Synthesis, preparation and characterization of pyridine-containing

organic crystals with different substitute position using

solvothermal method

Synthesis of TBOP

A mixture of 2-vinylpyridine (20.0 mmol, 2.2 mL), 2,8-dibromo-6*H*,12*H*-5,11-methanodibenzo [*b*,*f*] [1,5] diazocine (5.0 mmol, 1.9 g), K₂CO₃ (20.0 mmol, 2.8 g), palladium acetate (0.001 mmol, 0.0023 g) and tris(2-methylphenyl) phosphine (0.001 mmol, 0.003 g) in NMP (10 mL) was stirred at 130 °C for 10 h under N₂ atmosphere. The reaction mixture was cooled to room temperature and extracted by CH₂Cl₂ for three times. The combined organic layer was washed with water, dried over anhydrous MgSO₄ and concentrated under reduced pressure. The residue was purified by a silica gel column chromatography (eluent: CH₂Cl₂/Ethanol = 50/1 in the ratio of volume) to afford **TBOP** (0.84 g, 1.96 mmol) in 39% yield as a light yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆), δ ppm: 8.53 (d, *J* = 3.9 Hz, 2H), 7.72-7.77 (m, 2H), 7.54 (d, *J* = 16.2 Hz, 2H), 7.45 (d, *J* = 7.8 Hz, 4H), 7.17- 7.26 (m, 6H), 7.13 (d, *J* = 7.2 Hz, 2H), 4.67 (d, *J* = 16.5 Hz, 2H), 4.27 (s, 2H), 4.18 (d, *J* = 16.8 Hz, 2H). ¹³C NMR (75.47 MHz, DMSO-*d*₆), δ ppm 155.56, 149.88, 148.95, 137.19, 132.15, 132.08, 128.84, 127.21, 126.29, 126.09, 125.53, 122.59, 122.55, 66.66, 58.62. HRMS (ESI-TOF)) *m/z*: [M+H]⁺ Calcd for C₂₉H₂₄N₄ 429.20737; Found 429.20694.

Synthesis of TBMP

First, 3-vinylpyridine was synthesized according to literature. A mixture of 3-vinylpyridine (20.0 mmol, 2.2 mL), 2,8-dibromo-6*H*,12*H*-5,11-methanodibenzo [*b*,*f*] [1,5] diazocine (5.0 mmol, 1.9 g), K₂CO₃ (20.0 mmol, 2.8 g), palladium acetate (0.001 mmol, 0.0023 g) and tris(2-methylphenyl) phosphine (0.001 mmol, 0.003 g) in NMP (10 mL) was stirred at 130 °C for 10 h under N₂ atmosphere. The reaction mixture was cooled to room temperature and extracted by CH₂Cl₂ for three times. The combined organic layer was washed with water, dried over anhydrous MgSO₄ and concentrated under reduced pressure. The residue was purified by a silica gel column chromatography (eluent: CH₂Cl₂/Ethanol = 50/1 in the ratio of volume) to afford **TBMP** (0.84 g, 1.96 mmol) in 39.4% yield as a light yellow solid. ¹H NMR (400 MHz, DMSO-*d*₆), δ ppm 8.69 (s, 2H), 8.41 (d, *J* = 4 Hz, 2H), 7.97 (d, *J* = 8.0 Hz, 2H), 7.41 (d, *J* = 9.6 Hz, 2H), 7.36 (d, 2H, *J* = 8 Hz, 2H), 7.25 (d, *J* = 16.5 Hz, 2H), 7.21 (s, 2H), 7.15 (d, *J* = 8.4 Hz, 2H), 7.10 (d, *J* = 16.5 Hz, 2H), 4.67 (d, *J* = 16.7 Hz, 2H), 4.26 (s, 2H), 4.18 (d, *J* = 16.7 Hz, 2H). ¹³C NMR (101 MHz, DMSO-*d*₆), δ ppm 148.24, 148.14, 148.07, 132.95, 132.51, 132.02, 130.07, 128.38, 125.54, 125.19, 125.07, 123.81, 123.57, 66.26, 58.21. HRMS (ESI-TOF)) *m/z*: [M+H]⁺ Calcd for C₂₉H₂₄N₄ 429.20737; Found 429.20697.

General organic chemical synthesis of PHZOP

A solution of **TBOP** (0.193 g, 0.45 mmol) in a mixture of trifluoroacetic anhydride (0.5 mL, 3.6 mmol) and dichloromethane (1 mL) was stirred under a nitrogen atmosphere at room temperature for 1 h. The reaction was quenched with water and basified with saturated sodium hydrogen carbonate solution. The reaction mixture was extracted with dichloromethane (3 x 50 mL) and the organic layers were combined and washed with brine, dried over anhydrous sodium sulfate and distilled under reduced pressure to give

a red solid. The red solid was dissolved in alkaline ethanol solution (100 mg sodium hydroxide dissolved in 5 mL ethanol) and stirred at room temperature until completion (TLC). The reaction mixture dissolved in a mixture of water and dichloromethane. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. Then, the residue was purified by a silica gel column chromatography (eluent: CH₂Cl₂/Ethanol = 100/1 in the ratio of volume) to afford brown-red solid **PHZOP** (0.059 g, 31.5%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.49 (d, *J* = 4.0 Hz, 2H), 7.73-7.68 (m, 2H), 7.48 (d, *J* = 16.0 Hz, 2H), 7.42 (d, *J* = 7.9 Hz, 2H), 7.25-7.23 (m, 4H), 7.16-7.13 (m, 2H), 6.95 (d, *J* = 16.0 Hz, 2H), 6.62 (d, *J* = 8.5 Hz, 2H), 6.40 (t, 2H), 4.50 (s, br, 4H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 155.83, 149.35, 136.61, 132.29, 131.45, 126.88, 124.87, 124.54, 122.95, 121.46, 121.35, 117.12, 48.33. HRMS (ESI-TOF)) *m/z*: [M+H]⁺ Calcd for C₂₈H₂₄N₄ 417.20737; Found 417.20673.

General organic chemical synthesis of PHZMP

A solution of **TBMP** (0.193 g, 0.45 mmol) in a mixture of trifluoroacetic anhydride (0.5 mL, 3.6 mmol) and dichloromethane (1 mL) was stirred under a nitrogen atmosphere at room temperature for 1 h. The reaction was quenched with water and basified with saturated sodium hydrogen carbonate solution. The reaction mixture was extracted with dichloromethane (3 x 50 mL) and the organic layers were combined and washed with brine, dried over anhydrous sodium sulfate and distilled under reduced pressure to give a red solid. The red solid was dissolved in alkaline ethanol solution (100 mg sodium hydroxide dissolved in 5 mL ethanol) and stirred at room temperature until completion (TLC). The reaction mixture dissolved in a mixture of water and CH₂Cl₂. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. Then, the residue was purified by a silica gel column chromatography (eluent: CH₂Cl₂/Ethanol = 100/1 in the ratio of volume) to afford brown-red solid **PHZMP** (0.063 g, 3%). ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.66 (t, *J* = 10.9 Hz, 2H), 8.36 (d, *J* = 4.1 Hz, 2H), 7.93 (d, *J* = 8.2 Hz, 2H), 7.31 (d, *J* = 6.4 Hz, 4H), 7.14 (m, 4H), 6.89 (m, 2H), 6.66 (m, 2H), 6.34 (s, 1H), 5.22 (s, 1H), 4.40 (s, br, 4H). ¹³C NMR (101 MHz, DMSO-*d*₆) δ 149.14, 147.72, 133.59, 131.94, 131.05, 128.89, 126.43, 125.35, 124.61, 123.76, 119.63, 117.18, 48.47. HRMS (ESI-TOF)) *m/z*: [M+H]⁺ Calcd for C₂₈H₂₄N₄ 417.20737; Found 417.20676.

DMF/	Product	MeOH/	Product	EtOH/	Product
H_2O		H_2O		H_2O	
1:0	Amor. TBOP/Amor. TBMP	1:0	Amor. TBOP/Amor. TBMP	1:0	Amor. TBOP/Amor. TBMP
2:8	Amor. TBOP/Amor. TBMP	2:8	Amor. TBOP+Cyrs. TBOP/	2:8	Amor. TBOP+Cyrs. TBOP/
			Amor. TBMP+Cyrs. TBMP		Amor. TBMP+Cyrs. TBMP
3:7	Crys. PHZOP/Crys. PHZMP	3:7	Crys. TBOP/Amor. TBMP	3:7	Crys. TBOP/Amor. TBMP
4:6	Crys. PHZOP/Crys. PHZMP	4:6	Crys. TBOP/Cyrs. TBMP	4:6	Crys. TBOP/Cyrs. TBMP
5:5	Amor. TBOP/Amor. TBMP	5:5	Crys. TBOP/Cyrs. TBMP	5:5	Crys. TBOP/Cyrs. TBMP
6:4	Amor. TBOP/Amor. TBMP	6:4	Crys. TBOP/Cyrs. TBMP	6:4	Crys. TBOP/Cyrs. TBMP
7:3	Amor. TBOP/Amor. TBMP	7:3	Crys. TBOP/Amor. TBMP	7:3	Crys. TBOP/Amor. TBMP
2:8	Amor. TBOP/Amor. TBMP	2:8	Amor. TBOP+Cyrs. TBOP/	2:8	Amor. TBOP+Cyrs. TBOP/
			Amor. TBMP+Cyrs. TBMP		Amor. TBMP+Cyrs. TBMP
0:1	Amor. TBOP / Amor. TBMP				

Table S1 Solution systems and products from solvothermal experiments.

Amor. is the abbreviation of amorphous; Crys. is the abbreviation of crystalline.

D-H···Cg	H···Cg / Å	X-H···Cg / $^{\circ}$	X-H, Cg / $^\circ$	$X{\cdots}Cg \ / \ \mathring{A}$
C5-H5····Cg4	2.62	131	47	3.307
C10-H10Cg2	2.86	136	56	3.5894
C14-H14A…Cg4	2.78	115	37	3.308
C14-H14B····Cg4	2.91	105	34	3.308
C18-H18Cg1	2.88	124	49	3.489
C25-H25Cg3	2.98	132	54	3.672
C27-H27-Cg3	2.63	142	51	3.412
C27-H27Cg1	3.039	130	67	3.711

Table S2 π ··· π interactions in **PHZMP** crystals.

Fig. S1 Hirshfeld surface of TBPP, TBOP, TBMP, PHZPP, PHZOP, and PHZMP mapped with *d*_{norm}.