Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2021

Supporting Information for

Evaluation of the Effect of *Moringa peregrina* bark on the Crystal Habit and Size of Calcium Oxalate Monohydrate Crystals in Different Stages of Crystallization using Experimental and Theoretical Methods[†]

Sindhu Menon*, Hajar Khalfan Al Mamari, Hajar Hassan Al Zaabi, Zainab Sulaiman Al Ajmi, Laila Hamed Al Haddabi, V. P. Jayachandran and C. B. Shinisha*

Table of contents

List of Tables	5	
S. No.	Title	Page
		No.
Table S1	Sampling of Moringa peregrina bark	3
Table S2A	Turbidity (NTU) vs Time (min)	7
Table S2B	Average Turbidity (NTU) vs Time (min)	7
Table S3	FT-IR peaks of Calcium Oxalate Monohydrate	8
Table S4	Lengths of some COM crystals as measured from SEM	9
Table S5	Descriptive statistics of the lengths of the crystals formed under various conditions	15
Table S6	Coordinates of optimized geometries of the complexes formed between stone unit, apigenin and neochlorogenic acid	16-19
Table S7	A comparison of structural parameters in COM unit before and after binding with apigenin	20
List of Figure	5	
Figure S1	Moringa peregrina tree in Al Waariya valley	3
Figure S2	LCMS Analysis (a) ESI Positive: Chromatogram (b) ESI Negative Chromatogram (c) UV	4-6
	Data against time in minutes (d) Assigned Mass Spectra	
Figure S3	FT-IR of Calcium Oxalate Monohydrate	8
Figure S4	X-Ray Diffraction: powder diffraction pattern of calcium oxalate monohydrate crystals	9
Figure S5	SEM of calcium oxalate monohydrate crystals with tabulation of the length of several crystals	9
Figure S6	FT IR Spectra of precipitates of different suspensions (a) Control suspension 1 (b) with <i>M. Peregrina</i> bark extract 7.5 mg/ml suspension 1 (c) Control Suspension 2 (d)) with <i>M. Peregrina</i> bark extract 7.5 mg/ml suspension 2 (e) Control Suspension 3 (f)) with <i>M. Peregrina</i> bark extract 7.5 mg/ml suspension 3	10-11
Figure S7	Microscopy Images of precipitates formed in various suspensions	12
Figure S8	SEM Suspension 1: (a) Crystals and (b) Histogram of length of crystals of control of suspension 1. (c) Crystals and (d) Histogram of length of crystals of suspension 1 with <i>M. peregrina</i> bark extract. SEM Suspension 2: (e) Crystals and (f) Histogram of length of crystals of control of suspension 2. (g) Crystals and (h) Histogram of length of crystals of suspension 2 with <i>M. peregrina</i> bark extract. SEM Suspension 3 (i) Crystals of control of suspension 3 (j) Crystals of suspension 3 with <i>M. peregrina</i> bark extract.	12-13
Figure S9	Powder X-ray Diffraction pattern of calcium oxalate monohydrate seed crystals with	14
Figure S10	Complex formed between COM and anigenin through 2 sites of calcium coordination	15
Other inform	ation	1.0
LC-IVIS Instru	ment and running conditions	4
Complete cit	ation of ref 25b.	20

1. SAMPLING

Sample	<i>Moringa peregrina</i> bark
Date/time	19/Sep/2019/ 11.00 AM
Place	Al-Waariya in (Almudabi) in north AL-Sharqiya governorate, Sultanate
	of Oman (22° 32′ 13° N and 58° 27′21°)
Number & size	6 trees located on the slopes of Al Waariya valley or by the constructed
	road. The height ranged from 2 to 5 m
Drying method	Natural 35°C
Storage method before grinding	Paper bag
Storage method after grinding.	Glass container

 Table S1. Sampling of Moringa peregrina bark

Figure S1. Moringa peregrina tree in Al Waariya valley

2. LC-MS

LC-MS analysis of the 7.5 mg ml⁻¹ bark extract was carried out using Agilent Technologies Triple Quad LC/MS system, equipped with 6460 Triple Quad MS Detector, a High Performance Autosampler (G4226A), Quaternary Pump (G4204A), Diode Array Detector (DAD) (G4212A) and Thermostatted Column Compartment (G1316C) under ESI positive as well as negative conditions using the column Waters Resolve 5µm Spherical C18, 3.9X150mm, Part No: WAT085711.

Mobile phase: Containing 0.1% formic acid (v/v) in water (A) and 0.1% formic acid (v/v) in acetonitrile (B) used in isocratic elution with 70% A

Column used: Waters Resolve 5μm Spherical C18, 3.9X150mm, Part No: WAT085711, Column temperature: 25°C, Injection volume: 20 μL, Flow rate: Flow: 0.200 ml/min, Eluent monitoring: ESI-MS under positive ion and negative ion mode scanned, Time filter width: 0.07 min, Gas temperature: 300°C, Gas flow rate: 5L/min, Nebulization: At 50 psi, Gas used: Nitrogen, Scan Time 150 min, Data acquisition: Agilent Mass Hunter

The wavelengths set for the DAD UV-visible set-up were 254 nm, 282 nm and 370 nm.

Chromatograms:

Figure S2. LCMS Analysis of *M. peregrina* bark extract (a) ESI Positive: Chromatogram (b) ESI Negative Chromatogram (c) UV Data against time in minutes (d) Assigned Mass Spectra (e) Fragments of assigned molecules

3. TURBIDITY MEASUREMENTS

		А			В			С	
Time	1 mg/ml	2 mg/ml	0 mg/ml	1 mg/ml	2 mg/ml	0 mg/ml	1 mg/ml	2 mg/ml	0 mg/ml
10	0.70	0.41	1.82	0.79	0.31	1.69	0.34	0.19	1.54
20	1.35	0.73	4.50	1.58	0.84	4.94	2.06	0.33	5.84
30	2.08	1.43	7.00	2.10	1.58	7.35	1.73	1.29	5.96
40	3.61	1.71	8.08	3.68	1.89	8.93	2.59	2.01	7.60
50	4.25	3.82	12.51	4.57	4.22	13.70	4.17	3.75	12.77
60	2.56	0.95	6.77	2.73	1.05	7.90	2.18	1.03	6.33
70	2.69	1.44	7.01	2.84	1.31	8.40	2.25	2.46	6.71
80	2.80	1.38	6.50	2.99	1.52	7.35	2.64	1.93	6.64
рН	5.80	5.70	5.72	5.68	5.40	5.70	5.83	5.58	5.68

Table S2A. Turbidity (NTU) vs Time (min)

Table S2B. Average Turbidity (NTU) vs Time (min)

Time	1 mg/ml	2 mg/ml	0 mg/ml
10	0.61	0.35	1.68
20	1.66	0.63	5.09
30	1.97	1.43	6.77
40	3.29	1.87	8.20
50	4.33	3.93	12.99
60	2.49	1.01	7.00
70	2.59	1.74	7.37
80	2.81	1.61	6.83

4. CHARACTERIZATION OF CALCIUM OXALATE MONOHYDRATE

Figure S3. FT-IR of Calcium Oxalate Monohydrate

Table S3. FT-IR peaks of Calcium Oxalate MonohydrateRegion: 4000.00400.00; Absolute threshold: 99.624

Sensitivity: 60

Position cm ⁻¹	Intensity	Position cm ⁻¹	Intensity
525.53	79.868	1317.42	36.336
537.53	84.902	1604.94	21.000
657.02	62.232	3061.00	92.631
781.11	58.404	3337.17	93.484
884.44	92.793	3428.19	93.031
949.22	94.444		

IR peaks for COM crystal: 3428 cm⁻¹, 3061 cm⁻¹ (Symmetric and asymmetric O-H stretching), 1605 cm⁻¹, 1317cm⁻¹ (C=O, C-O stretch), 949.36, 884 cm⁻¹ (C-Cstretch), 781 cm⁻¹, 657 cm⁻¹ (out of plane O-H bending and C-H bending)

Figure S4. Powder X-Ray Diffraction: pattern of calcium oxalate monohydrate crystals

Figure S5. SEM of calcium oxalate monohydrate crystals

Table S4. Lengths of some COM crystals as measured from SEM

	Length in nm	
247.409	448.951	119.109
269.884	221.43	387.432
387.03	250.121	265.75
282.965	239.449	243.745
453.399	307.968	505.172
423.57	329.969	198.306
135.805	475.162	198.459
213.797	353.039	181.426
305.089	417.274	348.253
525.113	137.828	437.774
280.771	188.327	286.081

306.518

5. CHARACTERIZATION OF PRECIPITATE UNDER VARIOUS CONDITIONS

148.026

(b)

(c)

Figure S6. FT IR Spectra of precipitates of different suspensions (a) Control suspension 1 (b) with *M. Peregrina* bark extract 7.5 mg/ml suspension 1 (c) Control Suspension 2 (d)) with *M. Peregrina* bark extract 7.5 mg/ml suspension 2 (e) Control Suspension 3 (f)) with *M. Peregrina* bark extract 7.5 mg/ml suspension 3

Suspension 1 Microscopy:		Suspension 2 Microscopy	
		Water+Buffer	MPB+Buffer
(i)Control (ii) <i>M. pe</i>	regrina bark (7.5 mg/ml)	(i) Control	(ii) M. peregrina bark (7.5 mg/ml)
Suspension 3 Microscopy			
	PE+NaOx+CaCl2		
(i)Control (ii) <i>M. pe</i>	regrina bark (7.5 mg/ml)		
Figure S7. Microsco	py images of precipitates for	med in various suspensions	
X 29.000 15.0X7 05. 1 25.0X	40 35 30 A25 30 A25 15 0 15	Distribution of length of COM crystals Suspension 1 1-250 251-350 351-450 451-550 Length (nm)	(control) - 551-650 651-750
(a)		(b)	7 Emg/ml
X 30,000 15.04V BET 35M	Dir	stribution of length of COM crystals inhibitor) -Suspension 1	s (7.5mg/ml

(d)

(c)

Figure S8. *SEM Suspension* **1**: (a) Crystals and (b) Histogram of length of crystals of control of suspension 1. (c) Crystals and (d) Histogram of length of crystals of suspension 1 with *M. peregrina* bark extract. *SEM Suspension* **2**: (e) Crystals and (f) Histogram of length of crystals of control of suspension 2. (g) Crystals and (h) Histogram of length of crystals of control of suspension 2. (g) Crystals and (h) Histogram of length of crystals of suspension 2 with *M. peregrina* bark extract. *SEM Suspension* **3** (i) Crystals of control of suspension 3 (j) Crystals of suspension 3 with *M. peregrina* bark extract.

B.

Figure S9. Powder X-ray Diffraction pattern of A. calcium oxalate monohydrate crystals and B. Crystals grown in Suspension 3 (with inhibitor, M. *peregrina* bark). The spectra have been normalized by equalizing the peaks at 24.5° in both cases.

	Suspension 1 (Control)	Suspension 1 (M. peregrina)	Suspension 2 (Control)	Suspension 2 (<i>M. peregrina</i>)
Mean	345.6	378.4	420.8	263.6
Standard Error	9.7	14.7	25.4	16.9
Median	351.0	348.5	378.6	217.8
Mode	367.0	610.0	809.5	216.1
Standard Deviation	87.2	130.2	201.4	116.0
Sample Variance	7612.2	16942.2	40568.9	13456.9
Kurtosis	4.6	-0.2	7.1	2.3
Skewness	1.5	0.6	2.2	1.5
Range	528.0	549.0	1207.4	519.5
Minimum	190.0	161.0	154.2	120.0
Maximum	718.0	710.0	1361.6	639.4
Sum	27996.0	29513.0	26512.5	12390.3
Count	81	78	63	50

Table S5. Descriptive statistics of the lengths of the crystals formed under various conditions

6. STRUCTURAL ANALYSIS

Figure S10. Optimized geometry of complex formed between COM and apigenin through two sites of calcium coordination

	COM-Apigenin	-chelation co	omplex		COM-Apige	nin-bridging on C	Calcium
	NI	mag=0				NImag=0	
	HF=-54	/9.0500233			HF:	=-54/9.0326969	
6	-1.846477	-2.48917	0.60237	6	2.94456	-3.191641	-0.362249
6	-1.920105	-2.33301	-0.97313	6	3.12962	-3.092582	1.218734
8	-0.862743	-1.93735	1.164891	8	1.780712	-3.001068	-0.805916
8	-0.905681	-1.90075	-1.56365	8	2.104594	-2.784741	1.887698
8	-2.790716	-3.10672	1.16008	8	3.984189	-3.399436	-1.043057
8	-3.043035	-2.59295	-1.51465	8	4.292453	-3.275663	1.665738
20	-4.770275	-3.30259	-0.07269	20	5.985934	-2.999813	0.074552
20	0.492528	-0.51101	-0.24396	20	0.455533	-1.736437	0.62645
8	2.865446	3.888119	1.105071	8	-3.17535	1.161872	2.628293
8	1.278903	1.622801	0.353063	8	-0.838712	-0.206139	1.865977
6	-3.50462	2.846892	0.921957	6	2.007999	3.061926	-1.113845
6	-3.985546	3.78211	-0.26412	6	2.391433	4.272695	-0.16286
6	1.646382	3.934549	1.076269	6	-2.249181	1.789183	2.146813
6	0.860614	2.800845	0.336046	6	-0.91364	1.039778	1.771317
8	-2.736169	3.342972	1.778522	8	0.802972	2.938277	-1.429948
8	-3.363061	4.868229	-0.39786	8	1.429812	4.932348	0.306892
8	-3.858198	1.626974	0.85517	8	2.934671	2.236611	-1.397202
8	-4.900599	3.329174	-1.00293	8	3.618561	4.420407	0.095504
8	0.858066	4.840721	1.573536	8	-2.208118	3.049588	1.820639
8	-0.220302	3.167483	-0.26886	8	0.027042	1.776436	1.295419
20	-5.295697	1.026989	-0.91759	20	4.902836	2.507192	-0.176015
20	-1.340278	4.952632	0.800556	20	-0.637686	3.798311	0.24803
8	-5.832046	-1.20188	-0.1482	8	6.073733	-0.657745	0.412831
8	-6.910285	-3.55834	-0.97261	8	7.806175	-2.079868	-1.08019
6	-6.942025	-1.1876	-0.835	6	6.874819	-0.007579	-0.347333
6	-7.717007	-2.53982	-0.9249	6	8.07544	-0.818379	-0.949957
8	-7.337909	-0.14276	-1.39669	8	6.744403	1.220378	-0.607487
8	-8.935011	-2.5277	-0.90807	8	9.112609	-0.224705	-1.194925
8	-3.548094	0.108884	-2.2699	8	4.202768	0.967686	1.459996
1	-3.435869	-0.86583	-2.33511	1	4.863262	0.241902	1.291925
1	-2.677912	0.425584	-1.92892	1	3.323863	0.572099	1.263704
8	-1.507652	0.90472	-0.5818	8	1.789689	0.209982	0.206713
1	-2.179626	0.944385	0.13453	1	2.104843	0.617445	-0.629011
1	-1.078753	1.820683	-0.57643	1	1.182423	0.901254	0.633451
8	-5.976117	-5.21721	0.748405	8	8.038435	-4.223297	0.32987
1	-6.32643	-5.66178	1.531963	1	8.699107	-4.580407	0.93808
8	-0.232758	7.076636	0.937362	8	-2.934063	4.934044	0.322886
1	0.045035	7.873809	0.466848	1	-3.323353	5.778275	0.594988

Table S6. Coordinates of optimized geometries of the complexes formed between stone unit, apigenin and neochlorogenic acid at B3LYP/6-31G* level of theory

1	0.579539	6.577235	1.220335	1	-3.050837	4.281074	1.08074
1	-6.741004	-4.9167	0.188255	1	8.47097	-3.526434	-0.230716
8	1.718806	-1.80642	1.457007	8	-1.414026	-1.660438	-1.015839
1	1.048692	-2.19022	2.055176	6	-1.922574	0.660645	-1.316854
6	3.005008	-1.96212	1.872807	6	-2.325514	-0.645954	-1.088629
6	4.034328	-1.60882	0.956199	6	-2.894199	1.673255	-1.278392
6	3.820406	-1.13296	-0.41361	8	-2.436371	2.963421	-1.410341
8	2.692701	-0.97518	-0.93805	1	-3.120096	3.608977	-1.133618
6	3.287948	-2.44133	3.139346	1	-0.880584	0.914624	-1.483118
1	2.493695	-2.70176	3.831652	1	-1.988984	-2.516532	-0.958925
6	4.624518	-2.57398	3.549908	6	-4.248987	1.406763	-1.093479
6	5.669366	-2.22963	2.695883	6	-3.691576	-0.964603	-0.89696
1	6.709759	-2.32198	2.990356	6	-4.624145	0.078449	-0.905393
6	5.355668	-1.75701	1.423057	1	-4.992713	2.195364	-1.061241
6	6.264825	-1.00303	-0.63829	6	-4.127495	-2.334001	-0.676118
6	5.017366	-0.84334	-1.16032	6	-6.398198	-1.446871	-0.491284
1	4.884215	-0.45198	-2.16014	6	-5.539829	-2.509583	-0.48147
8	6.429308	-1.45645	0.635728	1	-5.908454	-3.516795	-0.340131
8	4.825828	-3.04553	4.803426	8	-5.950854	-0.175758	-0.709777
1	5.776883	-3.07779	4.993931	8	-3.302182	-3.285919	-0.677514
6	7.537923	-0.72598	-1.30743	6	-7.849421	-1.500994	-0.296746
6	7.602403	-0.55978	-2.70539	6	-8.65966	-0.397602	-0.617021
6	8.728603	-0.61322	-0.56887	6	-8.472038	-2.657279	0.215249
6	8.801808	-0.2822	-3.33998	6	-10.037527	-0.448703	-0.447265
1	6.706788	-0.66707	-3.30828	1	-8.205675	0.505279	-1.007969
6	9.935541	-0.33276	-1.19725	6	-9.844756	-2.716147	0.388952
1	8.705537	-0.73521	0.507755	1	-7.875022	-3.516225	0.502638
6	9.978826	-0.16352	-2.58678	6	-10.638751	-1.609381	0.055246
1	8.852785	-0.16014	-4.41671	1	-10.648771	0.413406	-0.706043
1	10.845714	-0.24004	-0.60835	1	-10.322608	-3.603357	0.790639
8	11.124621	0.110672	-3.26253	8	-11.978392	-1.724601	0.24625
1	11.864462	0.172347	-2.63753	1	-12.416035	-0.896737	-0.00854
СО	M-Neochlorogen	ic acid chelat	ion complex				
	NI HE58	1mag=0					
6	-4 38436 -2 8	R0057 0.02	7875				
6	-5.09361 -2.1	16411 -1 2	3759				
8	-3 1263 -2	8549 -0.0	2484				
8	-4.38577 -1 9	95315 -2.2	5051				
8	-5.11753 -3 1	14649 0.98	9351				
8	-6.31608 -1 8	34167 -1 0	9974				
20	-7.27042 -2 2	24617 1.03	1809				
20	-2.10171 -1.5	54942 -1.7	7532				

~	4.00000000	0.00.000		
8	1.32/282	0.934754	-2.29156	
8	-1.30916	0.338032	-2.97985	
6	-3.20166	3.01439	0.960182	
6	-3.94645	4.221765	0.251388	
6	0.482526	1.847073	-2.2794	
6	-1.02562	1.465017	-2.52167	
8	-1.94691	3.025676	0.968372	
8	-3.21036	5.039421	-0.36384	
8	-3.93119	2.053972	1.363928	
8	-5.20282	4.211158	0.303296	
8	0.67889	3.075853	-2.00002	
8	-1.88644	2.311123	-2.09747	
20	-6.22607	2.15997	0.795028	
20	-1.09984	4.179942	-0.88532	
8	-7.13413	0.052731	1.583975	
8	-9.24119	-1.53814	2.00262	
6	-8.26737	0.635329	1.857956	
6	-9.49082	-0.28557	2.226464	
8	-8.38577	1.878289	1.774714	
8	-10.5103	0.233953	2.639933	
8	-5.86008	0.939962	-1.24101	
1	-6.28481	0.069754	-1.41182	
1	-4.90278	0.725309	-1.30142	
8	-3.12891	0.386597	-0.67918	
1	-3.22658	0.698048	0.250199	
1	-2.79838	1.180455	-1.18176	
8	-9 09951	-3 81124	0.821018	
1	-9 6267	-4 28884	0 166238	
۲ و	1 07027	5 02727/	-0 287/	
1	1 631007	5 227552	0.3074	
1	1 521055	1 380303	-0 80360	
1	1.021000	4.300392 2 1E777	20.0500 1 274222	
	-9.0005	-5.15///	1.274522	
8	-0.83065	-3.02303	-1.05268	
1	-1.41267	-3.91996	-0.32513	
8	0.330695	-1.42199	-1.76298	
1	0.786595	-0.56072	-2.05229	
6	1.123622	-2.29257	-1.07217	
6	0.491623	-3.47699	-0.65333	
6	1.191593	-4.42636	0.077444	
6	2.456241	-2.06396	-0.76358	
6	2.529397	-4.18957	0.397691	
1	3.079126	-4.92801	0.973787	
1	2 01//0/	-1 135/	-1 08901	

6	3.181904	-3.01658	-0.01897	
1	0.696672	-5.342	0.388832	
6	4.585678	-2.82963	0.346065	
1	5.032938	-3.62528	0.94015	
6	5.38519	-1.79271	0.037016	
1	5.057686	-0.9415	-0.55111	
6	6.786408	-1.77423	0.505545	
8	7.325799	-2.6449	1.165038	
8	7.403653	-0.63881	0.098869	
6	8.774364	-0.44509	0.510704	
6	9.732251	-1.29599	-0.33456	
6	9.043206	1.054619	0.368766	
1	8.873238	-0.76288	1.550637	
6	11.19408	-0.95526	0.019094	
1	9.547805	-2.35227	-0.11014	
6	10.4958	1.406992	0.698584	
1	8.851631	1.36289	-0.66342	
1	8.372363	1.612138	1.026706	
6	11.45752	0.545702	-0.14009	
1	11.84733	-1.50973	-0.67535	
1	12.49931	0.777639	0.116626	
1	11.30514	0.821017	-1.18872	
8	9.49135	-1.00761	-1.71096	
1	9.84019	-1.74418	-2.23453	
8	11.40818	-1.40034	1.358849	
1	12.28921	-1.10415	1.637078	
8	10.66212	2.796374	0.383399	
1	11.58764	3.025966	0.571511	
6	10.74897	1.292463	2.21361	
8	9.916438	1.167262	3.078239	
8	12.07343	1.47048	2.504749	
1	12.12939	1.489912	3.479178	

Structural parameters	COM unit bond lengths in Å	COM-Apigenin complex bond lengths in Å	$\begin{array}{c} & OH_{2} \\ & OH$
Ca1-O2	2.31	2.37	
Ca1-O3	2.28	2.35	
Ca1-O4	2.34	2.41	
Ca1-08	2.35	2.47	
H2-O9	1.92	1.84	
Ca1-Ca2	5.77	5.85	
Ca2-Ca3	5.73	5.83	
Ca3-Ca4	5.66	4.44	
Ca4-Ca1	5.62	5.95	

Table S7. A comparison of structural parameters in COM unit before and after binding with apigenin.

Complete citation of ref 25a.

Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.