Investigation on the formation mechanism of twinned crystals of

hypoxanthine-doped beta-phase anhydrous guanine microplatelets

Bianbian Wu,^{#a} Yanan Liu, ^{#b} Fenghua Chen, ^{a,b} Jiangfeng Li, ^a Yue Yu,^c Yinglin Zhou, ^c Ling Li, ^d Jie Xiao ^c and Yurong Ma^a*

- ^{b.} School of Resources and Chemical Engineering, Sanming University, Jingdong Road 25, Sanming, 365004, China
- ^c College of Chemistry, Peking University, No.5 Yiheyuan Road Haidian District, Beijing, 100871, China
- ^d Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, 635 Prices Fork Rd, Blacksburg, VA, 24061 (USA)
- e. Department of highly sensitive X-ray spectroscopy, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany

The authors contributed equally

Figure S1. Light microscopy images of the synthesized I-doped AG crystals with different contents of hypoxanthine. (a) 0 mol%, (b) 11 mol%, (c) 18 mol%, (d) 24 mol%, (e) 26 mol%, (f) 29 mol%.

^{a.} MOE Key laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology

Beijing, 100081, China E-mail: yurong.ma@bit.edu.cn

Figure S2. Zoomed-in SEM images for the of the synthesized I-doped AG crystals with different contents of hypoxanthine. $(a_1, a_2) 0 \text{ mol}\%$, $(b_1, b_2) 11 \text{ mol}\%$, $(c_1, c_2) 18 \text{ mol}\%$, $(d_1, d_2) 24 \text{ mol}\%$, $(e_1, e_2) 26 \text{ mol}\%$, $(f_1, f_2) 29 \text{ mol}\%$.

Figure S3. AFM characterizations of the synthesized I-doped AG crystals with different contents of hypoxanthine. $(a_1, a_2) 0 \mod\%$, $(b_1, b_2) 11 \mod\%$, $(c_1, c_2) 18 \mod\%$, $(d_1, d_2) 24 \mod\%$, $(e_1, e_2) 26 \mod\%$, $(f_1, f_2) 29 \mod\%$.

Figure S4. TEM images for the synthesized I-doped AG crystals with different contents of hypoxanthine and the SAED patterns collected from the different locations. (a_0-a_5) 11 mol%, (b_0-b_5) 18 mol%, (c_0-c_5) 24 mol%, (d_0-d_5) 26 mol%, (e_0-e_5) 29 mol%. (a_0) , (b_0) , (c_0) and (d_0) TEM images. (a_1) , (a_2) , (a_3) and (a_4) SAED patterns of the (1, 2), (3) and (4) areas in the (a_0) . (b_1) , (b_2) , (b_3) and (b_4) SAED patterns of the (1, 2), (3) and (4) areas in the (b_0) . (c_1) , (c_2) , (c_3) and (c_4) SAED patterns of the (1, 2), (3) and (4) areas in the (c_0) . (d_1) , (d_2) , (d_3) and (d_4) SAED patterns of the (1, 2), (3) and (4) areas in the (d_0) . (e_1) , (e_2) , (e_3) and (e_4) SAED patterns of the (1, 2), (3) and (4) areas in the (d_0) .

Figure S5. TEM images for the synthesized elongated-hexagon I-doped AG single crystals with different contents of hypoxanthine and their SAED patterns. $(a_1, a_2) 0 \text{ mol}\%$, $(b_1, b_2) 11 \text{ mol}\%$, $(c_1, c_2) 18 \text{ mol}\%$, $(d_1, d_2) 24 \text{ mol}\%$, $(e_1, e_2) 26 \text{ mol}\%$, $(f_1, f_2) 29 \text{ mol}\%$.

Figure S6. Nitrogen K-edge near edge X ray absorption fine structure spectra (NEXAFS) of the synthesized I-doped AG crystals with different contents of hypoxanthine. (a) I, (b) G, (c) mixed raw guanine and raw hypoxanthine with equal molar ratio, (d) 0 mol%, (e) 11 mol%, (f) 18 mol%, (g) 24 mol%, (h) 26 mol%, (i) 29 mol%, (j) Bio-G.

Figure S7. SEM images of the early stage of the I-doped β -AG crystals with 11 mol% of hypoxanthine formed with 1 hour crystallization time. (b) The zoom-in image of the edge of the (a). The sample holder was tilted 45 ° from the electron beam.

Sample name	Molar ratios of G and I in the reaction solutions	Mole of G (nM)	Mole of I (nM)	Mol% of I*
a	1:0	22477.6	12.5	0 mol%
b	1:1.5	32195.7	3919.3	11 mol%
с	1:3	8954.2	2000.5	18 mol %
d	1:4.5	8698.0	2770.1	24 mol %
e	1:6	7152.2	2531.4	26 mol %
f	1:7.5	21502.5	8666.8	29 mol %
g (Bio-hairtail)		3409600	29200	1 mol %
h (Bio-koi fish)		91300	13900	13 mol %

Table S1. HPLC for the synthesized I-doped AG crystals with different contents of hypoxanthine.

 $*_{mol\% of I} = n(I)/(n(I) + n(G)) \times 100\%$

Table S2. ¹³C SSNMR for the synthesized I-doped AG crystals with different contents of hypoxanthine.

Sample	C6(G-I)	C2(G)	C4(G)	C2(I)	C4(I)	C8(G-I)	C5(I)	Unknown	C5(G)
name	(ppm)	(ppm)		(ppm)	(ppm)	(ppm)	(ppm)	peak(ppm)	(ppm)
Ι	159.2			149.5	145.4	141.9	122.5		
G	159.7	156.7	154.9			142.1			106.2
G/I*	159.5	156.8	154.9	149.7	145.4	142	122.5		106.2
a(0%)	160.1	157.1	155.4			141.9			106.7
b(11%)	160.6	157				141.9		115.7	107.3
c(18%)	160.5	157				142		115.2	107.2
d(24%)	160.3	156.9				141.7	121.7	114.9	107.2
e(26%)	160.1	156.9		149.6		142.3	121.6	114.9	107
f(28%)	160.2	157		149.4		142.8	121.8	115	107.3
Bio-G	160.2	157.6	156			142.4			107.3

* G mixed with 50 mol% of I.