Ligand field and anions-driven structures and magnetic properties of dysprosium complexes

Shao-Min Xu,^a Zhong-Wu An,^a Wei Zhang,^a Yi-Quan Zhang*^b and Min-Xia Yao*^a

^a College of Chemistry & Molecular Engineering, Nanjing Tech University, Nanjing, 211816, P. R. China.

^b Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China.

		()	
Dy(1)-O(2)	2.204(4)	Dy(1)-O(1)	2.261(4)
Dy(1)-O(3)	2.415(4)	Dy(1)-N(3)	2.479(4)
Dy(1)-N(5)	2.527(5)	Dy(1)-N(2)	2.550(5)
Dy(1)-N(1)	2.553(5)	Dy(1)-N(4)	2.620(5)
O(2)-Dy(1)-O(1)	149.74(2)	O(2)-Dy(1)-O(3)	131.55(2)
O(1)-Dy(1)-O(3)	78.40(1)	O(2)-Dy(1)-N(3)	76.28(2)
O(1)-Dy(1)-N(3)	78.18(1)	O(3)-Dy(1)-N(3)	145.48(2)
O(2)-Dy(1)-N(5)	92.16(2)	O(1)-Dy(1)-N(5)	92.88(2)
O(3)-Dy(1)-N(5)	74.34(2)	N(3)-Dy(1)-N(5)	131.80(2)
O(2)-Dy(1)-N(2)	103.99(2)	O(1)-Dy(1)-N(2)	80.09(1)
O(3)-Dy(1)-N(2)	84.69(1)	N(3)-Dy(1)-N(2)	66.55(2)
N(5)-Dy(1)-N(2)	158.86(2)	O(2)-Dy(1)-N(1)	70.10(2)
O(1)-Dy(1)-N(1)	135.56(2)	O(3)-Dy(1)-N(1)	70.48(2)
N(3)-Dy(1)-N(1)	111.40(2)	N(5)-Dy(1)-N(1)	107.79(2)
N(2)-Dy(1)-N(1)	66.42(2)	O(2)-Dy(1)-N(4)	74.10(2)
O(1)-Dy(1)-N(4)	81.06(1)	O(3)-Dy(1)-N(4)	133.20(1)
N(3)-Dy(1)-N(4)	66.63(2)	N(5)-Dy(1)-N(4)	65.21(2)
N(2)-Dy(1)-N(4)	132.08(2)	N(1)-Dy(1)-N(4)	143.26(2)
Table S2 Selected bond	l lengths (Å) and angles	(°) for 2 .	
Dy(1)-O(1)	2.188(2)	Dy(1)-O(2)	2.224(1)
Dy(1)-O(4)	2.498(1)	Dy(1)-N(3)	2.550 (2)
Dy(1)-O(3)	2.583(1)	Dy(1)-N(5)	2.646(2)
Dy(1)-N(2)	2.652(2)	Dy(1)-N(4)	2.679(2)

Table S1 Selected bond lengths (Å) and angles (°) for 1.

^{*} To whom correspondence should be addressed. Email: yaomx@njtech.edu.cn; zhangyiquan@njnu.edu.cn Fax: +86-25-58139528.

Dy(1)-N(1)	2.712(2)	O(1)-Dy(1)-O(2)	148.62(5)	
O(1)-Dy(1)-O(4)	127.55(5)	O(2)-Dy(1)-O(4)	82.10(5)	
O(1)-Dy(1)-N(3)	80.82(6)	O(2)-Dy(1)-N(3)	80.00(6)	
O(4)-Dy(1)-N(3)	140.24(5)	O(1)-Dy(1)-O(3)	79.93(5)	
O(2)-Dy(1)-O(3)	123.59(5)	O(4)-Dy(1)-O(3)	49.92(5)	
N(3)-Dy(1)-O(3)	155.68(5)	O(1)-Dy(1)-N(5)	75.09(6)	
O(2)-Dy(1)-N(5)	131.59(6)	O(4)-Dy(1)-N(5)	70.42(5)	
N(3)-Dy(1)-N(5)	96.23(6)	O(3)-Dy(1)-N(5)	64.45(6)	
O(1)-Dy(1)-N(2)	74.48(5)	O(2)-Dy(1)-N(2)	75.14(5)	
O(4)-Dy(1)-N(2)	140.73(6)	N(3)-Dy(1)-N(2)	66.28(5)	
O(3)-Dy(1)-N(2)	121.74(5)	N(5)-Dy(1)-N(2)	146.90(6)	
O(1)-Dy(1)-N(4)	115.90(6)	O(2)-Dy(1)-N(4)	75.89(5)	
O(4)-Dy(1)-N(4)	78.96(5)	N(3)-Dy(1)-N(4)	62.36(5)	
O(3)-Dy(1)-N(4)	114.09(5)	N(5)-Dy(1)-N(4)	60.53(5)	
N(2)-Dy(1)-N(4)	124.16(5)	O(1)-Dy(1)-N(1)	96.52(6)	
O(2)-Dy(1)-N(1)	76.60(5)	O(4)-Dy(1)-N(1)	80.56(5)	
N(3)-Dy(1)-N(1)	128.29(5)	O(3)-Dy(1)-N(1)	68.85(5)	
N(5)-Dy(1)-N(1)	133.30(6)	N(2)-Dy(1)-N(1)	63.40(5)	
N(4)-Dy(1)-N(1)	147.57(5)			

Table S3 Selected bond lengths (Å) and angles (°) for 3.

Tuble Se Beleeted 88	na lengens (11) und ut			
Dy(1)-O(2)	2.286 (2)	Dy(1)-O(1)	2.313(2)	
Dy(1)-O(3)	2.328(2)	Dy(1)-O(4)	2.342(2)	
Dy(1)-N(3)	2.478(2)	Dy(1)-N(1)	2.492(2)	
Dy(1)-N(4)	2.578(2)	Dy(1)-N(2)	2.608(2)	
Dy(2)-O(8)	2.323(2)	Dy(2)-O(6)	2.339(2)	
Dy(2)-O(9)	2.345(2)	Dy(2)-O(7)	2.368(2)	
Dy(2)-O(5)	2.370(2)	Dy(2)-O(10)	2.372(2)	
Dy(2)-O(1)	2.407(2)	Dy(2)-O(2)	2.430(2)	
O(2)-Dy(1)-O(1)	68.63(6)	O(2)-Dy(1)-O(3)	148.87(6)	
O(1)-Dy(1)-O(3)	142.29(6)	O(2)-Dy(1)-O(4)	79.40(6)	
O(1)-Dy(1)-O(4)	147.11(6)	O(3)-Dy(1)-O(4)	70.30(6)	
O(2)-Dy(1)-N(3)	130.19(6)	O(1)-Dy(1)-N(3)	78.82(6)	
O(3)-Dy(1)-N(3)	69.80(6)	O(4)-Dy(1)-N(3)	130.47(6)	
O(2)-Dy(1)-N(1)	88.35(7)	O(1)-Dy(1)-N(1)	94.21(7)	
O(3)-Dy(1)-N(1)	91.56(7)	O(4)-Dy(1)-N(1)	76.89(7)	
N(3)-Dy(1)-N(1)	131.82(7)	O(2)-Dy(1)-N(4)	77.32(6)	
O(1)-Dy(1)-N(4)	92.74(6)	O(3)-Dy(1)-N(4)	94.00(6)	

O(4)-Dy(1)-N(4)	87.46(7)	N(3)-Dy(1)-N(4)	67.44(7)
N(1)-Dy(1)-N(4)	160.54(7)	O(2)-Dy(1)-N(2)	135.01(6)
O(1)-Dy(1)-N(2)	76.97(6)	O(3)-Dy(1)-N(2)	71.66(6)
O(4)-Dy(1)-N(2)	124.80(6)	N(3)-Dy(1)-N(2)	66.26(7)
N(1)-Dy(1)-N(2)	65.73(7)	N(4)-Dy(1)-N(2)	133.67(7)
O(8)-Dy(2)-O(6)	73.97(6)	O(8)-Dy(2)-O(9)	85.02(6)
O(6)-Dy(2)-O(9)	142.15(6)	O(8)-Dy(2)-O(7)	71.46(6)
O(6)-Dy(2)-O(7)	125.80(6)	O(9)-Dy(2)-O(7)	73.49(6)
O(8)-Dy(2)-O(5)	101.56(6)	O(6)-Dy(2)-O(5)	70.31(6)
O(9)-Dy(2)-O(5)	146.17(6)	O(7)-Dy(2)-O(5)	77.28(6)
O(8)-Dy(2)-O(10)	73.55(6)	O(6)-Dy(2)-O(10)	73.97(6)
O(9)-Dy(2)-O(10)	69.98(6)	O(7)-Dy(2)-O(10)	130.78(6)
O(5)-Dy(2)-O(10)	143.80(6)	O(8)-Dy(2)-O(1)	149.62(6)
O(6)-Dy(2)-O(1)	133.75(6)	O(9)-Dy(2)-O(1)	76.80(6)
O(7)-Dy(2)-O(1)	80.05(5)	O(5)-Dy(2)-O(1)	81.78(6)
O(10)-Dy(2)-O(1)	120.83(6)	O(8)-Dy(2)-O(2)	144.26(6)
O(6)-Dy(2)-O(2)	79.17(6)	O(9)-Dy(2)-O(2)	103.01(6)
O(7)-Dy(2)-O(2)	144.27(6)	O(5)-Dy(2)-O(2)	90.89(6)
O(10)-Dy(2)-O(2)	76.70(6)	O(1)-Dy(2)-O(2)	64.82(5)

Table S4 Continuous Shape Measures (CShMs) of the coordination geometry for Dy (III) ion in compounds **1-3**. Below is the symmetry and description for each polyhedron.

Complex		CU-8	SAPR-8	TDD-8	
1		8.953	3.922	2.925	
3	Dy1	12.018	3.564	1.131	
5	Dy2	9.145	1.526	0.705	
O _h	Cube				
D_{4d}	Square antiprisi	n			
D_{2d}	Triangular dode	ecahedron			
Co	mplex	JTCTPR-9	JCSAPR-9	CSAPR-9	
	2	3.314	3.529	2.836	
9 D	3h Tricapped to	rigonal prism J51			
9 C	L_{4v} Capped squ	are antiprism J10			
C	C_{4v} Spherical ca	apped square antipris	sm		
	Col 3 O _h D _{4d} D _{2d} Col 9 C Col 9 C Col 9 C Col 9 C Col 9 C Col 9 C Col 9 C Col 9 C Col 9 C Col 9 C Col 9 C Col 9 C Col 9 C Col 9 C Col 9 C C Col 9 COl 9 C Col 9 C C Col 9 CO 0 CO CO CO CO CO CO CO CO CO CO CO CO CO	Complex 1 3 Dy1 3 Dy2 O_h Cube D_{4d} Square antiprist D_{2d} Triangular dode Complex 2 D_{3h} Tricapped to the square colspan="2">Triangular dode O_{3h} Tricapped square colspan="2">Tricapped square colspan="2"	ComplexCU-81 8.953 3Dy112.018 $Dy2$ 9.145 O_h Cube D_{4d} Square antiprism D_{2d} Triangular dodecahedronComplexJTCTPR-92 3.314 9 D_{3h} Tricapped trigonal prism J519 C_{4v} Capped square antiprism J10 C_{4v} Spherical capped square antiprism	ComplexCU-8SAPR-81 8.953 3.922 3Dy1 12.018 3.564 3Dy2 9.145 1.526 OhCube 1.526 OhSquare antiprismD2dTriangular dodecahedronComplexJTCTPR-9JCSAPR-92 3.314 3.529 OD3hTricapped trigonal prism J51OC4vCapped square antiprism J10C4vSpherical capped square antiprism	

Fig. S1 PXRD patterns for complexes 3

Fig. S2. A view showing 3D structure formed by weak C–H \cdots O and O–H \cdots O hydrogen bonds interactions in **1**.

Fig. S3. A view showing 3D structure formed by weak C–H…O hydrogen bonds interactions in 2.

Fig. S4. A view showing 3D structure formed by weak C–H···O, C–H···C and π – π stacking interactions in **3**.

Fig.S5 Temperature dependence of the in-phase (χ') of the ac susceptibility for 2 (left) and 3 (right) under a zero applied dc.

Fig.S6 Frequency dependence of the in-phase (χ') ac susceptibility signals for **2** (left) and **3** (right) under a zero-dc field.

Computational details

Mononuclear complexes 1 and 2 have one type of molecular structure, but binuclear complex 3 has two types of magnetic center Dy^{III} ions indicated as 3_Dy1 and 3_Dy2. Complete-active-space self-consistent field (CASSCF) calculations on complexes 1–3 (see Figure S7 for the calculated complete structures of complexes 1–3) on the basis of single-crystal X-ray determined geometry have been carried out with MOLCAS 8.4^{S1} program package. Each individual Dy^{III} fragment in 3 was calculated keeping the experimentally determined structure of the corresponding compound while the neighboring Dy^{III} ion was replaced by diamagnetic Lu^{III}.

The basis sets for all atoms are atomic natural orbitals from the MOLCAS ANO-RCC library: ANO-RCC-VTZP for Dy^{III}; VTZ for close N and O; VDZ for distant atoms. The calculations employed the second order Douglas-Kroll-Hess Hamiltonian, where scalar relativistic contractions were taken into account in the basis set and the spin-orbit couplings were handled separately in the restricted active space state interaction (RASSI-SO) procedure. For individual Dy^{III} fragment, active electrons in 7 active spaces include all *f* electrons (CAS(9 in 7)) in the CASSCF calculation. To exclude all the doubts, we calculated all the roots in the active space. We have mixed the maximum number of spin-free state which was possible with our hardware (all from 21 sextets, 128 from 224 quadruplets, 130 from 490 doublets). SINGLE_ANISO^{S2} program was used to obtain the energy levels, *g* tensors, m_J values, magnetic axes, *et al.* based on the above CASSCF/RASSI-SO calculations.

Fig. S7. Calculated complete structures of 1–3; H atoms are omitted.

Table S5. Calculated energy levels (cm⁻¹), $g(g_x, g_y, g_z)$ tensors and predominant m_J values of the lowest eight Kramers doublets (KDs) of individual Dy^{III} fragments for 1–3 using CASSCF/RASSI-SO with MOLCAS 8.4.

KDs		1			2	
	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m_J
1	0.0	0.004	+ 15/2	0.0	0.002	+ 15/2
1	0.0	0.005	$\pm 13/2$	0.0	0.002	$\pm 15/2$

VD		3_Dy1			3_Dy2	
		17.423			18.895	
8	809.1	2.161	$\pm 5/2$	904.0	0.336	$\pm 7/2$
		0.023			0.105	
		17.226			13.023	
7	785.0	1.881	±7/2	813.3	6.764	±1/2
		0.274			1.063	
		15.334			9.312	
6	697.5	0.841	±3/2	796.4	4.509	±3/2
		0.085			1.744	
e e		13.589		,	12.828	
5	666.7	3.396	±1/2	740.1	3.656	±5/2
		1 291			0.905 1 329	
4	617.5	5.379 7.010	±9/2	662.1	6.090 8.085	±9/2
	(15.5	5.189	. 0 /2	((2.1	4.221	/2
		13.628			13.922	
3	498.1	0.635	$\pm 11/2$	512.2	0.171	$\pm 11/2$
		0.512			0.101	
		16.950			16.985	
2	284.4	0.120	$\pm 13/2$	277.7	0.053	$\pm 13/2$
		0.100			0.044	
		19.811			19.851	

KDs		0_0,1			0_0,2		
	E/cm^{-1}	g	m_J	E/cm^{-1}	g	m_J	
		0.110			0.028		
1	0.0	0.252	$\pm 15/2$	0.0	0.098	$\pm 15/2$	
		19.198			19.272		
		1.169			0.209		
2	132.2	1.842	$\pm 13/2$	60.2	0.268	$\pm 1/2$	
		15.660			18.598		
		4.174			0.741		
3	237.4	4.439	$\pm 11/2$	104.2	1.191	$\pm 11/2$	
		10.113			13.690		
		2.270			3.726		
4	336.9	3.911	$\pm 7/2$	149.6	5.705	$\pm 5/2$	
		9.747			8.415		
		0.057			1.721		
5	441.6	1.919	$\pm 5/2$	175.9	4.776	$\pm 7/2$	
		12.266			14.364		
		0.810			0.324		
6	498.4	1.203	$\pm 3/2$	192.9	1.208	$\pm 9/2$	
		15.396			18.247		
7	536.1	0.207	$\pm 1/2$	215.3	0.034	$\pm 3/2$	

		0.309			0.307	
		17.342			19.355	
		0.033			0.000	
8	653.5	0.054	$\pm 9/2$	382.2	0.003	$\pm 13/2$
		19.466			19.731	

Table S6. Wave functions with definite projection of the total moment $| m_J >$ for the lowest two KDs of individual Dy^{III} fragments for 1–3, respectively, using CASSCF/RASSI-SO with MOLCAS 8.4.

	E/cm^{-1}	wave functions
1	0.0	98.82% ±15/2>
1	284.4	94.90% ±13/2>
2	0.0	99.81% ±15/2>
2	277.7	98.82% ±13/2>
2 D 1	0.0	88.87% ±15/2>+9.71% ±11/2>
3_Dy1	132.2	45.93% ±13/2>+28.18% ±9/2>+8.23% ±7/2>+6.05% ±5/2>
2 D-1	0.0	89.54% ±15/2>+9.09% ±11/2>
3_Dy2	60.2	41.46% ±1/2>+29.54% ±3/2>+14.53% ±5/2>

To fit the exchange interaction in **3**, we took two steps to obtain them. Firstly, we calculated individual Dy^{III} fragments using CASSCF/RASSI-SO to obtain the corresponding magnetic properties. Then, the exchange interaction between the magnetic centers is considered within the Lines model,^{S3} while the account of the dipole-dipole magnetic coupling is treated exactly. The Lines model is effective and has been successfully used widely in the research field of *d* and *f*-elements single-molecule magnets.^{S4}

The Ising exchange Hamiltonians for 3 is:

$$\hat{H}_{\text{exch}} = -J\hat{S}_{\text{Dy1}}\hat{S}_{\text{Dy2}} \tag{1}$$

The $J = 25\cos\varphi J_{exch}$, where φ is the angle between the anisotropy axes on sites Dy1 and Dy2, and J_{exch} is the Lines exchange coupling parameter. The $S_{Dy} = 1/2$ is the ground pseudospin on the Dy^{III} sites. The dipolar magnetic coupling can be calculated exactly, while the exchange coupling constant was fitted through comparison of the computed and measured magnetic susceptibility using the POLY ANISO program.^{S2}

Table S7. Exchange energies E (cm⁻¹), the energy difference between each exchange doublets Δ_t (cm⁻¹) and the main values of the g_z for the lowest two exchange doublets of **3**.

	Ε	Δ_t	gz
1	0.0	1.2×10 ⁻³	22.704
2	2.0	1.0×10 ⁻³	30.909

References:

- S1 F. Aquilante, J. Autschbach, R. K. Carlson, L. F. Chibotaru, M. G. Delcey, L. De Vico, I. Fdez. Galván, N. Ferré, L. M. Frutos, L. Gagliardi, M. Garavelli, A. Giussani, C. E. Hoyer, G. Li Manni, H. Lischka, D. Ma, P. Å. Malmqvist, T. Müller, A. Nenov, M. Olivucci, T. B. Pedersen, D. Peng, F. Plasser, B. Pritchard, M. Reiher, I. Rivalta, I. Schapiro, J. Segarra Martí, M. Stenrup, D. G. Truhlar, L. Ungur, A. Valentini, S. Vancoillie, V. Veryazov, V. P. Vysotskiy, O. Weingart, F. Zapata, R. Lindh, MOLCAS 8: New Capabilities for Multiconfigurational Quantum Chemical Calculations across the Periodic Table, *J. Comput. Chem.*, 2016, *37*, 506–541.
- S2 (a) Chibotaru, L. F.; Ungur, L.; Soncini, A. Angew. Chem. Int. Ed., 2008, 47, 4126–4129. (b) Ungur, L.; Van den Heuvel, W.; Chibotaru, L. F. New J. Chem., 2009, 33, 1224–1230. (c) Chibotaru, L. F.; Ungur, L.; Aronica, C.; Elmoll, H.; Pilet, G.; Luneau, D. J. Am. Chem. Soc., 2008, 130, 12445–12455.
- S3 Lines, M. E. J. Chem. Phys. 1971, 55, 2977-2984.
- S4 (a) Mondal, K. C.; Sundt, A.; Lan, Y. H.; Kostakis, G. E.; Waldmann, O.; Ungur, L.; Chibotaru, L. F.; Anson, C. E.; Powell, A. K. *Angew. Chem. Int. Ed.* 2012, *51*, 7550–7554. (b) Langley, S. K.; Wielechowski, D. P.; Vieru, V.; Chilton, N. F.; Moubaraki, B.; Abrahams, B. F.; Chibotaru, L. F.; Murray, K. S. *Angew. Chem. Int. Ed.* 2013, *52*, 12014–12019.