Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2021

Supplementary

 H_3C N N CH_3 CH_3

Chelating(2)

Chelating combining μ_2 and μ_3 -bridging (4)

Chelating combining Bis μ_2 -bridging (3)

Chelating combining monodentate and μ_2 -bridging (5)

Chart S1: Types of 1, 2- bis (1-methylthioimidazolyl) ethane coordination fashion.

Compound		bond distances	(Å)	bond angles	(°)
1	Ag(1)-S(1)	2.504		S(2)-Ag(1)-S(2)	110.44
	Ag(1)-S(2)	2.520		S(1)-Ag(1)-S(2)	104.27
	Ag(1)-S(2)	2.620		S(1)-Ag(1)-O(1)	76.33
	Ag(1)-O(2)	2.683		S(2)-Ag(1)-O(2)	77.57
	Ag(1)-O(1)	2.603		O(2)-Ag(1)-O(1)	48.37
	Ag(2)-S(2)	2.500		O(5)-Ag(1)-S(2)	117.90
	Ag(2)-S(1)	2.460		S(1)-Ag(2)-O(4)	91.20
	Ag(2)-O(4)	2.476		S(1)-Ag(2)-S(2)	147.37
	Ag(2)-O(5)	2.666		O(4)-Ag(2)-O(5)	50.04
2	Ag(2)-S(1)	2.464		S(1)-Ag(2)-S(2)	162.92
	Ag(2)-S(2)	2.432		S(1)-Ag(2)-O(5)	81.53
	Ag(2)-O(2)	2.647		S(2)-Ag(2)-S(5)	115.27
	Ag(1)-O(1)	2.440		S(1)-Ag(1)-S(1)	97.90
	Ag(1)-O(6)	2.485		S(1)-Ag(1)-S(2)	99.84
	Ag(1)-S(1)	2.702		O(1)-Ag(1)-O(6)	123.86
	Ag(1)-S(2)	2.485		O(1)-Ag(1)-S(1)	89.79
	Ag(1)-S(1)	2.665		S(2)-Ag(1)-O(6)	79.18
3	Ag(1)-S(1)	2.516		S(2)-Ag(1)- S(1)	123.79
	Ag(1)-S(1)	2.575		S(2)-Ag(1)-S(1)	109.64
	Ag(1)-S(2)	2.560		S(1)-Ag(1)-S(1)	126.19
4	Ag(1)-S(1)	2.608		S(1)-Ag(1)-S(1)	92.45
	Ag(1)-S(1)	2.703		S(1)-Ag(1)-S(2)	105.64
	Ag(1)-S(2)	2.564		S(1)-Ag(1)-S(4)	93.86
	Ag(1)-S(4)	2.600		S(2)-Ag(1)-S(4)	108.41
	Ag(2)-S(2)	2.651		S(2)-Ag(2)-S(3)	94.75
	Ag(2)-S(3)	2.465		S(2)-Ag(2)-S(4)	126.83
	Ag(2)-S(4)	2.497		S(3)-Ag(2)-S(4)	138.28
5	Ag(1)-S(1)	2.853		S(1)-Ag(1)-S(2)	95.29
	Ag(1)-S(2)	2.586		S(2)-Ag(1)-S(3)	105.27
	Ag(1)-S(3)	2.638		S(3)-Ag(1)-S(4)	84.14
	Ag(1)-S(4)	2.784		S(1)-Ag(1)-S(4)	84.50
	Ag(1)-S(4)	2.895		S(4)-Ag(1)-S(3)	116.30
	Ag(2)-S(3)	2.644		S(3)-Ag(2)-S(4)	88.77
	Ag(2)-S(4)	2.551		U(3)-Ag(2)-S(6)	123.27
	Ag(2)-S(3)	2.038		S(0) - Ag(2) - S(4)	122.//
	Ag(2)-S(0)	2.309		S(3) - Ag(2) - S(0)	8/.01
	Ag(3)-S(1)	2.555		S(2) - Ag(3) - S(0)	δ4.41 02.15
	Ag(3)-S(2)	2.014		S(2)-Ag(3)- $S(1)$	92.1 <i>3</i> 106.80
	Ag(3)-S(3)	2.089		S(1) - Ag(3) - S(3) S(2) - Ag(3) - S(6)	114.84
	Ag(3) - S(0)	2.0/1		S(2)-Ag(3)-S(0) S(5) Ag(2) S(5)	114.04
	Ag(3)-5(0)	2.849		3(3)-Ag(3)-3(3)	110.00

Table S1. Selected bond distances(Å) and bond angles (°) for compounds 1- 5.

Figure S1: Volumetric adsorption isotherms of H2S measured at 278 K for polymer 1-5.

Figure S2. FT-IR spectra for coordination polymers 1-5 before (blue) and after (pink) exposure to H₂S gas.

Figure S3. PXRD patterns for polymers 1-5 the simulated and experimental before and after exposure to H_2S gas.

Figure S4. FT-IR spectra for coordination polymers 1-5 before (pink) and after (black) exposure to NH₃ gas.

Figure S5. PXRD patterns for coordination polymers 1-5 the simulated and experimental before and after exposure to NH₃ gas.

SchemeS1. Experimental method for NH₃ adsorption

The NH₃ gas were selected to evaluate their adsorption capacities for the polymers **1** - **5**. Solid (powder) samples of these polymers were separately exposed to the gas producing reaction mixture in a breaker box (SchemeS6) for 4h at ambient conditions. The gas adsorption by the considered polymer were monitored by the infrared and X-ray powder diffraction techniques through the deposition of these polymers in the vicinity of gases.

*SchemeS1. NH*³ gas absorption system.