Synthesis, preparation and characterization of pyridine-containing

organic crystals with different substitute position using

solvothermal method

Synthesis of TBOP

A mixture of 2-vinylpyridine ($20.0 \mathrm{mmol}, 2.2 \mathrm{~mL}$), 2,8-dibromo-6H,12H-5,11-methanodibenzo $[b, f][1,5]$ diazocine ($5.0 \mathrm{mmol}, 1.9 \mathrm{~g}$), $\mathrm{K}_{2} \mathrm{CO}_{3}(20.0 \mathrm{mmol}, 2.8 \mathrm{~g})$, palladium acetate $(0.001 \mathrm{mmol}, 0.0023 \mathrm{~g})$ and tris(2-methylphenyl) phosphine ($0.001 \mathrm{mmol}, 0.003 \mathrm{~g}$) in NMP $(10 \mathrm{~mL})$ was stirred at $130{ }^{\circ} \mathrm{C}$ for 10 h under N_{2} atmosphere. The reaction mixture was cooled to room temperature and extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for three times. The combined organic layer was washed with water, dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The residue was purified by a silica gel column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Ethanol $=50 / 1$ in the ratio of volume) to afford $\mathbf{T B O P}(0.84 \mathrm{~g}, 1.96 \mathrm{mmol})$ in 39% yield as a light yellow solid. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$), $\delta \mathrm{ppm}: 8.53(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.72-7.77$ (m, $2 \mathrm{H}), 7.54(\mathrm{~d}, J=16.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 4 \mathrm{H}), 7.17-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.13(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.67(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.27(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75.47 MHz , DMSO- d_{6}), δ ppm 155.56, 149.88, 148.95, 137.19, 132.15, 132.08, 128.84, 127.21, 126.29, 126.09, 125.53, 122.59, 122.55, 66.66, 58.62. HRMS (ESI-TOF)) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{4} 429.20737$; Found 429.20694.

Synthesis of TBMP

First, 3-vinylpyridine was synthesized according to literature. A mixture of 3-vinylpyridine (20.0 mmol , 2.2 mL), 2,8-dibromo- $6 \mathrm{H}, 12 \mathrm{H}$-5,11-methanodibenzo $[b, f][1,5]$ diazocine ($5.0 \mathrm{mmol}, 1.9 \mathrm{~g}$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ $(20.0 \mathrm{mmol}, 2.8 \mathrm{~g})$, palladium acetate $(0.001 \mathrm{mmol}, 0.0023 \mathrm{~g})$ and tris(2-methylphenyl) phosphine (0.001 $\mathrm{mmol}, 0.003 \mathrm{~g})$ in NMP $(10 \mathrm{~mL})$ was stirred at $130^{\circ} \mathrm{C}$ for 10 h under N_{2} atmosphere. The reaction mixture was cooled to room temperature and extracted by $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for three times. The combined organic layer was washed with water, dried over anhydrous MgSO_{4} and concentrated under reduced pressure. The residue was purified by a silica gel column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ /Ethanol $=50 / 1$ in the ratio of volume) to afford TBMP ($0.84 \mathrm{~g}, 1.96 \mathrm{mmol}$) in 39.4% yield as a light yellow solid. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}), δ ppm 8.69 (s, 2H), 8.41 (d, $\left.J=4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.97$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.41 (d, $J=9.6$ $\mathrm{Hz}, 2 \mathrm{H}), 7.36$ (d, 2H, $J=8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25$ (d, $J=16.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.21$ (s, 2H), 7.15 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.10(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.67(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 4.18(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}), $\delta \mathrm{ppm} 148.24,148.14,148.07$, 132.95, 132.51, 132.02, 130.07, 128.38, 125.54 , 125.19, 125.07, 123.81, 123.57, 66.26, 58.21. HRMS (ESI-TOF)) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{4}$ 429.20737; Found 429.20697.

General organic chemical synthesis of PHZOP

A solution of TBOP $(0.193 \mathrm{~g}, 0.45 \mathrm{mmol})$ in a mixture of trifluoroacetic anhydride ($0.5 \mathrm{~mL}, 3.6 \mathrm{mmol}$) and dichloromethane (1 mL) was stirred under a nitrogen atmosphere at room temperature for 1 h . The reaction was quenched with water and basified with saturated sodium hydrogen carbonate solution. The reaction mixture was extracted with dichloromethane ($3 \times 50 \mathrm{~mL}$) and the organic layers were combined and washed with brine, dried over anhydrous sodium sulfate and distilled under reduced pressure to give
a red solid. The red solid was dissolved in alkaline ethanol solution (100 mg sodium hydroxide dissolved in 5 mL ethanol) and stirred at room temperature until completion (TLC). The reaction mixture dissolved in a mixture of water and dichloromethane. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. Then, the residue was purified by a silica gel column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Ethanol $=100 / 1$ in the ratio of volume) to afford brown-red solid PHZOP ($0.059 \mathrm{~g}, 31.5 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.49(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.73-7.68(\mathrm{~m}, 2 \mathrm{H})$, $7.48(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.16-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=$ $16.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{t}, 2 \mathrm{H}), 4.50(\mathrm{~s}, \mathrm{br}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}) δ $155.83,149.35,136.61,132.29,131.45,126.88,124.87,124.54,122.95,121.46,121.35,117.12,48.33$. HRMS (ESI-TOF)) $m / z:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{4} 417.20737$; Found 417.20673.

General organic chemical synthesis of PHZMP

A solution of TBMP $(0.193 \mathrm{~g}, 0.45 \mathrm{mmol})$ in a mixture of trifluoroacetic anhydride ($0.5 \mathrm{~mL}, 3.6 \mathrm{mmol}$) and dichloromethane (1 mL) was stirred under a nitrogen atmosphere at room temperature for 1 h . The reaction was quenched with water and basified with saturated sodium hydrogen carbonate solution. The reaction mixture was extracted with dichloromethane ($3 \times 50 \mathrm{~mL}$) and the organic layers were combined and washed with brine, dried over anhydrous sodium sulfate and distilled under reduced pressure to give a red solid. The red solid was dissolved in alkaline ethanol solution (100 mg sodium hydroxide dissolved in 5 mL ethanol) and stirred at room temperature until completion (TLC). The reaction mixture dissolved in a mixture of water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure. Then, the residue was purified by a silica gel column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ Ethanol $=100 / 1$ in the ratio of volume) to afford brown-red solid PHZMP ($0.063 \mathrm{~g}, 3 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 8.66(\mathrm{t}, J=10.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.36(\mathrm{~d}, J=4.1 \mathrm{~Hz}$, 2H), 7.93 (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 7.14(\mathrm{~m}, 4 \mathrm{H}), 6.89(\mathrm{~m}, 2 \mathrm{H}), 6.66(\mathrm{~m}, 2 \mathrm{H}), 6.34$ $(\mathrm{s}, 1 \mathrm{H}), 5.22(\mathrm{~s}, 1 \mathrm{H}), 4.40(\mathrm{~s}, \mathrm{br}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, DMSO- d_{6}) $\delta 149.14,147.72,133.59,131.94$, $131.05,128.89,126.43,125.35,124.61,123.76,119.63,117.18,48.47$. HRMS (ESI-TOF)) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{4}$ 417.20737; Found 417.20676.

Table S1 Solution systems and products from solvothermal experiments.

$\begin{aligned} & \text { DMF/ } \\ & \mathrm{H}_{2} \mathrm{O} \end{aligned}$	Product	$\begin{aligned} & \mathrm{MeOH} / \\ & \mathrm{H}_{2} \mathrm{O} \end{aligned}$	Product	$\begin{aligned} & \mathrm{EtOH} / \\ & \mathrm{H}_{2} \mathrm{O} \end{aligned}$	Product
1:0	Amor. TBOP/Amor. TBMP	1:0	Amor. TBOP/Amor. TBMP	1:0	Amor. TBOP/Amor. TBMP
2:8	Amor. TBOP/Amor. TBMP	2:8	Amor. TBOP+Cyrs. TBOP/ Amor. TBMP+Cyrs. TBMP	2:8	Amor. TBOP+Cyrs. TBOP/ Amor. TBMP+Cyrs. TBMP
3:7	Crys. PHZOP/Crys. PHZMP	3:7	Crys. TBOP/Amor. TBMP	3:7	Crys. TBOP/Amor. TBMP
4:6	Crys. PHZOP/Crys. PHZMP	4:6	Crys. TBOP/Cyrs. TBMP	4:6	Crys. TBOP/Cyrs. TBMP
5:5	Amor. TBOP/Amor. TBMP	5:5	Crys. TBOP/Cyrs. TBMP	5:5	Crys. TBOP/Cyrs. TBMP
6:4	Amor. TBOP/Amor. TBMP	6:4	Crys. TBOP/Cyrs. TBMP	6:4	Crys. TBOP/Cyrs. TBMP
7:3	Amor. TBOP/Amor. TBMP	7:3	Crys. TBOP/Amor. TBMP	7:3	Crys. TBOP/Amor. TBMP
2:8	Amor. TBOP/Amor. TBMP	2:8	Amor. TBOP+Cyrs. TBOP/ Amor. TBMP+Cyrs. TBMP	2:8	Amor. TBOP+Cyrs. TBOP/ Amor. TBMP+Cyrs. TBMP
0:1	Amor. TBOP / Amor. TBMP				

Amor. is the abbreviation of amorphous; Crys. is the abbreviation of crystalline.

Table S2 $\pi \cdots \pi$ interactions in PHZMP crystals.

$\mathrm{D}-\mathrm{H} \cdots \mathrm{Cg}$	$\mathrm{H} \cdots \mathrm{Cg} / \AA$	$\mathrm{X}-\mathrm{H} \cdots \mathrm{Cg} /{ }^{\circ}$	$\mathrm{X}-\mathrm{H}, \mathrm{Cg} /{ }^{\circ}$	$\mathrm{X} \cdots \mathrm{Cg} / \AA$
$\mathrm{C} 5-\mathrm{H} 5 \cdots \mathrm{Cg} 4$	2.62	131	47	3.307
$\mathrm{C} 10-\mathrm{H} 10 \cdots \mathrm{Cg} 2$	2.86	136	56	3.5894
$\mathrm{C} 14-\mathrm{H} 14 \mathrm{~A} \cdots \mathrm{Cg} 4$	2.78	115	37	3.308
$\mathrm{C} 14-\mathrm{H} 14 \mathrm{~B} \cdots \mathrm{Cg} 4$	2.91	105	34	3.308
$\mathrm{C} 18-\mathrm{H} 18 \cdots \mathrm{Cg} 1$	2.88	124	49	3.489
$\mathrm{C} 25-\mathrm{H} 25 \cdots \mathrm{Cg} 3$	2.98	132	54	3.672
$\mathrm{C} 27-\mathrm{H} 27 \cdots \mathrm{Cg} 3$	2.63	142	51	3.412
$\mathrm{C} 27-\mathrm{H} 27 \cdots \mathrm{Cg} 1$	3.039	130	67	3.711

Fig. S1 Hirshfeld surface of TBPP, TBOP, TBMP, PHZPP, PHZOP, and PHZMP mapped with $d_{\text {norm }}$.

