Electronic Supporting Information

Construction of three new Co(II)-organic frameworks based on diverse metal clusters :highly selective C₂H₂ and CO₂ capture and magnetic properties

Xian-Feng Sun,^a Jing-Jing Chen,^a Dan Gao,^a Li-Na Zheng,^{*a} Bin Liu,^a Bo Liu,^b and

Tao Ding*a

^aSchool of Environmental and Chemical Engineering, Xi'an Polytechnic University,

Xi'an 710048, P. R China.

^b College of Chemistry & Pharmacy, Northwest A&F University, Yangling, 712100, P.

R. China

Table 51. Selected Dond Length (A) and Angles () 101 1-5					
1					
Co(1)-O(1)	2.086(3)	Co(1)-O(2)	2.054(3)		
Co(1)-O(4)	2.153(5)	Co(1)-O(5)#2	2.098(4)		
Co(1)-O(6)#3	2.093(4)	Co(1)-N(1)#4	2.202(4)		
Co(2)-O(2)#5	2.049(5)	Co(2)-O(2)	2.049(5)		
Co(2)-O(3)#5	2.107(3)	Co(2)-O(3)#1	2.107(3)		
Co(2)-O(3)#6	2.107(3)	Co(2)-O(3)	2.107(3)		
O(1)-Co(1)-O(1)#1	180.0	O(1)#1-Co(1)-O(4)#3	91.81(15)		
O(1)#1-Co(1)-O(4)#2	88.19(15)	O(1)-Co(1)-O(4)#3	88.19(15)		
O(1)-Co(1)-O(4)#2	91.81(15)	O(1)#1-Co(1)-O(6)#1	85.71(17)		
O(1)#1-Co(1)-O(6)	94.29(17)	O(1)-Co(1)-O(6)#1	94.29(17)		
O(1)-Co(1)-O(6)	85.71(17)	O(4)#2-Co(1)-O(6)	94.23(15)		
O(4)#3-Co(1)-O(4)#2	180.0(3)	O(4)#3-Co(1)-O(6)	85.77(15)		
O(4)#3-Co(1)-O(6)#1	94.23(15)	O(4)#2-Co(1)-O(6)#1	85.77(15)		
O(6)-Co(1)-O(6)#1	180.0	O(2)-Co(2)-O(3)	89.16(19)		
O(2)-Co(2)-O(4)#3	109.61(15)	O(2)-Co(2)-O(7)#1	92.00(18)		
O(2)-Co(2)-O(5)#3	169.47(15)	O(2)-Co(2)-N(1)#4	94.39(15)		
O(3)-Co(2)-O(4)#3	82.47(15)	O(5)#3-Co(2)-O(4)#3	59.87(14)		
O(3)-Co(2)-O(5)#3	89.82(18)	O(7)#1-Co(2)-O(3)	178.70(18)		
O(7)#1-Co(2)-O(4)#3	96.59(15)	O(7)#1-Co(2)-N(1)#4	89.02(15)		
O(7)#1-Co(2)-O(5)#3	88.93(17)	N(1)#4-Co(2)-O(3)	91.46(15)		
N(1)#4-Co(2)-O(4)#3	155.06(14)	N(1)#4-Co(2)-O(5)#3	96.12(14)		
Symmetrical codes: #1 -x+1,-y,-z; #2 -x+1/2,y-1/2,-z+1/2; #3 x+1/2,-y+1/2,z-1/2; #4 x,-y+1,z-1/2;					

Table S1 Selected Rond Length (Å) and Angles (9) for 1-3

#5 -x+1/2,y+1/2,-z+1/2; #6 x-1/2,-y+1/2,z+1/2; #7 x,-y+1,z+1/2 for 1.

2						
Co(1)-O(1)	2.0263(9)	Co(1)-O(2)	2.113(3)			
Co(1)-O(2)#1	2.113(3)	Co(1)-O(3)#2	2.077(3)			
Co(1)-O(3)#3	2.077(3)	Co(1)-N(1)#4	2.182(5)			
O(1)-Co(1)-O(2)	93.18(9)	O(1)-Co(1)-O(2)#1	93.18(9)			
O(1)-Co(1)-O(3)#2	91.23(9)	O(1)-Co(1)-O(3)#3	91.23(9)			
O(2)-Co(1)-O(2)#1	173.65(19)	O(1)-Co(1)-N(1)#4	180.0			
O(2)-Co(1)-N(1)#4	86.82(9)	O(2)#1-Co(1)-N(1)#4	86.82(9)			
O(3)#2-Co(1)-O(2)	86.52(16)	O(3)#3-Co(1)-O(2)	93.35(16)			
O(3)#2-Co(1)-O(2)#1	93.35(16)	O(3)#3-Co(1)-O(2)#1	86.52(16)			
O(3)#3-Co(1)-N(1)#4	88.77(9)	O(3)#2-Co(1)-O(3)#3	177.53(19)			
O(3)#2-Co(1)-N(1)#4	88.76(9)	Co(1)#2-O(1)-Co(1)#6	120.0			
Symmetrical codes: #1 y-	-1/3,x+1/3,-z+5/6; #2 -y	x+1,x-y+1,z; #3 x-y+2/3,-y+4	1/3,-z+5/6; #4 y,-			
x+y+1,-z+1; #5 -x+4/3,-x+	y+2/3,-z+7/6; #6 -x+y,-	x+1,z; #7 x-y+1,x,-z+1 for 2	•			
3						
Co(1)-O(1)	2.028(4)	Co(2)-O(2)	2.045(4)			
Co(1)-O(1)#1	2.028(4)	Co(2)-O(3)	2.090(4)			
Co(1)-O(4)#2	2.093(4)	Co(2)-O(4)#3	2.202(4)			
Co(1)-O(4)#3	2.093(4)	Co(2)-O(5)#3	2.164(4)			
Co(1)-O(6)	2.124(4)	Co(2)-O(7)#1	2.062(4)			
Co(1)-O(6)#1	2.124(4)	Co(2)-N(1)#4	2.076(4)			
O(1)-Co(1)-O(1)#1	180	O(2)-Co(2)-O(3)	89.16(19)			
O(1)#1-Co(1)-O(4)#3	91.81(15)	O(2)-Co(2)-O(4)#3	109.61(15)			
O(1)#1-Co(1)-O(4)#2	88.19(15)	O(2)-Co(2)-O(5)#3	169.47(15)			
O(1)-Co(1)-O(4)#3	88.19(15)	O(2)-Co(2)-O(7)#1	92.00(18)			
O(1)-Co(1)-O(4)#2	91.81(15)	O(2)-Co(2)-N(1)#4	94.39(15)			
O(1)#1-Co(1)-O(6)	94.29(17)	O(3)-Co(2)-O(4)#3	82.47(15)			
O(1)#1-Co(1)-O(6)#1	85.71(17)	O(3)-Co(2)-O(5)#3	89.82(18)			
O(1)-Co(1)-O(6)#1	94.29(17)	O(5)#3-Co(2)-O(4)#3	59.87(14)			
O(1)-Co(1)-O(6)	85.71(17)	O(7)#1-Co(2)-O(3)	178.70(18)			
O(4)#3-Co(1)-O(4)#2	180.0(3)	O(7)#1-Co(2)-O(4)#3	96.59(15)			
O(4)#2-Co(1)-O(6)	94.23(15)	O(7)#1-Co(2)-O(5)#3	88.93(17)			
O(4)#3-Co(1)-O(6)	85.77(15)	O(7)#1-Co(2)-N(1)#4	89.02(15)			
O(4)#3-Co(1)-O(6)#1	94.23(15)	N(1)#4-Co(2)-O(3)	91.46(15)			
O(4)#2-Co(1)-O(6)#1	85.77(15)	N(1)#4-Co(2)-O(4)#3	155.06(14)			
O(6)-Co(1)-O(6)#1	180	N(1)#4-Co(2)-O(5)#3	96.12(14)			
Semenatrical codes: #1						

Symmetrical codes: #1 -x+1, y, z ; #1-x+3/2, -y+3/2, -z+1; #2 -x+1, -y+1, -z; #3 x, -y+1, z ;

#4-x+1, y, -z ; #5 -x+2, -y+1, -z+1; #6 -x+2, y, -z+1 for **3**.

MOFs materials	IAST calculated selectivity		Ref.
	C ₂ H ₂ /CH ₄	CO ₂ /CH ₄	
$[(CH_3)_2NH_2][Zn_{1.5}(\mu_3-O)_{0.5}(F-tzba)_{1.25}(bpy)_{0.25}(\mu_2-$	14.4	4.2	22-
$F)_{0.5}] \cdot 2DMF \cdot 2H_2O$	14.4	4.2	238
{[(Me ₂ NH ₂) _{0.5}][Cu _{0.75} (L) _{0.5} (DMA) _{0.375}]·H ₂ O} _n		8.3	6a
$\{[Cu_4(L)_2(H_2O)_4]\cdot 4DMF\cdot 8H_2O\}_n$		3.2	6a
$\{[Cu_4(L)_2(ATZ)_2(H_2O)]\cdot 5DMF\cdot 5H_2O\}_n$		7.2	6a
ZIF-25		2.5	16a
NOTT-202a		1.4	23b
ZJNU-63	13.1	3.5	24a
Sc-ABTC	14.7		24b
${[Co_6(\mu_3-OH)_4(Ina)_8](H_2O)_{10}(DMA)_2}_n$	9.6		23c
ZJU-16a	7.5		24c
MOF-505	~8.9		24d
NOTT-108	~6.3		24d
HNUST-2	~4.3		24d
MOF-2	20.1	7.6	This work
MOF-3	12.1	4.1	This work

Table S2. A comparison of various MOFs materials used for selective adsorption for C_2H_2 and CO_2 over CH_4 .

Figure S1. The L^{2-} ligand viewed as three kinds of 3-c nodes.

Figure S2. PXRD patterns for 1-3: simulated, as-synthesized and activated samples.

Figure S3. TGA for 1: as-synthesized samples.

Figure S4. TGA for 2: as-synthesized and desolvated samples.

Figure S5. TGA for 3: as-synthesized and desolvated samples.

IAST adsorption selectivity calculation

The experimental isotherm data for pure CO₂, CH_4 and N_2 (measured at 298 K) were

fitted using a Langmuir-Freundlich (L-F) model.

$$q = \frac{a * b * p^c}{1 + b * p^c}$$

Where q and p are adsorbed amounts and pressures of component i, respectively. The adsorption selectivities for binary mixtures of CO₂/CH₄ at 273 and 298 K and C₂H₂/CH₄ at 298 K, defined by

$$S_{ads} = (q_1 / q_2) / (p_1 / p_2)$$

Where *qi* is the amount of *i* adsorbed and *pi* is the partial pressure of *i* in the mixture.

(b)

Figure S6. (a) C_2H_2 adsorption isotherms of **2** at 298 K with fitting by L-F model: a =26.95667, b =0.00533, c =0.22434, Chi^2 = 2.00616E-4, R^2 = 0.99988; (b) CO₂ adsorption isotherms of **2** at 298 K with fitting by L-F model: a =40.39902, b =0.00136, c =0.19633, Chi^2 =1.05449E-5, R^2 = 0.99997; (c) CH₄ adsorption isotherms of **2** at 298 K with fitting by L-F model: a = 9.68722, b =4.55244, c =0.00252, Chi^2 = 1.70764E-6, R^2 = 0.99992.

(a)

Figure S7. (a) C_2H_2 adsorption isotherms of **3** at 298 K with fitting by L-F model: a =24.84213, b =0.00331, c =0.1999, Chi^2 = 3.31489E-5, R^2 = 0.99996; (b) CO₂ adsorption isotherms of **3** at 298 K with fitting by L-F model: a =9.26861, b =0.00205, c =0.05827, Chi^2 =5.25549E-7, R^2 = 1; (c) CH₄ adsorption isotherms of **3** at 298 K with fitting by L-F model: a = 9.70998, b =5.72028E-4, c =0.08157, Chi^2 = 1.19325E-6, R^2 = 0.9999.

Calculation of sorption heat for C₂H₂ and CO₂ uptakes using Virial 2 model

The above equation was applied to fit the combined C_2H_2 and CO_2 and isotherm data for desolvated **2a** and **3a** at 273 and 298 K, where *P* is the pressure, *N* is the adsorbed amount, *T* is the temperature, *ai* and *bi* are virial coefficients, and *m* and *n* are the number of coefficients used to describe the isotherms. Q_{st} is the coverage-dependent enthalpy of adsorption and R is the universal gas constant.

Figure S8. (a)Virial analysis of the C_2H_2 adsorption data at 298 K and 273 K for **2**. Fitting results: a0=-6794.18492, a1=4376.90846, a2=-1453.97443, a3=172.82127, a4=-3.47683, Chi[^]2 = 0.00618, R[^]2 = 0.9991; (b) Virial analysis of the CO₂ adsorption data at 298 K and 273 K for **2**. Fitting results: a0=-5675.46522, a1=1030.50188, a2=753.4363, a3=-343.85346, a4=-5.75955, Chi[^]2 = 8.6614E-4, R[^]2 = 0.9994.

(b)

Figure S9. (a)Virial analysis of the C_2H_2 adsorption data at 298 K and 273 K for **3**. Fitting results: a0=-3438.80266, a1=642.98654, a2=-90.36757, a3=-0.09836, a4=-1.78337, Chi[^]2 = 5.28472E-5, R[^]2 = 0.99997; (b) Virial analysis of the CO₂ adsorption data at 298 K and 273 K for **3**. Fitting results: a0=-2772.91188, a1=-143.3409, a2=578.72905, a3=-280.20604, a4=-3.66184, Chi[^]2 = 1.64237E-5, R[^]2 = 0.99999.

Figure S10. The $\chi_M T$, χ_M , and $1/\chi_M$ vs. *T* plots of **1-3 (a-c)**. The green line represents the best fit of the Curie-Weiss law.

Figure S11. IR spectra of the as-synthesized 1-3 in (a-c).