Electronic Supplementary Information

One-dimensional and two-dimensional coordinationpolymers from cluster modular construction

JieLi,^{ab} Yi Tan,^a Chen Cao,^a Zhi-Kang Wang,^a Zheng Niu^{*a} Ying-Lin Song^c and Jian-Ping Lang^{*ab}

^aCollege of Chemistry, Chemical Engineering and Materials Science, SoochowUniversity, Suzhou

215123, People's Republic of China

^bState Key Laboratory of Organometallic Chemistry, Shanghai Institute of OrganicChemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic ofChina

^cSchool of Physical Science and Technology, Soochow University, Suzhou 215006, People's Republic of China

* Correspondence authors at: College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.

Tel: +86-512-65882865; fax: +86-512-65880328.

E-mail address: jplang@suda.edu.cn (J.P. Lang).

Contents

Evnorimont cootio	
	n
Experiment section	U.

1. General procedures S4
2. Third-order NLO measurement of 1-3
Fig. S1 Experimental (top) and theoretical (bottom) ESI-TOF-MS spectra of
$[Tp*WS_3Cu(L1)_2 + 2CH_3OH + H]^+$ in 2S6
Fig. S2 Experimental (top) and theoretical (bottom) ESI-TOF-MS spectra of
$[Tp*WS_3Cu_3(L1)_3]^{2+}$ in 3
Fig. S3 Modules for the basic structural components of 2 and 3
Fig. S4 Normalized Z-scan data of L1 (5.02×10^{-4} M in MeCN at 532 nm) under
open-aperture conditions, showing no detectable nonlinear absorption signal
Fig. S5 Normalized Z-scan data of L1 (5.02×10^{-4} M in MeCN at 532 nm) under
closed-aperture conditions, showing no detectable nonlinear refraction signalS9
Fig. S6 Normalized Z-scan data of 1 (5.02×10^{-4} M in MeCN at 532 nm) under an
open-aperture conditions, showing no detectable nonlinear absorption signalS10
Fig. S7 Normalized Z-scan data of 1 (5.02 \times 10 ⁻⁴ M in MeCN at 532 nm) under
closed-aperture conditions, showing no detectable nonlinear refraction signalS10
Fig. S8 Normalized Z-scan data of 2 (5.02 \times 10 ⁻⁴ M in MeCN at 532 nm) under
open-aperture conditions, showing the nonlinear absorptionS11
Fig. S9 Normalized Z-scan data of 2 (5.02×10^{-4} M in MeCN at 532 nm) under
closed-aperture conditions, showing no detectable nonlinear refraction signalS11
Table S1 The third-order NLO parameters for 2 and 3

References S13
Fig. S13 UV-vis spectra of L1 , 1 , 2 , 3 Cu(MeCN) ₄ BF ₄ and Cu(MeCN) ₄ PF ₆ measured in the solid stateS13
in MeCNS13
Fig. S12 UV-vis spectra of Cu(MeCN) ₄ BF ₄ and Cu(MeCN) ₄ PF ₆ $(2.50 \times 10^{-5} \text{ M})$
Fig. S11 The TGA curve of 3
Fig. S10 The TGA curve of 2 S12

Experiment section

1. General procedures

Elemental analyses (C, H and N) were measured on a Carlo-Erba CHNO-S microanalyzer. UV–Vis spectra of solution and solid state were performed by Varian Cary-50 UV–Vis spectrophotometer. Fourier-transform infrared (FT-IR) spectra in the range 4000-400cm⁻¹ were conducted by Varian 1000 FT-IR spectrometer as KBr disks. ESI-TOF MS spectra were recorded on a Bruker micrOTOF-Q III mass spectrometer. Thermogravimetric analysis (TGA) was conducted by Mettler Toledo Star System at a heating rate of 10 °C/min under nitrogen atmosphere.

2. Third-order NLO measurement and details of 1-3

The solutions of **L1** and **1-3** (5.02×10^{-4} M) in MeCN were placed in a 2 mm quartz cuvette. They were stable in air and laser irradiation under experimental conditions. The pico-second Z-scan technique and a linear polarized laser light ($\lambda = 532$ nm; repetition rate = 2 Hz; width = 15 ps) generated from a frequency-doubled, mode-locked, Q-switched Nd: YAG laser were applied to investigate absorption and refraction. The test method was the same as that reported previously.^{S1}

The nonlinear absorption data of **1-3** in MeCN were measured using the *Z*-scan technique with open aperture. The transmittance of light (*T*) is a function of the sample's *Z* position. The nonlinear absorption ($\alpha = \beta(I_i)$) and the linear absorption coefficient (α_0) are determined by formula (**1**) below:

$$T(Z) = \frac{\alpha_0}{\sqrt{\pi}\beta I_i(Z)(1-e^{-\alpha_0 L})} \int_{-\infty}^{\infty} \ln\left[1+\beta I_i(Z)\frac{1-e^{-\alpha_0 L}}{\alpha_0}e^{-\tau^2}\right] d\tau (\mathbf{1})$$

where α is the effective third-order NLO absorptive coefficient, τ is the time, and *L* was the sample thickness.

The nonlinear refractive data was determined by the ratio of the transmittance measured by closed- and open-aperture. The difference between trough and peak positions (ΔZ_{V-P}), and difference between their normalized transmittance values (ΔT_{V-P}) fit the following two formula originated for a third-order NLO process. Also, the effective third-order NLO refractive index n_2 could be achieved by calculation with formula (**3**):

$$\Delta Z_{V-P} = 1.72\pi\omega_0^2 / \lambda$$
(2)

$$\mathbf{n}_{2}^{eff} = \lambda \alpha_{0} \Delta T_{V-P} / \left[0.812 \pi I \left(1 - e^{\alpha L} \right) \right]$$
(3)

where *I* is the peak irradiation intensity at focus, and λ is the wavelength of the laser.^{S2}

The effective third-order NLO susceptibility $\chi^{(3)}$ and the second hyperpolarizability γ values could be obtained by calculation with the following formulae (4)–(7) from β and n_2 .

$$\chi_{I}^{(3)} = 9 \times 10^{8} \varepsilon_{0} n_{0}^{2} c^{2} \beta / (4\omega\pi) (4)$$

$$\chi_{R}^{(3)} = c n_{0}^{2} n_{2} / (80\pi) (5)$$

$$\chi^{(3)} = [(\chi_{I}^{(3)})^{2} + (\chi_{R}^{(3)})^{2}]^{1/2} (6)$$

$$\gamma = \chi^{(3)} / [N((n_{0}^{2} + 2)/3)^{4}] (7)$$

Where *N* is the density of the molecules in the unit of number of molecules per cubic centimeters, and n_0 is the linear refractive index of MeCN ($n_0 = 1.34$),*c* is the speed of light, and ω is the optical frequency.

Fig. S1 Experimental (top) and theoretical (bottom) ESI-TOF-MS spectra of $[Tp*WS_3Cu(L1)_2 + 2CH_3OH + H]^+$ in 2.

Fig. S2 Experimental (top) and theoretical (bottom) ESI-TOF-MS spectra of $[Tp^*WS_3Cu_3(L1)_3]^{2+}$ in 3.

Fig. S3 Modules for the basic structural components of 2 and 3.

Fig. S4 Normalized Z-scan data of L1 (5.02×10^{-4} M in MeCN at 532 nm) under open-aperture conditions, showing no detectable nonlinear absorption signal.

Fig. S5 Normalized Z-scan data of L1 (5.02×10^{-4} M in MeCN at 532 nm) under closed-aperture conditions, showing no detectable nonlinear refraction signal.

Fig. S6 Normalized Z-scan data of **1** (5.02×10^{-4} M in MeCN at 532 nm) under open-aperture conditions, showing no detectable nonlinear absorption signal.

Fig. S7 Normalized Z-scan data of **1** (5.02×10^{-4} M in MeCN at 532 nm) under closed-aperture conditions, showing no detectable nonlinear refraction signal.

Fig. S8 Normalized Z-scan data of **2** $(5.02 \times 10^{-4} \text{ M in MeCN at 532 nm})$ under open-aperture conditions, showing the nonlinear absorption.

Fig. S9 Normalized Z-scan data of **2** $(5.02 \times 10^{-4} \text{ M in MeCN at 532 nm})$ under closed-aperture conditions, showing no detectable nonlinear refraction signal.

Compound	T_0	n_2 (10 ⁻¹⁷ esu)	$\chi_R^{(3)}$ (10 ⁻¹¹ esu)	$\chi_{l}^{(3)}$ (10 ⁻¹¹ esu)	$\chi^{(3)}$ (10 ⁻¹¹ esu)	γ (10 ⁻²⁹ esu)
2	65%	/	/	0.27	0.27	0.36
3	49%	-2.0	-4.29	0.23	4.30	5.57

Table S1 The third-order NLO parameters for 2 and 3.

Fig. S11 The TGA curve of 3.

According to the TGA data, about ten Et_2O molecules were calculated by weight loss before 265 °C for **3** (obsd: 17.87%, calcd: 18.00%).

Fig. S12 UV-vis spectra of Cu(MeCN)₄BF₄ and Cu(MeCN)₄PF₆ $(2.50 \times 10^{-5} \text{ M})$ in MeCN.

Fig. S13 UV-vis spectra of L1, 1, 2, 3, $Cu(MeCN)_4BF_4$ and $Cu(MeCN)_4PF_6$ measured in the solid state.

References

S1. Z. G. Ren, H. X Li, L. Li, Y. Zhang, J. P. Lang, J. Y. Yang and Y. L. Song, J. Organomet. Chem., 2007, **692**,2205–2215.

S2. M. Sheik-Bahae, A. A.Said, T. H. Wei, D. J.Hagan and E. W. Van Stryland, *Quantum Electron.*, 1990, **26**, 760–769.