Molecular engineering of carbazole-acrylonitrile fluorophore: substituent-dependent optical properties and mechanochromism

Pengfei Chen ${ }^{\text {a }}$, Yuanye Yin $^{\text {a }}$, Yingyong Ni^{a}, Huichao Zhu ${ }^{\mathrm{a}}$, Jianyan Huang ${ }^{\mathrm{a}}$, Jiaxiang
Yang ${ }^{\text {a }}$, Jianjun Yang ${ }^{\text {a }}$ * and Lin Kong ${ }^{\text {a }}$ *
${ }^{\text {a. }}$ College of Chemistry \& Chemical Engineering, Anhui University, Anhui Province Key Laboratory of chemistry for Inorganic/Organic Hybrid Functional Materials, Hefei 230601, P. R. China.

Contents:

1. Synthetic and characterization of these compounds
2. Photophysical properties in aggregation and solid state.
3. The detailed crystal parameters.
4. Mechanochromism (MC) behavior in solid state.
5. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of the eight target products.

Characterization:

1a: Carbazole ($16.7 \mathrm{~g}, 100 \mathrm{mmol}$) and $\mathrm{NaOH}(5.59 \mathrm{~g}, 150 \mathrm{mmol})$ were dissolved in 100 mL acetone. n-Butyl bromide ($12 \mathrm{~mL}, 100 \mathrm{mmol}$) and 0.15 g TBAB were added to the above mixture. The mxiture was refluxed for 4 h , then the solvent was evaporated to dryness and the residue was added to 200 mL of water to get precipitation. The solid was filtered out, and the residue was washed with a large amount of water and recrystallized with ethanol/water at $50^{\circ} \mathrm{C}$. After drying, a white needle-like solid was obtained (18.2 g). Go directly to the next step.

1b: Similar to 1a, except that 1,4-dibromobutane was required a large excess (the stoichiometric ratio of carbazole and 1,4-dibromobutane is $1: 8$), and obtained white powder (yield: 67%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.87-1.94(\mathrm{~m}, 2 \mathrm{H}), 2.02-2.09$ $(\mathrm{m}, 2 \mathrm{H}), 3.37(\mathrm{t}, 2 \mathrm{H}, J=6.84 \mathrm{~Hz}), 4.34(\mathrm{t}, 2 \mathrm{H}, J=6.96 \mathrm{~Hz}), 7.21-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.39$ $(\mathrm{d}, 2 \mathrm{H}, J=8.16 \mathrm{~Hz}), 7.44-7.48(\mathrm{~m}, 2 \mathrm{H}), 8.09(\mathrm{~d}, 2 \mathrm{H}, J=7.76 \mathrm{~Hz})$.

2a: 1a was added into the anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ under ice-bath. Then the anhydrous $\mathrm{AlCl}_{3}(2.65 \mathrm{~g}, 19.85 \mathrm{mmol})$ was quickly added. 5 min later, the acetic anhydride ($1.11 \mathrm{~g}, 10.92 \mathrm{mmol}$) was dropped into the above mixture and stired at room temperature overnight. The crude product was washed by water and extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, then dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After that, the solvent was removed under reduced pressure and the residue was purified by silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /petroleum ether ($1 / 2, \mathrm{v} / \mathrm{v}$) as eluent. The pure product was a white solid (16.20 g , yield: 75%).

2b: Similar to 2a. White powder (yield: 65%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 1.89-1.96 (m, 2H), 2.05-2.12 (m, 2H), $2.73(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.84 \mathrm{~Hz}), 4.39(\mathrm{t}$, $2 \mathrm{H}, J=6.96 \mathrm{~Hz}), 7.32(\mathrm{t}, 1 \mathrm{H}, J=7.16 \mathrm{~Hz}), 7.40-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.53(\mathrm{t}, 1 \mathrm{H}, J=7.32$ $\mathrm{Hz}), 8.13(\mathrm{~d}, 1 \mathrm{H}, J=8.68 \mathrm{~Hz}), 8.16(\mathrm{~d}, 1 \mathrm{H}, J=8.16 \mathrm{~Hz}), 8.75(\mathrm{~s}, 1 \mathrm{H})$.

3a: 2a ($2.00 \mathrm{~g}, 7.54 \mathrm{mmol}$) and N -bromosuccinimide ($1.74 \mathrm{~g}, 9.80 \mathrm{mmol}$) were dissolved in 40 mL chloroform/acetic acid ($1 / 1, \mathrm{v} / \mathrm{v}$), and stired at room temperature for 20 h . The reactant was dropped into 200 mL water and the pH value was adjusted to neutral by NaOH aqueous solution. After that, the crude product was extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed under reduced pressure and the residue was purified by silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ petroleum ether ($1 / 2$, v / v) as eluent. The pure product was a white solid (1.95 g , yield: 75%). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.94(\mathrm{t}, J=7.28 \mathrm{~Hz}, 3 \mathrm{H}), 1.32-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.88(\mathrm{~m}, 2 \mathrm{H}), 2.72$ (s, 3H), $4.30(\mathrm{t}, J=7.12 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.68 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.72 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58\left(\mathrm{dd}, J_{1}=8.64 \mathrm{~Hz}, J_{2}=1.88 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.14\left(\mathrm{dd}, J_{1}=8.68 \mathrm{~Hz}, J_{2}=1.56 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.26$ (d, $J=1.88 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{~d}, J=1.56 \mathrm{~Hz}, 1 \mathrm{H})$.

3b: Similar to 3a. White powder (yield: 61%). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : 1.87-1.94 (m, 2H), 2.03-2.10 (m, 2H), $2.72(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{t}, 2 \mathrm{H}, J=6.36 \mathrm{~Hz}), 4.36(\mathrm{t}$, $2 \mathrm{H}, J=7.08 \mathrm{~Hz}), 7.32(\mathrm{~d}, 1 \mathrm{H}, J=8.68 \mathrm{~Hz}), 7.42(\mathrm{~d}, 1 \mathrm{H}, J=8.68 \mathrm{~Hz}), 7.60(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{1}=8.64 \mathrm{~Hz}, J_{2}=1.88 \mathrm{~Hz}\right), 8.16(\mathrm{~d}, 1 \mathrm{H}, J=8.68 \mathrm{~Hz}), 8.27(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{~s}, 1 \mathrm{H})$.

4a: 3a ($1.50 \mathrm{~g}, 4.37 \mathrm{mmol}$), malononitrile $(0.375 \mathrm{~g}, 5.68 \mathrm{mmol})$ and ammonium acetate (0.438 g 5.68 mmol) were dissolved in $18 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(2 / 1, \mathrm{v} / \mathrm{v})$, and stired at room temperature for 20 h . The crude product was purified by silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ petroleum ether $(1 / 4, \mathrm{v} / \mathrm{v})$ as eluent. The pure product was a white solid $(0.95$ g, yield: 56%). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.96(\mathrm{t}, J=7.38 \mathrm{~Hz}, 3 \mathrm{H}$), $1.35-1.42$ $(\mathrm{m}, 2 \mathrm{H}), 1.82-1.87(\mathrm{~m}, 2 \mathrm{H}), 2.75(\mathrm{~s}, 3 \mathrm{H}), 4.28(\mathrm{t}, J=7.20 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.70 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.70 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.70 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.70 \mathrm{~Hz}, 1 \mathrm{H})$, $8.23(\mathrm{~s}, 1 \mathrm{H}), 8.32(\mathrm{~s}, 1 \mathrm{H})$.

4b: Similar to 4a. Primrose-yellow powder (yield: 53\%). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta: 1.88-1.95(\mathrm{~m}, 2 \mathrm{H}), 2.03-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{t}, 2 \mathrm{H}, J=6.32$ $\mathrm{Hz}), 4.36(\mathrm{t}, 2 \mathrm{H}, J=7.12 \mathrm{~Hz}), 7.33(\mathrm{~d}, 1 \mathrm{H}, J=8.68 \mathrm{~Hz}), 7.47(\mathrm{~d}, 1 \mathrm{H}, J=8.68 \mathrm{~Hz})$,
$7.63\left(\mathrm{~d}, 1 \mathrm{H}, J_{1}=8.72 \mathrm{~Hz}, J_{2}=1.88 \mathrm{~Hz}\right), 7.81(\mathrm{~d}, 1 \mathrm{H}, J=8.72 \mathrm{~Hz}), 8.25(\mathrm{~s}, 1 \mathrm{H}), 8.34$ $(\mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 24.3,27.5,30.0,32.7,42.7,81.8,109.3$, $110.7,113.4,113.6,114.1,121.1,122.2,123.6,124.3,126.3,126.8,129.9,139.6$, 142.6, 174.8.

CZ-N: 4a ($0.30 \mathrm{~g}, 0.74 \mathrm{mmol}$) and 4-(dimethylamino)benzaldehyde ($0.14 \mathrm{~g}, 0.96$ mmol) were dissolved in ethanol (15 mL), then the catalytic amount of piperidine was added. The reaction mixture was refluxed for 3 h . The solvent was evaporated under reduced pressure. The crude product was purified by chromatography on silica gel with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and petroleum ether ($1 / 1, \mathrm{v} / \mathrm{v}$) as the eluent to afford pure $\mathbf{C Z}-\mathbf{N}$ as a red powder 174 mg (yield: 44%). m. p. $254.0-265.4^{\circ} \mathrm{C}$. FT-IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2216, 1578 , 1530, 1472, 1357, 1289, 1167, 969, 815. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.89(\mathrm{t}, J=$ $7.32 \mathrm{~Hz}, 3 \mathrm{H}), 1.39-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.92(\mathrm{~m}, 2 \mathrm{H}), 3.07(\mathrm{~s}, 6 \mathrm{H}), 4.32(\mathrm{t}, J=7.16 \mathrm{~Hz}$, $2 \mathrm{H}), 6.63(\mathrm{~d}, J=8.92 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=15.16 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.68 \mathrm{~Hz}, 1 \mathrm{H})$, $7.42(\mathrm{~d}, J=8.92 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=15.16 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~m}, 2 \mathrm{H}), 7.58\left(\mathrm{dd}, J_{1}=\right.$ $\left.8.68 \mathrm{~Hz}, J_{2}=1.92 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.06(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=1.76 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 13.9,20.6,31.1,40.1,43.3,109.2,110.6,111.8,112.5,114.6,115.4$, $119.8,121.8,122.2,122.5,123.5,124.2,124.6,127.6,129.2,131.3,139.6,142.0$, 150.3, 152.7, 172.3. MS (APCI) m/z: calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{~N}_{4} \mathrm{Br}$: 522.14 , found 523.15 [M $+\mathrm{H}]^{+}$.

CZ-H: Similar to CZ-N. Yellow powder (yield: 48\%). m. p. 221.5-224.3 ${ }^{\circ} \mathrm{C}$. FT-IR (KBr, cm^{-1}): 2220, 1607, 1530, 1470, 1444, 1350, 1287, 1281, 1149, 971, 800. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 0.99(\mathrm{t}, J=7.28 \mathrm{~Hz}, 3 \mathrm{H}), 1.40-1.51(\mathrm{~m}, 2 \mathrm{H})$, $1.85-1.93(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{t}, J=7.20 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=15.52 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.45(\mathrm{~m}$, $4 \mathrm{H}), 7.52-7.62(\mathrm{~m}, 5 \mathrm{H}), 7.67(\mathrm{~d}, J=15.52 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 13.9,20.6,31.1,43.4,81.0,109.5,110.8,112.8,113.5$, $114.3,122.0,122.4,123.5,123.8,124.1,125.4,127.6,128.8,129.2,129.5,131.5$, 134.5, 139.7, 142.3, 149.3, 171.8. MS (APCI) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{Br}$: 479.10, found $480.10[\mathrm{M}+\mathrm{H}]^{+}$.

CZ-Br: Similar to CZ-N. Yellow powder (yield: 62\%). m. p. 208.1-212.2 ${ }^{\circ} \mathrm{C}$. FT-IR (KBr, cm^{-1}): 2220, 1607, 1585, 1522, 1486, 1441, 1332, 1218, 1150, 1006, 977, 800. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.99(\mathrm{t}, J=7.32 \mathrm{~Hz}, 3 \mathrm{H}), 1.39-1.48(\mathrm{~m}, 2 \mathrm{H})$, $1.85-1.93(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{t}, J=7.20 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{~d}, J=15.56 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.40(\mathrm{~m}$, $3 \mathrm{H}), 7.53-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.60\left(\mathrm{dd}, J_{1}=8.68 \mathrm{~Hz}, J_{2}=1.84 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.64(\mathrm{~d}, J=15.56$
$\mathrm{Hz}, 1 \mathrm{H}), 8.09(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=1.76 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta: 13.9$, $20.6,31.1,43.4,81.5,109.5,110.8,112.8,112.9,113.4,114.2,122.1,122.3,123.5$, 124.1, 125.9, 126.0, 127.5, 129.6, 130.0, 132.5, 133.4, 139.7, 142.3, 147.7, 171.4. MS (APCI) m/z calcd for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{Br}_{2}$: 557.01 , found $559.02[\mathrm{M}+2 \mathrm{H}]^{+}$.

CZ-CN: Similar to CZ-N. Bright-yellow powder (yield: 37\%). m. p. $254.6-258.3^{\circ} \mathrm{C}$. FT-IR (KBr, cm^{-1}): 2220, 1607, 1596, 1522, 1481, 1441, 1338, 1212, $1155,1069,960,830 .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 0.99(\mathrm{t}, J=7.28 \mathrm{~Hz}, 3 \mathrm{H})$, $1.40-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.86-1.93(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{t}, J=7.16 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=15.60 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.76 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.70(\mathrm{~m}, 7 \mathrm{H}), 7.76(\mathrm{~d}, J=15.60 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{~s}$, $1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 13.9,20.6,31.1,43.4,83.1,109.6$, $110.9,113.0,113.1,113.8,114.2,118.1,122.2,122.3,123.2,123.5,124.0,127.4$, 128.5, 128.9, 129.7, 132.8, 138.5, 139.8, 142.4, 146.1, 170.6. MS (APCI) m/z calcd for $\mathrm{C}_{29} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{Br}$: 504.10, found $505.10[\mathrm{M}+\mathrm{H}]^{+}$.

Br-CZ-N: Similar to CZ-N. Red powder (yield: 45\%). m. p. 232.0-241.7 ${ }^{\circ} \mathrm{C}$. FT-IR (KBr, cm^{-1}): 2210, 1607, 1521, 1460, 1351, 1165, 1091, 976, 806. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.93-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.06-2.13(\mathrm{~m}, 2 \mathrm{H}), 3.07(\mathrm{~s}, 6 \mathrm{H}), 3.43(\mathrm{t}, 2 \mathrm{H}$, $J=6.28 \mathrm{~Hz}), 4.37(\mathrm{t}, 2 \mathrm{H}, J=6.92 \mathrm{~Hz}), 6.64(\mathrm{~d}, 2 \mathrm{H}, J=8.72 \mathrm{~Hz}), 6.88(\mathrm{~d}, 1 \mathrm{H}, J=$ $15.12 \mathrm{~Hz}), 7.33(\mathrm{~d}, 1 \mathrm{H}, J=8.68 \mathrm{~Hz}), 7.41-7.51(\mathrm{~m}, 5 \mathrm{H}), 7.60(\mathrm{~d}, 1 \mathrm{H}, J=8.82 \mathrm{~Hz})$, $8.07(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 27.6,30.1,32.8,40.1,42.7$, $109.1,110.5,111.9,112.8,114.5,115.3,119.9,122.0,122.2,122.5,123.6,124.3$, 125.0, 127.7, 129.4, 131.3, 131.5, 139.5, 141.8, 150.2, 152.8, 172.1. MALDI-TOF calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{~N}_{4}, 602.05$, found, 602.22.

Br-CZ-H: Similar to CZ-N. Yellow powder (yield: 39\%). m. p. 205.3-209. $4^{\circ} \mathrm{C}$. FT-IR (KBr, cm^{-1}): 2213, 1608, 1592, 1502, 1481, 1448, 1383, 1351, 1334, 1204, 1156, 873, 803, 765, 695. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.93-2.00(\mathrm{~m}, 2 \mathrm{H})$, $2.07-2.15(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{t}, 2 \mathrm{H}, J=6.32 \mathrm{~Hz}), 4.39(\mathrm{t}, 2 \mathrm{H}, J=6.96 \mathrm{~Hz}), 6.98(\mathrm{~d}, 1 \mathrm{H}, J$ $=15.56 \mathrm{~Hz}), 7.35(\mathrm{~d}, 1 \mathrm{H}, J=8.68 \mathrm{~Hz}), 7.39-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.58(\mathrm{~m}, 4 \mathrm{H}), 7.62(\mathrm{~d}$, $1 \mathrm{H}, J=8.72 \mathrm{~Hz}), 7.70(\mathrm{~d}, 1 \mathrm{H}, J=15.56 \mathrm{~Hz}), 8.12(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta: 27.6,30.1,32.8,42.7,81.3,109.4,110.6,113.1,113.4,114.2$, $122.2,112.4,123.7,124.1,124.2,125.4,127.7,128.8,129.2,129.7,131.6,134.5$, 139.6, 142.1, 149.3, 171.7. MALDI-TOF calcd for $\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{Br}_{2} \mathrm{~N}_{3}$, 559.01, found,
559.57.

Br-CZ-Br: Similar to CZ-N. Orange powder (yield: 60%). m. p. 201.8-214.5 ${ }^{\circ} \mathrm{C}$. FT-IR (KBr, cm^{-1}): 2220, 1613, 1585, 1506, 1478, 1444, 1399, 1348, 1332, 1287, 1230, 1157, 1073, 1011, 983, 867, 800. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 1.93-2.00(\mathrm{~m}$, $2 \mathrm{H}), 2.07-2.14(\mathrm{~m}, 2 \mathrm{H}), 3.43(\mathrm{t}, 2 \mathrm{H}, J=6.28 \mathrm{~Hz}), 4.39(\mathrm{t}, 2 \mathrm{H}, J=7.00 \mathrm{~Hz}), 6.90(\mathrm{~d}$, $1 \mathrm{H}, J=15.56 \mathrm{~Hz}), 7.34-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.53-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.63(\mathrm{~d}, 1 \mathrm{H}, J=8.72 \mathrm{~Hz})$, $7.67(\mathrm{~d}, 1 \mathrm{H}, J=15.56 \mathrm{~Hz}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $27.6,30.0,32.8,42.7,81.8,109.4,110.6,113.1,113.3,114.1,122.2,122.3,123.7$, 123.8, 124.2, 125.9, 126.1, 127.6, 129.8, 130.0, 132.5, 133.4, 139.6, 142.1, 147.7, 171.3. MALDI-TOF calcd for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{Br}_{3} \mathrm{~N}_{3}$, 636.92, found, 636.19.

Br-CZ-CN: Similar to CZ-N. Bright-yellow powder (yield: 44\%). m. p. 212.7-217.3 ${ }^{\circ} \mathrm{C}$. FT-IR (KBr, cm^{-1}): 2219, 1617, 1591, 1511, 1482, 1437, 1373, 1328, 1287, 1226, 1181, 1155, 1024, 979, 874, 825, 560. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ : $1.93-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.07-2.15(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{t}, 2 \mathrm{H}, J=6.28 \mathrm{~Hz}), 4.39(\mathrm{t}, 2 \mathrm{H}, J=7.20$ $\mathrm{Hz}), 6.96(\mathrm{~d}, 1 \mathrm{H}, J=15.52 \mathrm{~Hz}), 7.36(\mathrm{~d}, 1 \mathrm{H}, J=8.68 \mathrm{~Hz}), 7.61-7.65(\mathrm{~m}, 3 \mathrm{H}), 7.69(\mathrm{~d}$, $2 \mathrm{H}, J=8.36 \mathrm{~Hz}), 7.74(\mathrm{~d}, 1 \mathrm{H}, J=15.52 \mathrm{~Hz}), 8.11(\mathrm{~s}, 1 \mathrm{H}), 8.22(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 27.6,30.1,32.9,42.8,109.6,110.8,113.0,113.3,113.8,114.3$, 118.2, 122.4, 123.5, 123.7, 124.2, 127.6, 128.5, 128.9, 130.0, 132.9, 138.6, 139.7, 142.3, 146.2, 170.6. MALDI-TOF calcd for $\mathrm{C}_{29} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{~N}_{4}, 584.01$, found, 584.31.

Fig. S1 The UV-vis absorption spectra of these compounds in THF $\left(1.0 \times 10^{-5} \mathrm{M}\right)$.

Fig. S2 The flourescence spectra of the compounds CZ-N $\sim \mathbf{C Z}-\mathbf{C N}$ in $\operatorname{THF}\left(1.0 \times 10^{-5} \mathrm{M}\right)$.

Fig. S3 The UV-vis absorption spectra of compounds CZ-H, CZ-N, CZ-Br, and CZ-CN in the $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}$ system with different water fraction.

Fig. S4 The fluorescence spectra of compounds CZ-H, CZ-N, CZ-Br, and CZ-CN in the DMF/ $\mathrm{H}_{2} \mathrm{O}$ system with different water fraction.

Fig. S5 The dynamic light scattering of compounds CZ-H, CZ-N, CZ-Br, and CZ-CN in the $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}$ system with different water fraction.

Fig. S6 The fluorescence spectra of $\mathbf{C Z}-\mathbf{N}$ (a) and $\mathbf{B r}-\mathbf{C Z - N}$ (b) in the crystalline state and amorphous state. Inset: the photographs in the crystalline state and amorphous state under the 365 nm UV lamp.

Fig. S7 The photophysical properties of compound $\mathbf{B r}-\mathbf{C Z}-\mathbf{H}$ in the $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}$ system with different water fraction. The fluorescence spectra (a), the plots of fluorescence intensity vs. water fraction (b), the UV-vis absorption spectra (c), and the dynamic light scattering (d).

Fig. S8 The photophysical properties of compound $\mathbf{B r}-\mathbf{C Z}-\mathbf{N}$ in the $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}$ system with different water fraction. The fluorescence spectra (a), the plots of fluorescence intensity vs. water fraction (b), the UV-vis absorption spectra (c), and the dynamic light scattering (d).

Fig. S9 The photophysical properties of compound $\mathbf{B r}-\mathbf{C Z}-\mathbf{B r}$ in the $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}$ system with different water fraction. The fluorescence spectra (a), the plots of fluorescence intensity vs. water fraction (b), the UV-vis absorption spectra (c), and the dynamic light scattering (d).

Fig. S10 The photophysical properties of compound $\mathbf{B r}-\mathbf{C Z}-\mathbf{C N}$ in the $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}$ system with different water fraction. The fluorescence spectra (a), the plots of fluorescence intensity vs. water fraction (b), the UV-vis absorption spectra (c), and the dynamic light scattering (d).

Fig. S11 The fluorescence spectra of compound $\mathbf{B r}-\mathbf{C Z}-\mathbf{H}$ and $\mathbf{B r}-\mathbf{C Z}-\mathbf{B r}$ in the $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}$ system with different water fraction.

Table S1 The crystallographic data and structure refinement details for $\mathbf{C Z} \mathbf{- N}, \mathbf{C Z}-\mathbf{H}, \mathbf{C Z}-\mathbf{B r}$,
Br-CZ-N, and Br-CZ-Br.

Compound	CZ-N	CZ-H	CZ-Br	Br-CZ-N	Br-CZ-Br
CCDC No:	1540851	1541386	1534287	2015185	2015186
formula	$\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{BrN}_{4}$	$\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{BrN}_{3}$	$\mathrm{C}_{28} \mathrm{H}_{21} \mathrm{Br}_{2} \mathrm{~N}_{3}$	$\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{Br}_{2} \mathrm{~N}_{4}$	$\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{Br}_{3} \mathrm{~N}_{3}$
Weight $\left(\mathrm{M}_{\mathrm{r}}\right)$	523.47	480.39	559.30	602.37	638.20
Crystal system	Monoclinic	Monoclinic	Triclinic	Monoclinic	Triclinic
space group	$P 2_{1} / \mathrm{c}$	$P 2_{1} / \mathrm{c}$	$P \overline{1}$	$P 2_{1} / \mathrm{c}$	$P \overline{1}$
$a(\AA)$	17.509(9)	16.251(3)	8.0137(9)	17.292(4)	7.3087(4)
$b(\AA)$	12.679(7)	12.879(2)	11.6967(13)	13.172(3)	11.5980(7)
$c(\AA)$	12.592(7)	12.557(2)	13.9362(15)	12.572(3)	14.7149(8)
α (deg)	90	90	72.1240(10)	90	98.253(5)
β (deg)	105.956(7)	111.379(2)	81.6730(10)	106.655(2)	101.593(3)
$\gamma(\mathrm{deg})$	90	90	78.3640(10)	90	100.037(5)
V	2688(2)	2447.4(7)	1212.9(2)	2743.3(9)	1210.18(12)
Z	4	4	2	4	1
$\begin{aligned} & \rho \text { (calad) } \\ & \left(\mathrm{mg} \mathrm{~m}^{-3}\right) \end{aligned}$	1.294	1.304	1.531	1.458	1.751
reflns collected	18523	17052	8697	18768	10044
Goodness-o $\text { f-fit on } F^{2}$	1.039	1.070	1.049	1.104	1.071
Final R	$R_{1}=0.0701$	$R_{1}=0.0779$,	$R_{1}=0.0347$	$R_{1}=0.0573$	$R_{1}=0.0361$
[$\mathrm{l}>2 \sigma(\mathrm{I})$]	$w R_{2}=0.2071$	$w R_{2}=0.2291$	$w R_{2}=0.0873$	$w R_{2}=0.1714$	$w R_{2}=0.0887$
R indices	$R_{1}=0.0933$	$R_{l}=0.1040$,	$R_{1}=0.0462$	$R_{1}=0.0861$	$R_{1}=0.0481$
(all data)	$w R_{2}=0.2285$	$w R_{2}=0.2508$	$w R_{2}=0.0932$	$w R_{2}=0.1866$	$w R_{2}=0.0940$

Fig. S12 The space-filling model of these dimers.

Fig. S13 The D-A stacking model of CZ-N molecules.

Fig. S14 The absorption and emission spectra of CZ-N and CZ-H in the solid state.

Fig. S15 The absorption and emission spectra of CZ-H and CZ-Br in the solid state.

Fig. S16 The flourescence emission spectra of CZ-N and Br-CZ-N in the solid state.

Fig. S17 The absorption and emission spectra of $\mathbf{C Z}-\mathbf{B r}$ and $\mathbf{B r}-\mathbf{C Z}-\mathbf{B r}$ in the solid state.

Fig. S18 The absorption and emission spectra of CZ-N $\sim \mathbf{B r}-\mathbf{C Z}-\mathbf{C N}$ in the solid state.

Fig. S19 The fluorescence spectra of compounds CZ-N~Br-CZ-CN (a-h) under different treatments.

Table S2 The fluorescence properties of these compounds in different solid states.

Compounds	CZ-N	CZ-H	CZ-Br	CZ-CN	Br-CZ-N	Br-CZ-H	Br-CZ-Br	Br-CZ-CN
$\lambda_{\mathrm{em}}{ }^{[\mathrm{ab]}}(\mathrm{nm})$	603	568	528	553	618	561	565	558
$\lambda_{\mathrm{em}}{ }^{[\mathrm{b}]}(\mathrm{nm})$	647	565	580	605	658	570	575	588
$\lambda_{\mathrm{em}}{ }^{[\mathrm{c]}]}(\mathrm{nm})$	603	566	538	553	634	561	569	558
$\lambda_{\mathrm{em}}{ }^{[\mathrm{d]}]}(\mathrm{nm})$	603	566	536	554	625	561	568	558
$\Delta \lambda_{\mathrm{em}}{ }^{[\mathrm{ec]}}(\mathrm{nm})$	44	9	52	52	40	9	10	30

The maximum emission peaks of original samples ${ }^{[a]}$, ground samples ${ }^{[b]}$, fumed samples ${ }^{[c]}$ and heated samples ${ }^{[d]} ; \Delta \lambda_{\mathrm{em}}{ }^{[\mathrm{ec}]}=\lambda_{\mathrm{em}}{ }^{[\mathrm{b}]}-\lambda_{\mathrm{em}}{ }^{[a]}$.

Table S3 The fluorescence lifetime of these compounds in different states.

Compounds	$\tau_{1}{ }^{\text {a }}$ (ns)	$\tau_{2}{ }^{\text {a }}$ (ns)	$\tau_{3}{ }^{\text {a }}$ (ns)	$\mathbf{A}_{1}{ }^{\text {b }}$	$\mathbf{A}_{2}{ }^{\text {b }}$	$\mathbf{A}_{3}{ }^{\text {b }}$	χ^{2}	$\left\langle\tau>^{\text {c }}\right.$ (ns)
CZ-N ${ }_{\text {original }}$	0.41	1.16	2.66	0.70	0.27	0.03	1.02	0.67
CZ-N ground	1.51	0.21	4.52	0.26	0.69	0.05	1.73	0.77
CZ-H ${ }_{\text {origina }}$	0.11	0.75	-	0.97	0.03	-	1.27	0.13
CZ-Hground	0.26	0.68	2.28	0.74	0.25	0.02	1.44	0.39
CZ-Br ${ }_{\text {original }}$	0.33	1.56	4.06	0.61	0.35	0.04	1.13	0.91
CZ-Br ${ }_{\text {ground }}$	0.70	1.53	7.57	0.62	0.37	0.01	1.17	1.07
CZ-CN original	2.40	0.38	5.31	0.28	0.68	0.04	1.54	1.14
CZ-CN ${ }_{\text {ground }}$	0.83	2.17	10.84	0.07	0.92	0.01	1.38	2.16

${ }^{\text {a }}$ Fluorescence lifetime. ${ }^{\mathrm{b}}$ Proportion. ${ }^{\mathrm{c}}$ Average life time $<\tau>=\left(\mathrm{A}_{1} \tau_{1}+\mathrm{A}_{2} \tau_{2}+\mathrm{A}_{3} \tau_{3}\right) /\left(\mathrm{A}_{1}+\mathrm{A}_{2}+\mathrm{A}_{3}\right)$.

Fig. S20 DSC curves of compounds CZ-N $\sim \mathbf{C Z}-\mathbf{C N}$ in the original and ground states.
${ }^{1} \mathrm{H}$ NMR data of compound CZ-N

${ }^{13} \mathrm{C}$ NMR data of compound CZ-N

${ }^{1}$ H NMR data of compound CZ-H

${ }^{13} \mathrm{C}$ NMR data of compound $\mathbf{C Z}-\mathbf{H}$

${ }^{1} \mathrm{H}$ NMR data of compound CZ-Br

${ }^{13} \mathrm{C}$ NMR data of compound CZ-Br
${ }^{1} \mathrm{H}$ NMR data of compound CZ-CN

${ }^{13} \mathrm{C}$ NMR data of compound CZ-CN

${ }^{1}$ H NMR data of compound Br-CZ-N

${ }^{13} \mathrm{C}$ NMR data of compound Br-CZ-N

${ }^{1} \mathrm{H}$ NMR data of compound $\mathbf{B r}-\mathbf{C Z}-\mathbf{H}$

${ }^{13} \mathrm{C}$ NMR data of compound $\mathbf{B r}-\mathbf{C Z}-\mathbf{H}$

${ }^{1} \mathrm{H}$ NMR data of compound $\mathbf{B r}-\mathbf{C Z}-\mathbf{B r}$

${ }^{13} \mathrm{C}$ NMR data of compound $\mathbf{B r}-\mathbf{C Z}-\mathrm{Br}$

${ }^{1} \mathrm{H}$ NMR data of compound $\mathbf{B r}-\mathbf{C Z}-\mathbf{C N}$

${ }^{13} \mathrm{C}$ NMR data of compound Br-CZ-CN

