SUPPLEMENTARY INFORMATION

Compound	HOM-2	HET-2	DOB-2	HOM-4	HET-4	DOB-4	
Empirical formula	C ₁₆ H ₂₄ ClNO ₃						
Formula weight	313.81	313.81	313.81	313.81	313.81	313.81	
Temperature, K	293(2)	143(2)	103(2)	103(2)	113(2)	119(2)	
Radiation and wavelength	Μο-Κα, λ	Μο-Κα, λ	Cu-Kα, λ	Cu-Kα, λ	Cu-Kα, λ	Cu-Kα, λ	
	=0.71075Å	=0.71075Å	=1.54178Å	=1.54178Å	=1.54178Å	=1.54178Å	
Crystal system	orthorhombic	monoclinic	onoclinic monoclinic orthorhombic monoclini		monoclinic	monoclinic	
Space group	$P2_{1}2_{1}2_{1}$	$P2_1$	$P2_1$	$P2_{1}2_{1}2_{1}$	$P2_1$	C2	
a, Å	a = 6.8200(3)Å	<i>a</i> =9.0572(9)Å	<i>a</i> =9.6370(2)Å	<i>a</i> =6.7938(3)Å	a = 10.4640(6)Å	<i>a</i> =24.2266(8)Å	
b, Å	<i>b</i> =8.8363(3)Å	<i>b</i> =29.711(3)Å	<i>b</i> =25.3851(6)Å	<i>b</i> =8.6704(3)Å	b=10.4673(7)Å	<i>b</i> =10.0661(8)Å	
c, Å	c = 26.1400(11)Å	<i>c</i> =12.6381(13)Å	<i>c</i> =13.5859(3)Å	<i>c</i> =27.7144(9)Å	<i>c</i> =29.8915(16)Å	<i>c</i> =13.3665(8)Å	
α, deg	α =90°						
β, deg	β =90°	β=93.337(3)°	β=90.277(6)°	β =90°	β=96.843(3)°	β=92.5330(10)°	
γ, deg	γ =90°						
V, Å ³	1575.29(11)Å ³	3395.1(6)Å ³	3323.56(13)Å ³	1632.52(11)Å ³	3250.7(3)Å ³	3256.5(3)Å ³	
Z'	1	4	4	1	4	2	
Ζ	4	8	8	4	8	8	
Density (calculated)	1.323 Mg/m ³	1.228 Mg/m ³	1.254 Mg/m ³	1.277 Mg/m ³	1.282 Mg/m ³	1.280 Mg/m ³	
KPI %	70.4	65.2	66.1	68.0	68.6	67.9	
Absorption coefficient, µ	0.252 mm ⁻¹	0.234 mm ⁻¹	2.113 mm ⁻¹	2.151 mm ⁻¹	2.161 mm ⁻¹	2.157 mm ⁻¹	
F(000)	672	1344	1344	672	1344	1344	
Crystal colour	colorless	colorless	colorless	colorless	colorless	colorless	
Crystal description	block	platelet	platelet	chunk	prism	platelet	
Crystal size	0.63 x 0.50 x	0.50 x 0.20 x	0.47 x 0.44 x	0.30 x 0.15 x	0.67 x 0.30 x	0.61 x 0.48 x	
	0.41 mm	0.05 mm	0.18 mm	0.05 mm	0.13 mm	0.44 mm	
Absorption correction	numerical	multi-scan	numerical	numerical	numerical	numerical	
Max. and min.	0.974 0.985	0.298 1.000	0.973 0.992	0.5750 0.8212	0.373 0.841	0.882 0.964	
transmission							
θ -range for data collection	3.087 ≤	3.023 ≤	3.253 ≤	6.710 ≤	6.536 ≤	3.310 ≤	
	$\theta \le 27.471^{\circ}$	$\theta \le 25.348^{\circ}$	$\theta \le 68.238^{\circ}$	$\theta \le 66.564^{\circ}$	$\theta \le 50.435^{\circ}$	$\theta \le 68.245^{\circ}$	
Index ranges	-8 ≤ <i>h</i> ≤8;-10≤ <i>k</i>	-10 ≤ <i>h</i> ≤10;-	-11 ≤ <i>h</i> ≤11;-	$-6 \le h \le 8; -8 \le k$	-10 ≤ <i>h</i> ≤10;-	<i>-</i> 29 ≤ <i>h</i> ≤ 29; <i>-</i>	
	<i>≤</i> 11;-33 <i>≤ l ≤</i> 33	35≤ <i>k</i> ≤35;-15 ≤ <i>l</i>	$30 \le k \le 30; -16 \le l$	<i>≤</i> 8;-32 ≤ <i>l</i> ≤ 28	$10 \le k \le 10; -5 \le l$	$12 \le k \le 12; -14 \le l$	
		≤15	≤16		≤29	≤15	
Reflections collected	50543	45929	25816	7677	6812	18879	
Completeness to 20	0.998	0.998	0.989	0.880	0.995	0.970	
Absolute structure	0.041(10)	-0.02(7)	0.189(14)	0.05(4)	0.035(11)	0.099(9)	
parameter	()		()		()		
Friedel coverage	0.718	0.958	0.751	0.568	0.868	0.846	
Friedel fraction max.	0.999	0.996	0.779	0.719	0.997	0.927	
Friedel fraction full	1.000	0.998	0.781	0.719	0.997	0.931	
Independent reflections	50543 [<i>R</i> (int) =	45929 [<i>R</i> (int) =	25816 [<i>R</i> (int) =	7677[R(int) =	6812 [<i>R</i> (int) =	5644 [<i>R</i> (int) =	
-	0.0398]	0.1811]	0.0863]	0.0513]	0.0982]	0.0589]	
Reflections $I > 2\sigma(I)$	41935	5895	19821	5310	6308	5111	
Refinement method	full-matrix least-						
	squares on F2						
Data / restraints /	50543 /0 /194	12376 /386 /972	25816 /235 /835	7677 /0 /194	6812 /602 /718	5644 /1 /413	
parameters							
Goodness-of-fit on F2	0.990	1.018	1.023	1.130	1.132	1.080	
Final R indices $[I \ge 2\sigma(I)]$	R1 = 0.0393, wR2	<i>R</i> 1 =0.0934, <i>wR</i> 2	R1 = 0.1070, wR2	<i>R</i> 1 =0.0931, <i>wR</i> 2	<i>R</i> 1 =0.0913, <i>wR</i> 2	<i>R</i> 1 =0.0468, <i>wR</i> 2	
	=0.0738	=0.1687	=0.2808	=0.1968	=0.1854	=0.1070	
R indices (all data)	<i>R</i> 1 =0.0536, <i>wR</i> 2	<i>R</i> 1 =0.1934, <i>wR</i> 2	R1 = 0.1228, wR2	<i>R</i> 1 =0.1422, <i>wR</i> 2	R1 = 0.0980, wR2	R1 = 0.0526, wR2	
	=0.0772	=0.2107	=0.3010	=0.2515	=0.1892	=0.1100	
Max. and mean shift/esd	0.000;0.000	0.003;0.000	0.000;0.000	0.000;0.000	0.000;0.000	0.000;0.000	
Largest diff. peak and hole	0.406;-0.278e.Å ³	0.481;-0.389e.Å3	1.407;-0.567e.Å ³	0.834;-0.709e.Å3	0.484;-0.521e.Å ³	0.277;-0.206e.Å ³	

TABLE S1 Crystal data and details of structure determination

X-ray source and measurement temperature were based on availability. In some cases, the weight factors are high because of poor crystal quality.

HOM 2					HOM 4					
HUM-2 Deper H Acceptor	LI A	D A	рц л	Summ on	HUNI-4	ца	D A	рц л	Summ on	
$N(1) = H(1\Lambda) = O(2)$	1 05	2 822(2)	167	Symm. op.	N(1) = H(1A) = O(1)	1 05	2 828(15)	160	1+v v 7	
N(1) = H(1A) O(2)	1.95	2.022(3)	167	x,y,2	N(1) = H(1A)O(1)	1.95	2.020(13)	109	1/2 × 1/2 × 2 =	
N(1) - H(1B) O(1)	2.13	2.990(3)	102	2-x,-1/2+y,1/2-2	N(1)H(1B)O(1)	2.01	2.885(17)	107	1/2+x,1/2-y,2-2	
N(1)H(1C)U(2)	2.19	2.962(3)	145	1-x,-1/2+y,1/2-z	N(1)H(1C)U(2)	1.99	2.861(16)	165	x,y,z	
O(3)H(3)O(1)	1.88	2.687(2)	168	2-x,1/2+y,1/2-z	U(3)H(3)U(2)	2.02	2.782(15)	154	-1/2+x,3/2-y,2-z	
LIFT 2										
HE1-2 Denon II Acconton	TT A	D A	рц а	Summ on	Denon II Assentan	TT A	D A	рп л	Summ on	
	ПА 1 96	DA	D-ПА 165	Symm. op.		пА 2 21	DA	D-ПА 112	symm. op.	
N(1) = H(1A) O(5)	1.00	2.720(10)	103	x,y,2	03BH30B02B	2.21	2.759(14)	115	11111 d	
N(1) -H(1B) O(7)	1.98	2.830(9)	101	x,y,-1+2	038 1308018	2.19	2.739(15)	115	-X,-1/2+y,1-2	
N(1) -H(1C) O(2)	2.21	2.877(11)	131	x,y,z	03DH30D02D	2.29	2.931(14)	120	1-x,1/2+y,-z	
N(1) - H(1C) O(0)	2.50	2.911(10)	105	-1+X,Y,Z		2.00	2.805(17)	158	-x,-1/2+y,1-2	
N(2)H(2A)U(2)	1.80	2.730(10)	164	х,у,z	NIAHIAZUZA	1.94	2.824(17)	164	х,у,z	
N(2)H(2B)O(10)	1.87	2.730(9)	103	1+x,y,z	NIAHIA203A	2.44	2.976(16)	118	x,γ,z	
N(2)H(2C)O(3)	2.60	2.940(10)	104	1+x,y,z	NIAHIA3UIA	1.86	2.762(16)	1/3	1-x,-1/2+y,1-z	
N(2)H(2C)U(5)	2.21	2.878(10)	131	x,y,z	NIBHIBIU3B	1.97	2.867(16)	168	1+x,y,z	
O(3)H(3)O(1)	2.23	2.699(9)	116	intra	N1BH1B2O2B	1.92	2.815(15)	168	1-x,-1/2+y,1-z	
O(3)H(3)O(10)	2.15	2.813(9)	139	x,y,z	N1BH1B301A	2.49	3.133(16)	128	x,y,z	
N(3)H(3A)O(8)	2.14	2.869(10)	138	x,y,-1+z	N1BH1B3O2A	1.91	2.809(16)	168	х,у,z	
N(3)H(3A)O(12)	2.53	2.889(10)	105	x,y,z	N1CH1C102D	1.96	2.842(16)	163	1-x,1/2+y,-z	
N(3)H(3B)O(11)	1.87	2.746(10)	166	1+x,y,z	N1CH1C202C	2.07	2.918(16)	154	x,y,z	
N(3)H(3C)O(1)	1.99	2.843(9)	160	x,y,z	N1CH1C2O3C	2.40	2.952(16)	119	x,y,z	
N(4)H(4A)O(9)	2.52	2.929(10)	109	1+x,y,z	N1CH1C301C	1.88	2.771(15)	166	2-x,1/2+y,-z	
N(4)H(4A)O(11)	2.20	2.867(10)	132	1+x,y,1+z	N1DH1D1O1C	2.57	3.127(16)	120	-1+x,y,z	
N(4)H(4B)O(8)	1.86	2.738(10)	166	x,y,z	N1DH1D1O2C	1.97	2.871(16)	174	-1+x,y,z	
N(4)H(4C)O(4)	1.97	2.825(9)	160	x,y,1+z	N1DH1D2O3D	2.16	2.997(16)	152	x,y,z	
O(6)H(6A)O(4)	2.26	2.716(9)	115	intra	N1DH1D3O1D	1.83	2.741(15)	174	1-x,1/2+y,-z	
O(6)H(6A)O(7)	2.11	2.754(9)	135	1+x,y,-1+z	03CH3OC01D	1.90	2.728(15)	145	x,y,z	
O(9)H(9)O(4)	2.08	2.752(9)	139	-1+x,y,1+z	03CH3OC03D	2.49	3.279(15)	140	x,y,z	
O(9)H(9)O(7)	2.31	2.748(9)	114	intra	O3AH3OAO2B	1.92	2.695(15)	140	x,y,z	
O(12)H(12)O(1)	2.20	2.847(9)	136	x,y,z						
O(12)H(12)O(10)	2.19	2.664(9)	117	intra						
DOB-2					DOB-4				-	
Donor—HAcceptor	HA	DA	D-HA	Symm. op.	Donor—HAcceptor	HA	DA	D-HA	Symm. op.	
N1AH1A1O2A	1.97	2.828(14)	163	1+x,y,z	N1'H1N'01'	1.85	2.856(5)	165(4)	1/2-x,-1/2+y,-z	
N1AH1A201C	1.95	2.835(13)	176	x,y,z	N1'H1N'O3'	2.37	2.932(5)	114(4)	1/2-x,-1/2+y,-z	
N1AH1A3Cl1D	2.79	3.342(11)	121	x,y,1+z	N1H1NO1	1.81	2.794(5)	170(5)	1/2-x,1/2+y,1-z	
N1AH1A3O2D	1.98	2.813(13)	156'	x,y,1+z	03H1001	1.98	2.708(4)	167(7)	1/2-x,-1/2+y,1-z	
03AH3A01C	1.98	2.771(13)	162	x,y,z	N1'H2N'O2	2.01	2.840(5)	162(5)	x,y,z	
O3BH3BO1D	2.09	2.677(12)	128	-1+x,y,z	N1H2NO2'	1.91	2.778(5)	161(4)	x,y,z	
U3BH3BO2D	2.57	3.105(12)	124	-1+x,y,z	N1'H3N'O2'	1.92	2.844(5)	171(4)	х, ү, z	
U3CH3C01A	1.98	2.754(12)	158	1+x,y,z	N1'H3N'O3'	2.60	2.932(5)	102(3)	1/2-x,-1/2+y,-z	
O3DH3DO1B	1.83	2.640(13)	169	х,у,z	N1H3NO2	2.07	2.823(5)	141(5)	х,ү,z	
N1BH1B1O1D	2.00	2.867(14)	165	х,у,z	N1H3NO3	2.17	2.784(6)	125(4)	1/2-x,1/2+y,1-z	
N1BH1B2O2B	1.94	2.741(14)	148	x,y,z	03'H10'01'	1.86	2.718(4)	169(7)	1/2-x,1/2+y,-z	
N1BH1B2O3D	2.39	2.826(13)	110	x,y,z	03'H10'02'	2.59	3.097(4)	118(6)	1/2-x,1/2+y,-z	
N1BH1B3O2C	1.96	2.809(12)	159	x,y,z						
N1CH1C102C	1.98	2.834(14)	160	x,y,z						
N1CH1C103A	2.56	2.894(13)	103	x,y,z						
N1CH1C201A	1.97	2.851(13)	169	x,y,z						
N1CH1C2O3A	2.53	2.894(13)	105	x,y,z						
N1CH1C3O2B	1.95	2.818(13)	163	x,y,z						
N1DH1D1O1B	1.92	2.811(13)	176	x,y,z						
N1DH1D1O3B	2.47	2.903(13)	111	x,y,z						
N1DH1D2O2D	1.90	2.766(14)	164	-1+x,y,z						
N1D 11D2 024	1 99	2 839(13)	158	x v -1+7						

TABLE S2 List of hydrogen bonds in the six isomeric structures

Table S3 ϕ 1 and ϕ 2 torsion angles of different stereoisomers of mandelic adic for comparison

	Φ_1	Φ ₂
BOBQOA	-31°	56°
	-80°	58°
FEGHAA	32°	-60°
	79°	-59°
DLMAND02	-38°	59°
	-81°	60°
DLMAND03	-72°	77°

Figure S1 DSC curve of HOM-2

Figure S2 DSC curve of HET-2

Figure S3 DSC curve of DOB-2

^exo

Figure S4 DSC curve of HOM-4

Figure S5 DSC curve of HET-2

Lab: METTLER

STAR^e SW 12.10

Figure S6 DSC curve of DOB-4

The solid-liquid phase diagrams of the **HOM-4** and **HET-4** and of the **HOM-2** and **HET-2** diastereomeric salt pairs have been calculated on the basis of the DSC data (Figures S1-S6) by the simplified Schröder-van Laar and the Prigogine-Defay equations^{34–37}. At the 0.5 mole fraction an independent solid phase is formed, called the double salt (**DOB-2** and **DOB-4** in our case) (Figures S7-S8). **DOB-2** has higher melting point than the diastereomeric salts however, the melting point of the **DOB-4** is lower than that of the diastereomers. In case of the salts of 2-chloromandelic acid, at 0.15 molar fraction and at 110.5°C a eutectic can be observed for the **HET-2** – **DOB-2** mixture and at 0.85 molar fraction and 117.7°C there is another eutectic for the **DOB-2** – **HOM-2** mixture. Similarly, in the case of the salts of 4-chloromandelic acid, the first eutectic is at 0.35 molar fraction and 131.4°C for the **HET-4** – **DOB-4** mixture and a second one is at 0.65 molar fraction and 134.2°C for the **DOB-4** – **HOM-4** mixture.

Figure S7 Calculated solid-liquid phase diagram of 2

Figure S8 Calculated solid-liquid phase diagram of 4

FIGURE S9 Graph set analysis of QEMZIS, $R_4^2(8)$ and $R_2^1(4)$ rings and intramolecular hydrogen bond of the hydroxyl group (hydrogens not involved in the hydrogen bond network are omitted for clarity)

FIGURE S10 Graph set analysis of **HOM-2**, $R_5^3(13)$, $R_3^2(9)$ and small $R_2^1(4)$ rings in the structure (hydrogens not involved in the hydrogen bond network and amine skeletons are omitted for clarity)

FIGURE S11 Symmetric $R_4^4(12)$ and $R_2^2(10)$ rings in **HET-2**, $R_2^3(6)$ rings (hydrogens not involved in the hydrogen bond network are omitted for clarity)

FIGURE S12 $R_4^2(8)$ rings in **HET-2** (hydrogens not involved in the hydrogen bond network are omitted for clarity)

FIGURE S13 $R_4^3(10)$, $R_4^3(11)$ and $R_1^2(5)$ rings in **HOM-4** (hydrogens not involved in the hydrogen bond network and amine skeletons are omitted for clarity)

FIGURE S14 $R_5^3(13)$, $R_3^2(7)$, $R_3^2(8)$, $R_3^3(8)$, $R_4^3(8)$, $R_2^1(4)$ and $R_1^2(5)$ rings in **HET-4** (hydrogens not involved in the hydrogen bond network and amine skeletons are omitted for clarity)

FIGURE S15 Large $R_6^4(18)$ rings (center) and $R_4^2(8)$, $R_1^2(5)$, $R_2^3(6)$ and $R_2^1(4)$ rings in the **DOB-2** structure (hydrogens not involved in the hydrogen bond network and amine skeletons are omitted for clarity)

FIGURE S16 Overlaid structure of the four crystallographically unrelated anions in **HET-2** for comparison, the molecules are overlaid so that the bonds of the asymmetric carbon atom overlapped

FIGURE S17 Overlaid structure of the four crystallographically unrelated cations in **HET-2** for comparison, the molecules are overlaid so that the bonds of the asymmetric carbon atom overlapped

FIGURE S18 Overlaid structure of the four crystallographically unrelated anions in **HET-4** for comparison, the molecules are overlaid so that the bonds of the asymmetric carbon atom overlapped

FIGURE S19 Overlaid structure of the four crystallographically unrelated cations in **HET-4** for comparison, the molecules are overlaid so that the bonds of the asymmetric carbon atom overlapped

Table S3 Properties of the Hirshfeld surfaces of the different ionpairs in the salts

	HET4-1	HET4-2	HET4-3	HET4-4	HOM4	HET2-1	HET2-2	HET2-3	HET2-4	HOM-2
Volume	397,24	400,30	401,47	401,19	401,52	421,08	407,82	418,74	424,87	387,86
Area	326,90	368,68	372,46	354,72	333,66	322,79	330,91	337,13	327,53	319,51
Globularity	0,799	0,712	0,707	0,742	0,789	0,842	0,804	0,803	0,834	0,805
Asphericity	0,066	0,375	0,446	0,102	0,112	0,049	0,022	0,052	0,023	0,021

	DOB4-all	DOB4-1	DOB4-2	DOB2-all	DOB2-1	DOB2-2
Volume	805,52	404,88	396,52	823,78	411,20	408,94
Area	575,83	338,79	327,91	590,28	335,58	337,16
Globularity	0,727	0,781	0,796	0,72	0,797	0,79
Asphericity	0,075	0,065	0,091	0,148	0,028	0,049

Table S4 Percentage of the total Hirshfeld surface area for the short interactions of the different atom types

	HET4-1	HET4-2	HET4-3	HET4-4	HOM4	HET2-1	HET2-2	HET2-3	HET2-4	HOM-2
Н	75,8	74,0	72,8	74,6	75,3	79,0	76,6	77,6	78,5	76,9
С	4,8	7,8	7,7	6,6	5,0	5,1	4,5	5,6	4,2	5,0
0	10,7	8,7	10,6	9,3	11,0	10,2	10,5	10,2	10,2	10,9
Ν	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
Cl	8,6	9,5	8,8	9,5	8,7	5,7	8,4	6,7	7,1	7,3

	DOB4-all	DOB4-1	DOB4-2	DOB2-all	DOB2-1	DOB2-2
Н	75,9	75,5	75,7	79,7	77,6	77,0
С	4,8	4,5	4,6	4,8	4,6	4,6
0	9,2	11,1	11,0	9,2	10,4	10,7
Ν	0,0	0,0	0,0	0,0	0,0	0,0
Cl	10,2	8,8	8,8	6,3	7,4	7,7