0.755850	-0.380100	-0.239587
11	1	0	-6 7/9090	-2.924624	1 508002
12	6	0	-0.7+7070	-2.92+02+ -1.542212	-0.115950
12	8	0	-2.063460	-1.858806	-1 396230
13	0	0	-2.003400	1 032305	-1.390230
15	6	0	-2.034093	-1.052303	-1.913633
15	1	0	-1.077009	-2.430471	1.002000
10	1	0	-2.212339	-2.213110	1.902909
1/ 10	1	0	-2.131038	-5.302038	0.091240
10	0	0	-0.570920	-2.1993/1	0.730483
19	1	0	0.1303/4	-2.044809	1.008413
20	l	0	-0.00/404	-2.6//023	-0.1583/5
21	0	0	-0.116527	-0./182/9	0.691090
22	I	0	-0.00619/	-0.195613	1.638845
23	6	0	0./16/08	-0.169654	-0.426429
24	1	0	0.404810	-0.604633	-1.38369/
25	l	0	0.621502	0.917542	-0.483821
26	6	0	-2.449644	2.242834	0.955979
27	6	0	-2.093/5/	2.059552	-0.400625
28	6	0	-1.849651	3.180266	-1.210043
29	6	0	-1.964721	4.444301	-0.655733
30	6	0	-2.317051	4.611767	0.693708
31	6	0	-2.559765	3.515648	1.513265
32	6	0	-2.169220	-0.090669	0.188148
33	1	0	-1.572799	3.035324	-2.249522
34	1	0	-1.775898	5.318796	-1.270257
35	1	0	-2.400497	5.612427	1.105719
36	1	0	-2.830276	3.648608	2.555826
37	7	0	-2.018806	0.752094	-0.817600
38	16	0	-2.703291	0.689336	1.711524
39	7	0	2.140463	-0.468393	-0.129038
40	1	0	2.315404	-1.477397	-0.125369
41	16	0	3.227628	0.256961	-1.174978
42	8	0	2.955744	1.690339	-1.108697
43	8	0	3.237103	-0.385794	-2.489801
44	6	0	4.757739	-0.113348	-0.365394
45	6	0	5.026168	0.473931	0.872109
46	6	0	5.667073	-0.963011	-0.982541
47	6	0	6.230987	0.189981	1.496746
48	1	0	4.301613	1.138985	1.332680
49	6	0	6.872651	-1.234710	-0.338852
50	1	0	5.434930	-1.399870	-1.948343
51	6	0	7.169120	-0.667445	0.902027
			•	-	

52	1	0	6.455162	0.639243	2.460620
53	1	0	7.593297	-1.896901	-0.810127
54	6	0	8.467792	-0.963301	1.602224
55	1	0	9.106515	-1.610975	0.997117
56	1	0	9.014525	-0.038503	1.813368
57	1	0	8.285766	-1.459328	2.561580

1	imaginary	frequencies	(-521.46)
---	-----------	-------------	-----------

Zero-point Energies=	-2098.120979
Thermal Energies=	-2098.092470
Thermal Enthalpies=	-2098.091526
Thermal Free Energies=	-2098.184437

Center	Atomic		Atomic	Coordinate	s (Angstroms)
Number	Numb	ber	Туре	X Y	Z
1	6	0	-4.330338	-2.408821	0.723884
2	6	0	-3.627814	-1.688816	-0.246734
3	6	0	-4.355917	-1.034436	-1.247651
4	6	0	-5.746913	-1.086608	-1.270153
5	6	0	-6.436176	-1.805578	-0.295793
6	6	0	-5.722358	-2.469746	0.698330
7	1	0	-3.796369	-2.932500	1.510434
8	1	0	-3.837203	-0.479506	-2.024237
9	1	0	-6.290998	-0.568106	-2.053977
10	1	0	-7.520938	-1.851120	-0.314271
11	1	0	-6.247661	-3.039329	1.459259
12	6	0	-2.110287	-1.590082	-0.247062
13	8	0	-1.596664	-1.740995	-1.561430
14	1	0	-1.724182	-0.890814	-2.019350
15	6	0	-1.343579	-2.583731	0.619577
16	1	0	-1.732148	-2.571408	1.642894
17	1	0	-1.438616	-3.601515	0.230990
18	6	0	0.092790	-2.048826	0.585188
19	1	0	0.673231	-2.369564	1.453297
20	1	0	0.595110	-2.421988	-0.313178
21	6	0	-0.028624	-0.503606	0.511533
22	1	0	0.282108	-0.048741	1.455350
23	6	0	0.845198	0.104730	-0.583353
24	1	0	0.580434	-0.311584	-1.562323
25	1	0	0.717265	1.188561	-0.615190
26	6	0	-3.097287	1.641234	1.131792
27	6	0	-2.659235	1.745954	-0.233410

28	6	0	-3.143498	2.823284	-1.029237
29	6	0	-4.012316	3.733444	-0.474111
30	6	0	-4.428406	3.610787	0.870107
31	6	0	-3.976634	2.569856	1.676387
32	6	0	-1.550390	-0.204466	0.281883
33	1	0	-2.812700	2.897909	-2.060102
34	1	0	-4.388164	4.556910	-1.072683
35	1	0	-5.116375	4.341305	1.283327
36	1	0	-4.306853	2.486029	2.706529
37	7	0	-1.826286	0.812082	-0.677757
38	16	0	-2.366804	0.269087	1.899828
39	7	0	2.255811	-0.165324	-0.240606
40	1	0	2.469015	-1.165805	-0.274664
41	16	0	3.365453	0.640736	-1.194970
42	8	0	3.068904	2.063717	-1.052026
43	8	0	3.437103	0.083677	-2.546599
44	6	0	4.868205	0.239522	-0.349298
45	6	0	5.061529	0.715667	0.948580
46	6	0	5.833207	-0.519449	-0.998992
47	6	0	6.246970	0.411418	1.600213
48	1	0	4.293664	1.309670	1.435372
49	6	0	7.018559	-0.812587	-0.327618
50	1	0	5.658463	-0.871890	-2.010293
51	6	0	7.240426	-0.355612	0.972818
52	1	0	6.411598	0.772800	2.611867
53	1	0	7.781811	-1.404857	-0.824159
54	6	0	8.519717	-0.670087	1.700031
55	1	0	9.178790	-1.294303	1.092053
56	1	0	9.056109	0.250037	1.955008
57	1	0	8.313823	-1.196513	2.637826

Zero-point Energies=	-2098.153990
Thermal Energies=	-2098.125707
Thermal Enthalpies=	-2098.124762
Thermal Free Energies=	-2098.218073

Charge = 0 Multiplicity = 2

Center	Atomic	A	tomic	Coord	inates	s (Angstroms)
Number	Number		Type	X	Y	Z
1	6	0	4.160398	-2.276	5322	-0.513446
2	6	0	3.538065	-1.642	2623	0.577678

-	~				
3	6	0	4.344893	-0.930550	1.483359
4	6	0	5.717543	-0.829621	1.289129
5	6	0	6.317589	-1.447956	0.193242
6	6	0	5.534130	-2.180971	-0.698767
7	1	0	3.570231	-2.845967	-1.223322
8	1	0	3.895899	-0.454434	2.349435
9	1	0	6.319318	-0.266555	1.996162
10	1	0	7.389335	-1.367321	0.039258
11	1	0	5.995952	-2.678639	-1.546215
12	6	0	2.079380	-1.634645	0.739053
13	8	0	1.596357	-1.271887	1.970474
14	1	0	1.790247	-0.320378	2.099087
15	6	0	1.164875	-2.616860	0.065311
16	1	0	1.508358	-2.812591	-0.954814
17	1	0	1.157755	-3.573283	0.603485
18	6	0	-0.221588	-1.974323	0.056798
19	1	0	-0.911005	-2.521412	-0.591203
20	1	0	-0.623943	-2.004173	1.074870
21	6	0	-0.086497	-0.498234	-0.400633
22	1	Ő	-0.416275	-0.422696	-1.442315
23	6	0	-0.973359	0.437990	0.420034
24	1	0	-0.685375	0.396478	1.477595
25	1	0	-0.866083	1.466405	0.068836
26	6	Ő	3.381535	1.136740	-1.252855
27	6	0	2.923366	1.556700	0.022763
28	6	0	3.675679	2.501033	0.746616
29	6	0	4.854896	2.980330	0.204259
30	6	0	5.305210	2.539620	-1.052539
31	6	0	4.573921	1.615542	-1.790956
32	6	0	1.368951	-0.010168	-0.355592
33	1	0	3.323853	2.823287	1.721913
34	1	0	5.446127	3.702506	0.758705
35	1	0	6.237195	2.924771	-1.453870
36	1	Ő	4.924391	1.275482	-2.760297
37	7	Ő	1.766766	0.977458	0.462869
38	16	Ő	2.247876	-0.000593	-1.926461
39	7	Ő	-2.380655	0.040787	0.220083
40	1	Ő	-2.577327	-0.877546	0.627295
41	16	Ő	-3 497677	1 129793	0.821423
42	8	Ő	-3 226591	2 401466	0.156796
43	8	Ő	-3.549279	1.111320	2.283872
44	6	Ő	-4.998914	0.423894	0.203589
45	6	Ő	-5 222647	0 411678	-1 174169
46	6	Ő	-5 931665	-0.084400	1 098626
47	6	Ő	-6 406159	-0 129996	-1 652014
48	1	Õ	-4 480362	0.818434	-1 854582
49	6	õ	-7.115282	-0.623400	0.598323
50	1	Ő	-5.734178	-0.056174	2.165258
51	6	Ő	-7.367385	-0.654458	-0.774535
52	ĩ	Õ	-6.595317	-0.147516	-2.722062
	-	0			00_

53	1	0	-7.853329	-1.024144	1.287253
54	6	0	-8.644426	-1.235917	-1.318118
55	1	0	-9.197414	-0.485713	-1.892994
56	1	0	-8.433139	-2.071748	-1.993361
57	1	0	-9.289818	-1.597674	-0.514231

1 imaginary frequencies (-488.12)

Zero-point Energies=	-2098.139381
Thermal Energies=	-2098.111198
Thermal Enthalpies=	-2098.110254
Thermal Free Energies=	-2098.202551

Charge = 0 Multiplicity = 2

Center	Atomic	c A	tomic	Coordinate	s (Angstroms)
Number	Num	ber	Туре	X Y	Z
	15		0.008074	1 216122	0.288557
1 2	15	0	-0.008074	1.210122	-0.200337
2	1	0	0.000132	1.900497	-1.492084
5	6	0	1.4/0403	0.204030	-0.098230
4	0	0	1.580902	-0./014/2	0.913902
5	0	0	2.302319	0.343300	-0.93900/
6 7	0	0	2.780379	-1.381565	1.080188
/	l	0	0./32122	-0.923506	1.556394
8	6	0	3.755407	-0.147483	-0.765173
9	1	0	2.470637	1.290909	-1.724213
10	6	0	3.861958	-1.103871	0.242781
11	1	0	2.872300	-2.130661	1.859542
12	1	0	4.598885	0.059687	-1.415013
13	1	0	4.795788	-1.640685	0.376902
14	6	0	-1.477507	0.213355	-0.180373
15	6	0	-1.441293	-1.142821	-0.527769
16	6	0	-2.674273	0.825081	0.216451
17	6	0	-2.614207	-1.887693	-0.470477
18	1	0	-0.511575	-1.612096	-0.835888
19	6	0	-3.837618	0.067034	0.271502
20	1	0	-2.693594	1.878396	0.481063
21	6	0	-3.805654	-1.284528	-0.070887
22	1	0	-2.596069	-2.939736	-0.734408
23	1	0	-4.768182	0.530765	0.581118
24	1	0	-4.717188	-1.872143	-0.026262
25	8	Õ	-0.125964	2.431800	0.747039
26	ĩ	Ő	-0.156543	2.164078	1.687834

0 imaginary frequencies	
Zero-point Energies=	-2098.156363
Thermal Energies=	-2098.126968
Thermal Enthalpies=	-2098.126023
Thermal Free Energies=	-2098.223466

Table S8. The Gibbs free energies and thermal Enthalpies of all optimized stationary points in the solvent.

Gibbs free energies and thermal Enthalpies for all reactants intermediates,						
transition states, and products at the $M062X(D3)/6-31G(d)$ level with the SMD						
solvation model and d	lichloroethane as the solvent. The	UM062X functional was				
used for the radical op	timization calculations. 1 hartree=	627.51 kcal/mol				
1						
Character and	Carl (Hasters)	He al (He store a)				
Structure	Gsol (Hartree)	Hsol (Hartree)				
1	-1223.683855	-1223.615745				
	1122 021100	11010(0170				
2	-1122.031198	-1121.969179				
2	2007 (8(422	2007 504454				
3	-2097.686423	-2097.394434				
T _c NU	974 49922	874 427750				
151111.	-0/4.40032	-8/4.43//39				
TS1	-2098 163058	-2098 067466				
151	2090.109090	2090.007400				
IM1	-2098,19831	-2098.098948				
	20,000	20,000,00,00				
TS2	-2098.184437	-2098.091526				
IM2	-2098.218073	-2098.124762				
TS3	-2098.202551	-2098.110254				
IM3	-2098.223466	-2098.126023				

Figure S7. Optimized structures of reaction, production, and the transition state at M062X(D3)/6-31g(d) level with the SMD solvation model and dichloroethane as the solvent. UM062X(D3) functional was used for radical structure optimization. The data in brackets is the unique virtual frequency of the transition state. The bond length in Å.

Table S9. Standard orientation of All Stationary Points and the only imaginary frequencies of each transition state

Number	Nur	nber	Туре	X Y	Ζ
1	6	0	-0.204292	0.894298	-1.779208
2	6	0	-0.384000	0.705038	-0.406634
3	6	0	0.065241	1.678594	0.486995
4	6	0	0.690065	2.828772	0.010988
5	6	0	0.868802	3.017639	-1.359157
6	6	0	0.420024	2.047498	-2.253423
7	1	0	-0.549690	0.139133	-2.481636
8	1	0	-0.072397	1.526613	1.552119
9	1	0	1.040404	3.579164	0.713847
10	1	0	1.356176	3.915372	-1.727882
11	1	0	0.557581	2.183344	-3.321890
12	6	Ő	-1.137671	-0.518110	0.112334
13	8	Ő	-0.695153	-0.780498	1.444688
14	1	ů 0	-1 428138	-1 247775	1 888740
15	6	0	-0.943182	-1 746272	-0 737608
16	1	0	-1 802457	-2 354503	-0 995457
17	6	0	0.413706	-2 273616	-1 073693
18	1	0	0.396177	-2.273010	-1.073075
10	1	0	0.390177	-2.001728	-2.098070
20	6	0	-4 961208	0 / 1 2 2 9 8	-0.197056
20	6	0	-4.901208	0.412298	-0.197030
$\frac{21}{22}$	6	0	-4.090418	-0.302900	1 202452
22	0	0	-3./42484	-0.729104	1.602432
23	6	0	-7.02/014	-0.313031	1.495552
24	0	0	-7.280930	0.400031	0.548/45
23	0	0	-0.234908	0.834201	-0.308100
20	0	0	-2.631865	-0.216/80	0.1/8086
27	1	0	-5.530552	-1.326845	2.683199
28	1	0	-/.851/24	-0.588835	2.1436/2
29	l	0	-8.296649	0.//3883	0.129050
30	1	0	-6.453740	1.433696	-1.390563
31	1	0	-3.360789	-0.703207	1.121401
32	16	0	-3.466888	0.721043	-1.047171
33	7	0	1.423478	-1.693202	-0.177776
34	l	0	1.171289	-1./3358/	0.811213
35	16	0	3.007564	-2.076666	-0.447219
36	8	0	3.159251	-2.154087	-1.899257
37	8	0	3.450258	-3.217568	0.354651
38	6	0	3.823330	-0.632074	0.176140
39	6	0	3.424922	0.623038	-0.286343
40	6	0	4.877509	-0.777520	1.069089
41	6	0	4.104183	1.745628	0.162839
42	1	0	2.589202	0.715604	-0.976188
43	6	0	5.546667	0.362776	1.509182
44	1	0	5.163628	-1.764858	1.416569
45	6	0	5.173158	1.632393	1.064025
46	1	0	3.799693	2.729630	-0.185337
47	1	0	6.370012	0.262562	2.210780
48	6	0	5.892334	2.866627	1.537743

49	1	0	6.695319	2.615767	2.234832
50	1	0	6.327811	3.409850	0.692469
51	1	0	5.200220	3.549945	2.041033

Zero-point Energies=	-2019.602970
Thermal Energies=	-2019.575820
Thermal Enthalpies=	-2019.574876
Thermal Free Energies=	-2019.664703

Center	Atom	ic A	tomic	Coordinate	s (Angstroms)
Number	Nun	nber	Туре	X Y	Z
1	6	0	-0.281537	3.035177	-0.689318
2	6	Ő	-1.126172	2.380491	0.204956
3	6	Ő	-1.959126	3.121830	1.047686
4	6	Ő	-1.955166	4.510679	0.984138
5	6	0	-1.114288	5.165047	0.082182
6	6	0	-0.276448	4.428220	-0.750735
7	1	0	0.377394	2.455616	-1.330804
8	1	0	-2.607324	2.604532	1.751281
9	1	0	-2.606814	5.084284	1.636043
10	1	0	-1.113092	6.249718	0.031639
11	1	0	0.383475	4.935035	-1.448074
12	6	0	-1.108818	0.880235	0.328765
13	8	0	-0.475940	0.471069	1.515597
14	1	0	-0.987824	-0.283948	1.869186
15	6	0	-0.774699	0.067876	-0.871232
16	1	0	-0.931370	0.503872	-1.851758
17	6	0	0.033323	-1.180485	-0.727740
18	1	0	-0.410084	-1.855313	0.015016
19	1	0	0.098436	-1.705075	-1.681760
20	6	0	-4.680127	-0.638437	-0.384385
21	6	0	-3.921212	-1.427539	0.513917
22	6	0	-4.485921	-2.598829	1.046297
23	6	0	-5.770874	-2.954001	0.672555
24	6	0	-6.508659	-2.163525	-0.224307
25	6	0	-5.971620	-0.999167	-0.761544
26	6	0	-2.399159	0.139485	0.099449
27	1	0	-3.904119	-3.202735	1.735292
28	1	0	-6.215479	-3.858172	1.076143
29	1	0	-7.513764	-2.463405	-0.503013
30	1	0	-6.543877	-0.389026	-1.452954

31	7	0	-2.664745	-0.960187	0.799009
32	16	0	-3.758823	0.770954	-0.859626
33	7	0	1.406068	-0.768515	-0.337908
34	1	0	1.379987	-0.317131	0.582347
35	16	0	2.520622	-2.013254	-0.318263
36	8	0	2.483991	-2.607724	-1.652429
37	8	0	2.341095	-2.895197	0.835937
38	6	0	4.022670	-1.103905	-0.094355
39	6	0	4.448303	-0.243797	-1.108013
40	6	0	4.759204	-1.280090	1.070031
41	6	0	5.634595	0.452856	-0.936232
42	1	0	3.857165	-0.124475	-2.011215
43	6	0	5.949624	-0.571909	1.222636
44	1	0	4.407068	-1.959242	1.839576
45	6	0	6.400844	0.299035	0.229197
46	1	0	5.979378	1.126944	-1.715855
47	1	0	6.535775	-0.700727	2.128034
48	6	0	7.684482	1.067288	0.391891
49	1	0	7.494143	2.145737	0.379736
50	1	0	8.180836	0.817058	1.332508
51	1	0	8.373550	0.849746	-0.430721

1 imaginary frequencies (-565.23)

-2019.583534
-2019.557148
-2019.556204
-2019.644902

Center	Atom	nic A	Atomic	Coordinate	es (Angstroms
Number	Nur	nber	Туре	X Y	Z
1	6	0	-1.092624	2.881264	-0.979318
2	6	0	-1.119244	2.190314	0.236813
3	6	0	-1.259192	2.914558	1.426173
4	6	0	-1.372134	4.300973	1.398289
5	6	0	-1.351822	4.983565	0.183311
6	6	0	-1.211969	4.268438	-1.003897
7	1	0	-0.967153	2.350514	-1.918447
8	1	0	-1.270719	2.382041	2.370727
9	1	0	-1.476979	4.849026	2.329851
10	1	0	-1.440911	6.065369	0.161885
11	1	0	-1.186889	4.789971	-1.955781
12	6	0	-1.037794	0.703471	0.312553

13	8	0	-0.568095	0.238110	1.538092
14	1	0	-1.140095	-0.507581	1.809062
15	6	0	-0.779113	-0.170709	-0.870036
16	1	0	-0.684703	0.320896	-1.834110
17	6	0	0.110060	-1.378908	-0.679092
18	1	0	-0.292788	-2.045769	0.088884
19	1	0	0.191254	-1.934288	-1.615265
20	6	0	-4.653583	-0.556742	-0.440521
21	6	0	-3.934052	-1.406903	0.454702
22	6	0	-4.647196	-2.376641	1.202085
23	6	0	-6.012845	-2.478367	1.041085
24	6	0	-6.703214	-1.630892	0.151578
25	6	0	-6.031781	-0.664728	-0.591482
26	6	0	-2.193871	-0.183227	-0.298502
27	1	0	-4.099872	-3.020807	1.882617
28	1	0	-6.567549	-3.220275	1.606512
29	1	0	-7.778413	-1.731137	0.043939
30	1	0	-6.571316	-0.012967	-1.271022
31	7	0	-2.606393	-1.221268	0.525365
32	16	0	-3.567174	0.557636	-1.225035
33	7	0	1.451054	-0.875391	-0.321792
34	1	0	1.418326	-0.431401	0.601652
35	16	0	2.656293	-2.030642	-0.338799
36	8	0	2.656100	-2.595201	-1.686301
37	8	0	2.553535	-2.950856	0.794611
38	6	0	4.084169	-1.012455	-0.100405
39	6	0	4.444721	-0.109373	-1.101778
40	6	0	4.827446	-1.144038	1.065617
41	6	0	5.571508	0.676768	-0.915597
42	1	0	3.849501	-0.026528	-2.006291
43	6	0	5.957257	-0.345800	1.232912
44	1	0	4.526698	-1.857811	1.825534
45	6	0	6.342099	0.570425	0.252230
46	1	0	5.864820	1.385652	-1.685335
47	1	0	6.547460	-0.438064	2.140132
48	6	0	7.560331	1.435642	0.430411
49	1	0	8.055423	1.233716	1.383174
50	1	0	8.280397	1.261579	-0.375979
51	1	0	7.289714	2.496337	0.400610

Zero-point Energies=	-2019.596395
Thermal Energies=	-2019.569793
Thermal Enthalpies=	-2019.568849
Thermal Free Energies=	-2019.658512

Center	Atomic Atomic		Coordinates (Angstroms		
Number	Nun	nber	Туре	X Y	Z
				a 10 (- (- (-)	0.014500
1	6	0	2.595026	3.196762	0.814580
2	6	0	1.603637	2.525665	0.090960
3	6	0	1.097824	3.116245	-1.068177
4	6	0	1.566147	4.358482	-1.491570
5	6	0	2.549052	5.024387	-0.764125
6	6	0	3.063278	4.437725	0.390273
7	1	0	3.016410	2.762761	1.717331
8	1	0	0.328735	2.600298	-1.631084
9	1	0	1.158773	4.805394	-2.393624
10	1	0	2.913059	5.992891	-1.093382
11	1	0	3.831364	4.945264	0.965955
12	6	0	1.085589	1.143424	0.520910
13	8	0	-0.096383	0.843688	-0.193070
14	1	0	0.050194	0.064783	-0.767612
15	6	0	0.744024	1.114819	2.027653
16	1	0	1.568519	1.536739	2.611518
17	1	0	-0.092601	1.823573	2.147491
18	6	0	0.403664	-0.230116	2.595850
19	1	0	0.553591	-0.363231	3.660964
20	6	0	-0.341554	-1.291971	1.858128
21	1	0	0.214964	-1.597852	0.959828
22	1	0	-0.470648	-2.172620	2.489222
23	6	0	4.054499	-1.411605	0.001498
24	6	0	3.022982	-1.600600	-0.936796
25	6	0	3.127447	-2.612087	-1.897625
26	6	0	4.260583	-3.409859	-1.899154
27	6	0	5.284692	-3.211988	-0.958342
28	6	0	5.196483	-2.213334	0.002167
29	6	0	2.133375	0.094348	0.170087
30	1	0	2.325848	-2.752837	-2.615522
31	1	0	4.359484	-4.200071	-2.636438
32	1	0	6.161804	-3.851002	-0.979719
33	1	0	5.988290	-2.063620	0.728745
34	7	0	1.951685	-0.726747	-0.805363
35	16	0	3.632325	-0.091381	1.064956
36	7	0	-1.704805	-0.809742	1.470769
37	1	0	-1.612271	0.153126	1.128792
38	16	0	-2.320183	-1.684456	0.181501
39	8	0	-2.596728	-3.033163	0.667033
40	8	Ō	-1.463437	-1.544156	-1.003938

41	6	0	-3.831956	-0.819768	-0.125466
42	6	0	-4.988260	-1.213819	0.545210
43	6	0	-3.827912	0.250582	-1.014186
44	6	0	-6.163381	-0.512535	0.312336
45	1	0	-4.963509	-2.057429	1.228060
46	6	0	-5.015777	0.943140	-1.229664
47	1	0	-2.913929	0.532675	-1.528493
48	6	0	-6.193475	0.573010	-0.573877
49	1	0	-7.075595	-0.809250	0.823237
50	1	0	-5.029225	1.780789	-1.921131
51	6	0	-7.480553	1.315655	-0.811869
52	1	0	-7.333874	2.155111	-1.495462
53	1	0	-8.236823	0.650457	-1.241889
54	1	0	-7.885213	1.702550	0.129020

Zero-point Energies=	-2058.868911
Thermal Energies=	-2058.841770
Thermal Enthalpies=	-2058.840826
Thermal Free Energies=	-2058.93025

Charge = 0 Multiplicity = 2

Center	Atomi	ic A	tomic	Coordinate	es (Angstroms)
Number	Num	ıber	Туре	X Y	Z
1	6	0	2.613086	3.386761	1.091214
2	6	0	2.253789	2.319252	0.269038
3	6	0	2.737636	2.273183	-1.043258
4	6	0	3.577206	3.273738	-1.521159
5	6	0	3.939980	4.334569	-0.691042
6	6	0	3.455005	4.390384	0.612709
7	1	0	2.233173	3.446326	2.107103
8	1	0	2.458348	1.445357	-1.693083
9	1	0	3.950718	3.224509	-2.539399
10	1	0	4.598436	5.114475	-1.061325
11	1	0	3.729769	5.216198	1.261870
12	6	0	1.267381	1.260840	0.728868
13	8	0	-0.010088	1.530712	0.166011
14	1	0	0.034573	1.306101	-0.782386
15	6	0	1.066647	1.059297	2.241329
16	1	0	1.938419	1.394302	2.807282
17	1	0	0.177318	1.583555	2.604449
18	6	0	0.976261	-0.454299	2.274886
19	1	0	1.770825	-0.983264	2.794921

20	6	0	-0.308710	-1.221517	2.273440
21	1	0	-0.136833	-2.176400	1.754102
22	1	0	-0.593408	-1.457139	3.307955
23	6	0	2.906977	-2.143269	-0.518767
24	6	0	1.553333	-2.026813	-0.914392
25	6	0	0.971538	-3.039931	-1.693499
26	6	0	1.743250	-4.129590	-2.061368
27	6	0	3.087237	-4.229655	-1.665082
28	6	0	3.681545	-3.241346	-0.888757
29	6	0	1.654659	-0.196585	0.351984
30	1	0	-0.072130	-2.955084	-1.979570
31	1	0	1.303161	-4.921300	-2.659396
32	1	0	3.672038	-5.093445	-1.965042
33	1	0	4.718995	-3.323698	-0.580750
34	7	0	0.906659	-0.889913	-0.493113
35	16	0	3.367362	-0.746405	0.423466
36	7	0	-1.401206	-0.458887	1.652557
37	1	0	-1.053878	0.111073	0.870090
38	16	0	-2.673273	-1.392022	1.114610
39	8	0	-3.515761	-1.719150	2.263076
40	8	0	-2.206664	-2.504478	0.283033
41	6	0	-3.490871	-0.211935	0.078083
42	6	0	-4.634944	0.430677	0.538954
43	6	0	-2.951334	0.060720	-1.177481
44	6	0	-5.249868	1.367946	-0.283786
45	1	0	-5.031176	0.197618	1.522204
46	6	0	-3.576357	1.007093	-1.981129
47	1	0	-2.057139	-0.456710	-1.516779
48	6	0	-4.731837	1.668394	-1.548707
49	1	0	-6.145077	1.878335	0.061068
50	1	0	-3.165637	1.234288	-2.960913
51	6	0	-5.422677	2.669315	-2.435037
52	1	0	-4.750886	3.038638	-3.213849
53	1	0	-6.287910	2.211194	-2.927630

1 imaginary frequencies (-635.57)

Zero-point Energies=	-2058.843415 3
Thermal Energies=	-2058.817016
Thermal Enthalpies=	-2058.816072
Thermal Free Energies=	-2058.902349

Number	Nun	nber	Туре	Х	Y	Ζ
1	6	0	-2.460012	3.52318	31 -	0.693985
2	6	0	-2.221730	2.32739	91 -	-0.020102
3	6	0	-2.924607	2.05642	29	1.160204
4	6	0	-3.854013	2.96384	16	1.653627
5	6	0	-4.089575	4.15979	94	0.972573
6	6	0	-3.391320	4.43740)9 -	-0.198233
7	1	0	-1.915663	3.75350)9 -	-1.605302
8	1	0	-2.749814	1.12060)5	1.689985
9	1	0	-4.397619	2.7393	12	2.566358
10	1	0	-4.816325	4.8697	70	1.355648
11	1	0	-3.567473	5.3672	99	-0.730613
12	6	0	-1.180411	1.3383	75	-0.485155
13	8	0	-0.084796	1.3271	02	0.416097
14	1	0	-0.386077	0.8929	84	1.235582
15	6	0	-0.614437	1.3963	45	-1.915143
16	1	0	-1.265830	1.9278	86	-2.611274
17	1	0	0.397803	1.8029	23	-1.971311
18	6	0	-0.760220	-0.1375	11	-2.057439
19	1	0	-1.340068	-0.4427	26	-2.930807
20	6	0	0.490022	-1.0065	36	-2.039841
21	1	0	0.188728	-2.0294	11	-1.777346
22	1	0	0.926172	-1.0250	50	-3.041598
23	6	0	-3.532751	-1.6780	00	0.027565
24	6	0	-2.254826	-1.8752	64	0.654430
25	6	0	-2.125682	-2.8863	95	1.648017
26	6	0	-3.222847	-3.6460	54	1.981817
27	6	0	-4.470098	-3.4317	41	1.354617
28	6	0	-4.632888	-2.4515	36	0.379581
29	6	0	-1.637041	-0.1718	75	-0.748753
30	1	0	-1.156500	-3.0354	41	2.113065
31	1	0	-3.134473	-4.4217	20	2.735621
32	1	0	-5.320581	-4.0434	79	1.637858
33	1	0	-5.596806	-2.2973	55	-0.094218
34	7	0	-1.260072	-1.0812	42	0.268273
35	16	0	-3.441482	-0.4010	079	-1.143513
36	7	0	1.512831	-0.4800	21	-1.118953
37	1	0	1.104548	-0.0709	65	-0.270322
38	16	0	2.710793	-1.5583	366	-0.733949
39	8	0	3.209565	-2.0820	93	-2.004796
40	8	0	2.293237	-2.5232	34	0.285446
41	6	0	3.908563	-0.4769	93	-0.001634
42	6	0	4.482969	0.5249	74	-0.785560
43	6	0	4.274757	-0.6609	85	1.325284
44	6	0	5.435705	1.3555	14	-0.215747
45	1	0	4.181872	0.6510	78	-1.821345
46	6	0	5.234562	0.1836	49	1.880255
47	1	0	3.814706	-1.4502	12	1.910717
48	6	0	5.824108	1.1974	95	1.123320

49	1	0	5.890054	2.141362	-0.813416
50	1	0	5.528276	0.050902	2.917679
51	6	0	6.857552	2.114212	1.720273
52	1	0	7.071436	1.849257	2.758422
53	1	0	7.792623	2.067129	1.152487
54	1	0	6.514002	3.153767	1.694470

0 imaginary frequencies

7.

Zero-point Energies=	-2058.863147
Thermal Energies=	-2058.835639
Thermal Enthalpies=	-2058.834694
Thermal Free Energies=	-2058.927275

Charge = 0 Multiplicity = 2

Center	Atomic		Atomic	Coordinate	s (Angstroms)
Number	Numb	er	Туре	X Y	Z
1	6	0	-3.918352	2.644989	-1.623323
2	6	0	-4.357302	2.034807	-0.448108
3	6	0	-5.709490	2.124270	-0.099154
4	6	0	-6.605294	2.812538	-0.908561
5	6	0	-6.160956	3.422373	-2.082766
6	6	0	-4.818510	3.336917	-2.436074
7	1	0	-2.874768	2.597074	-1.916578
8	1	0	-6.047069	1.653999	0.819665
9	1	0	-7.651494	2.875128	-0.624159
10	1	0	-6.859161	3.961585	-2.715855
11	1	0	-4.462093	3.811400	-3.345439
12	6	0	-3.435851	1.224732	0.467358
13	8	0	-3.764504	1.543211	1.804883
14	1	0	-3.785896	0.706570	2.305244
15	6	0	-1.937339	1.497013	0.226551
16	1	0	-1.669663	1.242551	-0.806050
17	1	0	-1.782887	2.576351	0.347942
18	6	0	1.350364	0.328454	1.893343
19	1	0	1.135476	-0.721870	2.072076
20	6	0	2.717455	0.823368	2.212340
21	1	0	2.703404	1.905723	2.398618
22	1	0	3.126464	0.320905	3.091670
23	6	0	-3.963062	-2.545783	-0.575626
24	6	0	-4.116123	-2.359482	0.811145
25	6	0	-4.396698	-3.453394	1.636900
26	6	0	-4.517620	-4.707443	1.059204

27	6	0	-4.363920	-4.882040	-0.325797
28	6	0	-4.086503	-3.806993	-1.159674
29	6	0	-3.711049	-0.258365	0.253989
30	1	0	-4.512767	-3.302104	2.705359
31	1	0	-4.734566	-5.567653	1.684356
32	1	0	-4.463801	-5.874206	-0.754379
33	1	0	-3.969173	-3.945221	-2.229560
34	7	0	-3.962298	-1.046724	1.241226
35	16	0	-3.631618	-1.005803	-1.332848
36	7	0	3.632613	0.499692	1.075444
37	1	0	3.298868	0.924560	0.206113
38	16	0	5.221852	0.955364	1.314910
39	8	0	5.631788	0.336085	2.573108
40	8	0	5.412860	2.398750	1.159827
41	6	0	6.012927	0.145886	-0.047414
42	6	0	6.043741	-1.249311	-0.077820
43	6	0	6.605660	0.909636	-1.044703
44	6	0	6.679189	-1.879398	-1.136875
45	1	0	5.575794	-1.825754	0.714675
46	6	0	7.240348	0.257551	-2.100149
47	1	0	6.572014	1.992956	-0.992589
48	6	0	7.285830	-1.136452	-2.161044
49	1	0	6.711270	-2.965061	-1.175011
50	1	0	7.708888	0.842726	-2.886305
51	6	0	7.972457	-1.843412	-3.298176
52	1	0	8.391940	-1.131321	-4.012741
53	1	0	8.784514	-2.476982	-2.926254
54	1	0	7.270889	-2.494090	-3.830713
55	6	0	-1.030479	0.729294	1.183940
56	1	0	-1.147085	-0.351939	1.029645
57	1	0	-1.327348	0.937942	2.217755
58	6	0	0.442857	1.099474	0.995086
59	1	0	0.714127	0.926938	-0.062753
60	1	0	0.583363	2.176309	1.165488

Zero-point Energies=	-2137.395095
Thermal Energies=	-2137.363657
Thermal Enthalpies=	-2137.362713
Thermal Free Energies=	-2137.466705

Number	Nur	nber	Туре	X Y	Z
1	6	0	-4.980693	-0.107933	-0.293964
2	6	0	-4.232517	-1.280354	-0.173659
3	6	0	-4.829196	-2.495889	-0.533503
4	6	0	-6.144926	-2.541102	-0.981005
5	6	0	-6.889148	-1.366054	-1.084839
6	6	0	-6.300685	-0.152425	-0.745199
7	1	0	-4.546428	0.856121	-0.050702
8	1	0	-4.245608	-3.410239	-0.478450
9	1	0	-6.587887	-3.494055	-1.255195
10	1	0	-7.916017	-1.397556	-1.436353
11	1	0	-6.864072	0.771620	-0.834621
12	6	0	-2.776754	-1.342898	0.322682
13	8	0	-2.022589	-2.094646	-0.616527
14	1	0	-2.001879	-1.568359	-1.436946
15	6	0	-2.725614	-2.101943	1.661427
16	1	0	-3.563988	-1.767567	2.282513
17	1	0	-2.924092	-3.149088	1.409526
18	6	0	-0.071822	-0.569195	0.888354
19	1	0	0.109652	0.289368	1.535205
20	6	0	0.679298	-0.508231	-0.409144
21	1	0	0.348773	-1.300904	-1.089197
22	1	0	0.538663	0.460329	-0.893805
23	6	0	-2.095792	2.487595	0.845770
24	6	0	-1.817127	2.068051	-0.477084
25	6	0	-1.447942	3.020882	-1.441212
26	6	0	-1.366249	4.352490	-1.070976
27	6	0	-1.644588	4.754782	0.246319
28	6	0	-2.008282	3.829181	1.216791
29	6	0	-2.156952	0.053013	0.410946
30	1	0	-1.231108	2.694860	-2.453680
31	1	0	-1.078696	5.097133	-1.806431
32	1	0	-1.573095	5.804534	0.512779
33	1	0	-2.219012	4.142451	2.234279
34	7	0	-1.943982	0.720242	-0.709457
35	16	0	-2.523038	1.106177	1.822460
36	7	0	2.127143	-0.631995	-0.098347
37	1	0	2.360036	-1.570962	0.235787
38	16	0	3.143596	-0.251472	-1.370453
39	8	0	2.811085	1.116103	-1.761318
40	8	0	3.140287	-1.285347	-2.406880
41	6	0	4.713833	-0.289811	-0.553187
42	6	0	4.985480	0.658864	0.433937
43	6	0	5.649364	-1.249052	-0.920096
44	6	0	6.220852	0.630703	1.063157
45	1	0	4.238888	1.400100	0.703247
46	6	0	6.885497	-1.259324	-0.277181
47	1	0	5.412819	-1.971986	-1.693934
48	6	0	7.186897	-0.326317	0.716936

49	1	0	6.446518	1.360594	1.836051
50	1	0	7.625825	-2.004455	-0.554012
51	6	0	8.524794	-0.328335	1.405806
52	1	0	9.119048	-1.198834	1.117974
53	1	0	9.091768	0.572753	1.147635
54	1	0	8.403121	-0.335090	2.493577
55	6	0	-1.419228	-2.000267	2.464057
56	1	0	-1.344812	-2.880795	3.109599
57	1	0	-1.449069	-1.132770	3.133587
58	6	0	-0.166297	-1.893023	1.590845
59	1	0	0.719311	-2.002381	2.236744
60	1	0	-0.143192	-2.707144	0.859273

1 imaginary frequencies (-512.36)

Zero-point Energies=	-2137.380202
Thermal Energies=	-2137.350632
Thermal Enthalpies=	-2137.349688
Thermal Free Energies=	-2137.444899

HO. NHTs Ph IM-6

9.

Charge = 0 Multiplicity = 2

Center	Atom	nic At	tomic	Coordinate	s (Angstroms)
Number	Nur	nber	Туре	X Y	Z
1	6	0	-4.688188	-1.351462	0.629403
2	6	0	-3.708487	-1.412692	-0.369384
3	6	0	-4.111661	-1.202794	-1.693108
4	6	0	-5.438911	-0.922367	-2.008244
5	6	0	-6.398645	-0.848049	-1.002373
6	6	0	-6.016728	-1.068664	0.317808
7	1	0	-4.424107	-1.515380	1.668265
8	1	0	-3.391003	-1.271216	-2.500531
9	1	0	-5.720077	-0.764340	-3.045237
10	1	0	-7.433828	-0.627858	-1.245235
11	1	0	-6.753334	-1.024587	1.114605
12	6	0	-2.227000	-1.667522	-0.052532
13	8	0	-1.536437	-2.061844	-1.229641
14	1	0	-1.489124	-1.277673	-1.806006
15	6	0	-2.027365	-2.806412	0.961786
16	1	0	-2.883564	-2.873121	1.635698
17	1	0	-2.018667	-3.725434	0.365608
18	6	0	0.048336	-0.588571	0.599319
19	1	0	0.365715	0.050034	1.429860
20	6	0	0.856208	-0.123286	-0.616733

21	1	0	0.592789	-0.698728	-1.511502
22	1	0	0.673257	0.933974	-0.813265
23	6	0	-2.937357	1.616825	1.218501
24	6	0	-2.546181	1.629279	-0.164577
25	6	0	-3.029109	2.672860	-1.004770
26	6	0	-3.853458	3.638383	-0.474793
27	6	0	-4.223969	3.605720	0.886989
28	6	0	-3.771068	2.599747	1.737181
29	6	0	-1.493639	-0.340969	0.417923
30	1	0	-2.736451	2.676164	-2.049687
31	1	0	-4.229444	4.435413	-1.108089
32	1	0	-4.877170	4.378131	1.280032
33	1	0	-4.065432	2.585311	2.781515
34	7	0	-1.756722	0.647870	-0.582895
35	16	0	-2.216989	0.270217	2.042835
36	7	0	2.289996	-0.270499	-0.293560
37	1	0	2.570005	-1.253147	-0.243193
38	16	0	3.323600	0.518066	-1.342804
39	8	0	2.927960	1.923947	-1.328493
40	8	0	3.417292	-0.160198	-2.636431
41	6	0	4.863214	0.310515	-0.493501
42	6	0	5.049050	0.955778	0.730170
43	6	0	5.859643	-0.470324	-1.065061
44	6	0	6.260083	0.802173	1.387554
45	1	0	4.256028	1.563853	1.155369
46	6	0	7.069987	-0.611647	-0.388775
47	1	0	5.690436	-0.955881	-2.020647
48	6	0	7.285808	0.017462	0.838769
49	1	0	6.419968	1.297435	2.341662
50	1	0	7.857839	-1.219700	-0.824155
51	6	0	8.592451	-0.131259	1.570312
52	1	0	9.276501	-0.791115	1.031502
53	1	0	9.079337	0.841852	1.694052
54	1	0	8.431892	-0.543594	2.571882
55	6	0	-0.732845	-2.691325	1.778084
56	1	0	-0.430876	-3.685429	2.120795
57	1	0	-0.905451	-2.095630	2.684551
58	6	0	0.382769	-2.047714	0.961839
59	1	0	1.319818	-2.063012	1.528349
60	1	0	0.538114	-2.627804	0.044299

0 imaginary frequencies	
Zero-point Energies=	-2137.415627
Thermal Energies=	-2137.386591
Thermal Enthalpies=	-2137.385647
Thermal Free Energies=	-2137.479117

10.				Charge = 0 Multiplicity = 2			
Cei	nter	Atom	nic A	tomic	Coordinate	s (Angstroms)	
Nu	mber	Nur	nber	Туре	X Y	Z	
	1	6	0	-2.655949	3.092559	-0.922063	
	2	6	0	-2.936100	2.461167	0.291428	
	3	6	0	-3.645745	3.160689	1.272924	
	4	6	0	-4.062093	4.468397	1.048004	
	5	6	0	-3.778013	5.095426	-0.165276	
	6	6	0	-3.075652	4.404207	-1.147528	
	7	1	0	-2.105033	2.576213	-1.701678	
	8	1	0	-3.858516	2.670098	2.217221	
	9	1	0	-4.609118	4.999941	1.821097	
1	10	1	0	-4.101870	6.116729	-0.341589	
]	11	1	0	-2.846605	4.883788	-2.094471	
]	12	6	0	-2.549645	1.006879	0.571743	
1	13	8	0	-2.232787	0.891945	1.943993	
1	14	1	0	-2.646045	0.070738	2.268787	
1	15	6	0	-1.350783	0.525512	-0.272366	
1	16	1	0	-1.589218	0.594176	-1.339880	
1	17	1	0	-0.524796	1.220748	-0.077149	
1	18	6	0	2.022852	-3.149053	-1.114717	
]	19	1	0	1.998283	-3.155892	-2.200791	
2	20	6	0	3.348333	-3.230277	-0.442479	
2	21	1	0	3.256028	-3.717473	0.537741	
2	22	1	0	4.066554	-3.789464	-1.045823	
2	23	6	0	-5.612426	-1.151180	-0.669371	
2	24	6	0	-5.216311	-1.505219	0.634089	
2	25	6	0	-5.880135	-2.533874	1.311280	
2	26	6	0	-6.923481	-3.184553	0.671636	
2	27	6	0	-7.311894	-2.821844	-0.628341	
2	28	6	0	-6.664598	-1.802611	-1.313930	
2	29	6	0	-3.749886	0.113101	0.287214	
3	30	1	0	-5.569034	-2.802470	2.315787	
3	31	1	0	-7.449031	-3.985636	1.181394	
3	32	1	0	-8.132638	-3.345919	-1.107670	
3	33	1	0	-6.967371	-1.523439	-2.317867	
3	34	7	0	-4.153518	-0.765215	1.138772	
3	35	16	0	-4.611833	0.162503	-1.241551	
3	36	7	0	3.909377	-1.852607	-0.284482	
3	37	1	0	3.285317	-1.267609	0.278459	
3	38	16	0	5.435908	-1.801827	0.393694	
3	39	8	0	6.278323	-2.649765	-0.446742	
2	40	8	0	5.411500	-2.063814	1.834195	

41	6	0	5.850385	-0.097357	0.149030
42	6	0	6.013507	0.376189	-1.153911
43	6	0	6.022954	0.729386	1.251732
44	6	0	6.350087	1.707919	-1.342297
45	1	0	5.875927	-0.289817	-2.000591
46	6	0	6.362469	2.064551	1.041437
47	1	0	5.895706	0.333856	2.254124
48	6	0	6.528592	2.569775	-0.249428
49	1	0	6.479573	2.091625	-2.350837
50	1	0	6.501113	2.721848	1.895114
51	6	0	6.891233	4.011966	-0.480138
52	1	0	7.025556	4.543793	0.464696
53	1	0	7.819160	4.091333	-1.055915
54	1	0	6.108837	4.521006	-1.052988
55	6	0	-0.919685	-0.902102	0.053702
56	1	0	-1.725920	-1.605822	-0.195275
57	1	0	-0.742464	-0.990450	1.132395
58	6	0	0.343868	-1.301852	-0.704544
59	1	0	0.169784	-1.219281	-1.785425
60	1	0	1.153567	-0.599373	-0.465695
61	6	0	0.793747	-2.737471	-0.375580
62	1	0	-0.038184	-3.415130	-0.618662
63	1	0	0.964161	-2.823082	0.706116

_.

Zero-point Energies=	-2176.659914
Thermal Energies=	-2176.627394
Thermal Enthalpies=	-2176.626450
Thermal Free Energies=	-2176.73259

Center Number	Ator Nu	nic A mber	Atomic Type	Coordinat X Y	es (Angstroms) ZZ
1	6	0	-4.136299	1.719174	0.559866
2	6	0	-2.915608	1.999445	-0.064983
3	6	0	-2.270088	3.198834	0.242783
4	6	0	-2.823948	4.092425	1.158379
5	6	0	-4.035308	3.802775	1.779293
6	6	0	-4.690745	2.612002	1.473236
7	1	0	-4.668099	0.797772	0.343569
8	1	0	-1.335598	3.450059	-0.246190
9	1	0	-2.304156	5.019664	1.381272

10	1	Δ	1 167200	1 108660	2 102081
10	1	0	-4.40/290	4.498000	2.492081
11	I C	0	-3.039007	2.373423	1.943349
12	0	0	-2.280912	1.020012	-1.0/9151
13	8	0	-1.154258	1.61584/	-1.684912
14	l	0	-0.443093	1.629110	-1.01/33/
15	6	0	-3.297618	0.744543	-2.195300
16	1	0	-4.211305	0.333926	-1.748667
17	1	0	-3.565720	1.738204	-2.572346
18	6	0	-0.650110	-1.300614	-1.885268
19	1	0	-0.405092	-0.364743	-2.378004
20	6	0	0.497675	-1.939282	-1.166410
21	1	0	0.151508	-2.499277	-0.283109
22	1	0	0.977384	-2.666430	-1.836611
23	6	0	-1.873522	-1.795957	1.639654
24	6	0	-0.795201	-0.882239	1.626056
25	6	0	0.193264	-0.965774	2.619803
26	6	0	0.081755	-1.944474	3,593820
27	6	Ő	-0 995421	-2 845731	3 594367
28	6	Õ	-1 980883	-2 784814	2 61 59 44
20	6	0	-1 795590	_0 198811	-0.256500
30	1	0	1 0255/3	-0.150011	2 605931
21	1	0	0.841062	-0.200+07	2.005731 4.365676
22	1	0	1.050064	-2.020382	4.303070
3Z	1	0	-1.039904	-3.004019	4.308194
33 24		0	-2.810150	-3.485059	2.6144/8
34	1	0	-0.813644	0.032822	0.601144
35	16	0	-2.925691	-1.4/2508	0.286108
36	/	0	1.511038	-0.92/896	-0.821330
37	l	0	1.145/10	-0.26//11	-0.126883
38	16	0	2.979935	-1.533940	-0.322303
39	8	0	3.488373	-2.339922	-1.430786
40	8	0	2.914511	-2.158475	0.999938
41	6	0	3.899885	-0.027410	-0.179617
42	6	0	4.163493	0.715519	-1.331462
43	6	0	4.353030	0.378607	1.069281
44	6	0	4.890595	1.890475	-1.215151
45	1	0	3.801576	0.376827	-2.297715
46	6	0	5.082792	1.561959	1.165018
47	1	0	4.139743	-0.222781	1.947157
48	6	0	5.359023	2.330072	0.032287
49	1	0	5.103894	2.480238	-2.102745
50	1	0	5.443382	1.891093	2.135390
51	6	0	6.141031	3.611711	0.133345
52	1	0	5,524860	4.465325	-0.168945
53	1	Ő	6 488775	3 784943	1 1 5 4 4 6 9
54	1	0	7 011982	3 588940	-0 529607
55	6	0	2 80//85	0 13/60/	3 385166
56	1	0	-2.07+03	0.105612	_3 703085
50	1	0	-1.952700	0.195012	-J. 75705 A 165002
50	1 6	0	-2.020222	1 644000	- 1 .103902
38 50	0	U	-2.89338/	-1.044233	-3.104003
39	1	0	-3.0/8028	-1.8398/6	-2.368918

60	1	0	-3.187064	-2.180610	-4.012630
61	6	0	-1.555729	-2.233046	-2.626045
62	1	0	-0.981459	-2.564177	-3.507641
63	1	0	-1.733609	-3.137467	-2.030873

1 imaginary frequencies (-448.12)

Zero-point Energies=	-2176.645642
Thermal Energies=	-2176.615128
Thermal Enthalpies=	-2176.614184
Thermal Free Energies=	-2176.710285

_ _

Charge = 0 Multiplicity = 2

Center	Atomic		Atomic	Coordinate	s (Angstroms)
Number	Numb	er	Туре	X Y	Z
1	6	0	-2.655508	3.092468	-0.922122
2	6	0	-2.935741	2.461107	0.291367
3	6	0	-3.645371	3.160680	1.272834
4	6	0	-4.061627	4.468415	1.047891
5	6	0	-3.777466	5.095414	-0.165383
6	6	0	-3.075118	4.404140	-1.147609
7	1	0	-2.104607	2.576073	-1.701716
8	1	0	-3.858207	2.670111	2.217129
9	1	0	-4.608641	4.999999	1.820966
10	1	0	-4.101252	6.116736	-0.341719
11	1	0	-2.846015	4.883702	-2.094549
12	6	0	-2.549398	1.006798	0.571716
13	8	0	-2.232519	0.891899	1.943961
14	1	0	-2.645707	0.070661	2.268763
15	6	0	-1.350611	0.525306	-0.272425
16	1	0	-1.589112	0.593909	-1.339929
17	1	0	-0.524570	1.220509	-0.077315
18	6	0	2.022860	-3.149419	-1.114690
19	1	0	1.998245	-3.156334	-2.200763
20	6	0	3.348371	-3.230499	-0.442485
21	1	0	3.256147	-3.717694	0.537742
22	1	0	4.066639	-3.789611	-1.045843
23	6	0	-5.612385	-1.151040	-0.669281
24	6	0	-5.216231	-1.505123	0.634155
25	6	0	-5.880074	-2.533758	1.311358
26	6	0	-6.923483	-3.184373	0.671751
27	6	0	-7.311937	-2.821618	-0.628201
28	6	0	-6.664619	-1.802407	-1.313802

29	6	0	-3.749728	0.113117	0.287244
30	1	0	-5.568936	-2.802388	2.315845
31	1	0	-7.449048	-3.985440	1.181518
32	1	0	-8.132731	-3.345638	-1.107503
33	1	0	-6.967431	-1.523201	-2.317717
34	7	0	-4.153370	-0.765191	1.138803
35	16	0	-4.611755	0.162606	-1.241479
36	7	0	3.909270	-1.852766	-0.284506
37	1	0	3.285210	-1.267873	0.278547
38	16	0	5.435865	-1.801843	0.393529
39	8	0	6.278325	-2.649572	-0.447073
40	8	0	5.411631	-2.063985	1.834005
41	6	0	5.850060	-0.097287	0.148997
42	6	0	6.012887	0.376443	-1.153914
43	6	0	6.022741	0.729336	1.251773
44	6	0	6.349281	1.708234	-1.342194
45	1	0	5.875231	-0.289473	-2.000653
46	6	0	6.362059	2.064567	1.041583
47	1	0	5.895724	0.333666	2.254138
48	6	0	6.527883	2.569973	-0.249249
49	1	0	6.478549	2.092081	-2.350709
50	1	0	6.500793	2.721770	1.895318
51	6	0	6.890258	4.012251	-0.479844
52	1	0	7.025311	4.543820	0.465031
53	1	0	7.817699	4.091841	-1.056367
54	1	0	6.107351	4.521404	-1.051898
55	6	0	-0.919556	-0.902306	0.053718
56	1	0	-1.725850	-1.606009	-0.195117
57	1	0	-0.742223	-0.990573	1.132398
58	6	0	0.343901	-1.302179	-0.704626
59	1	0	0.169689	-1.219750	-1.785497
60	1	0	1.153641	-0.599682	-0.465974
61	6	0	0.793789	-2.737767	-0.375531
62	1	0	-0.038156	-3.415447	-0.618508
63	1	0	0.964258	-2.823268	0.706165

Zero-point Energies=	-2176.684650
Thermal Energies=	-2176.654499
Thermal Enthalpies=	-2176.653555
Thermal Free Energies=	-2176.749534

10. NMR spectra of compound

¹H NMR of Cz-NI in CDCl₃ (400 MHz, CDCl₃)

¹³C NMR of Cz-NI in CDCl₃(400 MHz, CDCl₃)

¹³C NMR of **3aa** in CDCl₃(151 MHz, CDCl₃)

¹H NMR of **3ab** in CDCl₃(400 MHz, CDCl₃)

¹³C NMR of **3ab** in CDCl₃(101 MHz, CDCl₃)

¹H NMR of **3ac** in CDCl₃(400 MHz, CDCl₃)

¹³C NMR of **3ac** in CDCl₃(101 MHz, CDCl₃)

¹H NMR of **3ad** in CDCl₃(400 MHz, CDCl₃)

¹³C NMR of **3ad** in CDCl₃(101 MHz, CDCl₃)

¹H NMR of **3ae** in CDCl₃(400 MHz, CDCl₃)

¹³C NMR of **3ae** in CDCl₃(101 MHz, CDCl₃)

¹⁹F NMR of **3ae** in CDCl₃(376 MHz, CDCl₃)

¹H NMR of **3af** in CDCl₃(600 MHz, CDCl₃)

¹³C NMR of **3af** in CDCl₃(151 MHz, CDCl₃)

¹H NMR of **3ag** in CDCl₃(600 MHz, CDCl₃)

¹³C NMR of **3ag** in CDCl₃(151 MHz, CDCl₃)

¹H NMR of **3ah** in CDCl₃(600 MHz, CDCl₃)

¹³C NMR of **3ah** in CDCl₃(151 MHz, CDCl₃)

¹H NMR of **3ai** in CDCl₃(400 MHz, CDCl₃)

¹³C NMR of **3ai** in CDCl₃(101 MHz, CDCl₃)

¹³C NMR of **3aj** in CDCl₃(101 MHz, CDCl₃)

¹H NMR of **3ak** in CDCl₃(600 MHz, CDCl₃)

¹³C NMR of **3ak** in CDCl₃(151 MHz, CDCl₃)

¹H NMR of **3al** in CDCl₃(400 MHz, CDCl₃)

¹³C NMR of **3al** in CDCl₃(101 MHz, CDCl₃)

¹H NMR of **3am** in CDCl₃(400 MHz, CDCl₃)

¹³C NMR of **3am** in CDCl₃(101 MHz, CDCl₃)

¹H NMR of **3an** in CDCl₃(600 MHz, CDCl₃)

¹³C NMR of **3an** in CDCl₃(151 MHz, CDCl₃)

¹H NMR of **3ao** in CDCl₃(400 MHz, CDCl₃)

¹³C NMR of **3ao** in CDCl₃(101 MHz, CDCl₃)

¹H NMR of **3ap** in CDCl₃(400 MHz, CDCl₃)

¹³C NMR of **3ap** in CDCl₃(151 MHz, CDCl₃)

¹H NMR of **3aq** in CDCl₃(600 MHz, CDCl₃)

¹³C NMR of **3aq** in CDCl₃(151 MHz, CDCl₃)

¹H NMR of **3ar** in CDCl₃(600 MHz, CDCl₃)

¹³C NMR of **3ar** in CDCl₃(151 MHz, CDCl₃)

¹H NMR of **3as** in CDCl₃(400 MHz, CDCl₃)

¹³C NMR of **3as** in CDCl₃(151 MHz, CDCl₃)

¹H NMR of **3at** in CDCl₃(600 MHz, CDCl₃)

¹³C NMR of **3at** in CDCl₃(151 MHz, CDCl₃)

¹H NMR of **3au** in CDCl₃(400 MHz, CDCl₃)

¹³C NMR of **3au** in CDCl₃(151 MHz, CDCl₃)

¹H NMR of **3av** in CDCl₃(600 MHz, CDCl₃)

¹³C NMR of **3av** in CDCl₃(151 MHz, CDCl₃)

¹H NMR of **3aw** in CDCl₃(400 MHz, CDCl₃)

¹³C NMR of **3aw** in CDCl₃(101 MHz, CDCl₃)

¹H NMR of **3ax** in CDCl₃(400 MHz, CDCl₃)

¹³C NMR of **3ax** in CDCl₃(101 MHz, CDCl₃)

¹H NMR of **3ba** in CDCl₃(400 MHz, CDCl₃)

¹³C NMR of **3ba** in CDCl₃(151 MHz, CDCl₃)

¹H NMR of **3ca** in CDCl₃(400 MHz, CDCl₃)

¹³C NMR of **3ca** in CDCl₃(101 MHz, CDCl₃)

¹⁹F NMR of **3ca** in CDCl₃(376 MHz, CDCl₃)

¹H NMR of **3da** in CDCl₃(400 MHz, CDCl₃)

¹³C NMR of **3da** in CDCl₃(151 MHz, CDCl₃)

¹³C NMR of **3ea** in CDCl₃(151 MHz, CDCl₃)

¹H NMR of **3fa** in CDCl₃(400 MHz, CDCl₃)

¹³C NMR of **3fa** in CDCl₃(101 MHz, CDCl₃)

¹H NMR of **3ga** in CDCl₃(600 MHz, CDCl₃)

¹³C NMR of **3ga** in CDCl₃(151 MHz, CDCl₃)

¹H NMR of **3ha** in CDCl₃(600 MHz, CDCl₃)

¹³C NMR of **3ha** in CDCl₃(151 MHz, CDCl₃)

¹⁹F NMR of **3ha** in CDCl₃(376 MHz, CDCl₃)

¹H NMR of 4aa in CDCl₃(600 MHz, CDCl₃)

¹³C NMR of 4aa in CDCl₃(151 MHz, CDCl₃)

¹H NMR of **4ac** in CDCl₃(600 MHz, CDCl₃)

¹³C NMR of 4ac in CDCl₃(151 MHz, CDCl₃)

¹H NMR of **5** in CDCl₃(400 MHz, CDCl₃)

¹³C NMR of **5** in CDCl₃(101 MHz, CDCl₃)

¹³C NMR of **6** in CDCl₃(101 MHz, CDCl₃)

¹H NMR of 7 in CDCl₃(400 MHz, CDCl₃)

¹³C NMR of 7 in CDCl₃(101 MHz, CDCl₃)

(1) Yu, W.-L.; Chen, J.-Q.; Wei, Y.-L.; Wang, Z.-Y.; Xu, P.-F., Alkene functionalization for the stereospecific synthesis of substituted aziridines by visible-light photoredox catalysis. Chemical Communications **2018**, 54, 1948-1951.

(2) Tian, T.; Wang, X.; Lv, L.; Li, Z., Iron-catalyzed acylation-functionalization of unactivated alkenes with aldehydes. Chemical Communications **2020**, 56, 14637-14640.

(3) Yi, M.-J.; Zhang, H.-X.; Xiao, T.-F.; Zhang, J.-H.; Feng, Z.-T.; Wei, L.-P.; Xu, G.-Q.; Xu, P.-F., Photoinduced Metal-Free α-C(sp3)–H Carbamoylation of Saturated Aza-Heterocycles via Rationally Designed Organic Photocatalyst. ACS Catalysis **2021**, 11, 3466-3472.

(4) Hu, W.; Guo, Z.; Chu, F.; Bai, A.; Yi, X.; Cheng, G.; Li, J., Synthesis and biological evaluation of substituted 2sulfonyl-phenyl-3-phenyl-indoles: a new series of selective COX-2 inhibitors. Bioorganic & Medicinal Chemistry **2003**, 11, 1153-1160.

(5) Cismesiaa, M. A.; Yoon, T. P. Correction: Characterizing chain processes in visible light photoredox catalysis. Chem. Sci. **2015**, 6, 6019–6019.

(6) Hatchard, C. G.; Parker, C. A. Proc. Roy. Soc. (London) 1956, A235, 518-536.

(7) (a) Kuhn, H. J.; Braslavsky, S. E.; Schmidt, R. Pure Appl. Chemical actinometry (IUPAC Technical Report) Chem. **2004**, 76, 2105–2146. (b) Monalti, M. Chemical Actinometry. Handbook of Photochemistry, 3rd Ed; Taylor & Francis Group, LLC. Boca Raton, FL, **2006**, 601–616.

(8) Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215–241.

(9) S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J Chem Phys 2010, 132: 154104.

(10) A. V. Marenich, C. J. Cramer, D. G. Truhlar, J. Phys. Chem. B 2009, 113, 6378-6396.

(11) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, D. J. Fox, Gaussian 09 Revision A.1. Gaussian Inc. 2009.

(12) R. Dennington, T. Keith, J. Millam, Semichem Inc., Shawnee Mission KS, GaussView, Version 5, 2009

(13) T. Lu, F. Chen, J. Comput.Chem. 2012, 33, 580-592.

(14) W. Humphrey, A. Dalke and K. Schulten, VMD: visual molecular dynamics, J. Mol. Graphics, 1996, 14, 33-38.