

Electronic Supplementary Information (ESI†)

Single-Crystal to Single-Crystal Transformation of a Coordination Chain to a Two-Dimensional Coordination Network through a Photocycloaddition Reaction

Fan Yang,^a Ni Ya Li,^{*a,b} Ye Ge,^{*a} and Dong Liu^{*a,b}

^a College of Chemistry and Materials Science, Huaibei Normal University, 100 DongShan Road, Huaibei 235000, Anhui, P. R. China

^b Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, Jiangsu, P. R. China

Table of Contents

Experimental Section	S3
General procedure	
Synthesis of $[\text{Cd}(\mu\text{-OH}_2)(2,5\text{-fdc})(\text{bpvb})]_n$ (1)	
<i>In-situ</i> synthesis of $[\text{Cd}(\mu\text{-OH}_2)(2,5\text{-fdc})(\text{bpbpvpcb})_{0.5}]_n$ (2)	
Isolation of bpbpvpcb	
X-ray diffraction crystallography	S4
Table S1 Summary of Crystallographic Data for 1 and 2	S5
Table S2 Selected Bond Lengths (Å) and Angles (°) for 1 and 2	S6
Fig. S1 PXRD patterns of 1 and 2	S7
Fig. S2 The ^{13}C CPMAS NMR spectra of 1 and 2	S8
Fig. S3 (a) The ^1H NMR spectrum of bpbpvpcb in d_6 -DMSO at ambient temperature. (b) The ^{13}C NMR spectrum of bpbpvpcb in d_6 -DMSO at ambient temperature.	S9
Fig. S4 The TGA curves for 1 and 2	S10

Experimental Section

General procedure. All chemicals and reagents were obtained from commercial sources and used as received. Infrared (IR) sample was prepared as a KBr pellet, and spectrum was obtained in the 4000–400 cm^{-1} range using a Nicolet Avatar 360 FT-IR spectrophotometer. The elemental analysis for C, H and N was performed on an EA1110 CHNS elemental analyzer. Powder XRD patterns were obtained using a PANalytical X’Pert PRO MPD system (PW3040/60). ^1H NMR (600 MHz) and ^{13}C NMR (150 MHz) spectra were recorded in $\text{DMSO}-d_6$ at room temperature. Cross-polarization magic angle spinning (CPMAS) ^{13}C NMR spectra were recorded at a resonance frequency of 101.6 MHz on a BRUKER ADVANCE DSX 400 MHz spectrometer at ambient temperature. Thermal analysis was performed with a Perkin_Elmer TGA-7 thermogravimetric analyser at a heating rate of 10 $^{\circ}\text{C}$ min^{-1} and a flow rate of 100 cm^3 min^{-1} (N_2). The fluorescence spectra were obtained on a Perkin-Elmer LS55 spectrofluorometer.

Synthesis of $[\text{Cd}(\mu\text{-OH}_2)(2,5\text{-fdc})(\text{bpvb})]_n$ (1): To a 25 mL Teflon-lined autoclave was loaded $\text{Cd}(\text{NO}_3)_2 \cdot 4\text{H}_2\text{O}$ (154 mg, 0.5 mmol), bpvb (142 mg, 0.5 mmol), 2,5-H₂fdc (86 mg, 0.5 mmol) and H_2O (15 mL). The Teflon-lined autoclave was sealed and heated in an oven to 175 $^{\circ}\text{C}$ for 2 d, and then cooled to ambient temperature at a rate of 5 $^{\circ}\text{C}$ h^{-1} to form light-yellow crystals of **1**. Yield: 236 mg (83% yield based on Cd). Anal. calcd. for $\text{C}_{26}\text{H}_{20}\text{CdN}_2\text{O}_6$: C, 54.90; H, 3.54; N, 4.92. Found: C, 55.26; H, 3.37; N, 5.09. IR (KBr disc, ν , cm^{-1}): 3435 (*m*), 1599 (*s*), 1554 (*s*), 1495 (*s*), 1448 (*m*), 1413 (*s*), 1222 (*m*), 1139 (*m*), 1074(*s*), 971 (*m*), 818 (*s*), 781 (*m*), 699 (*s*), 546 (*m*).

In-situ synthesis of $[\text{Cd}(\mu\text{-OH}_2)(2,5\text{-fdc})(\text{bpbpvpcb})_{0.5}]_n$ (2): Single crystals of **1** (114 mg) were irradiated with a 20 W UV-LED lamp ($\lambda = 365$ nm) for approximately 5 h to form crystals of **2** in quantitative yield (based on **1**). Anal. calcd. for $\text{C}_{26}\text{H}_{20}\text{CdN}_2\text{O}_6$: C, 54.90; H, 3.54; N, 4.92. Found: C, 55.19; H, 3.71; N, 4.68. IR (KBr disc, ν , cm^{-1}): 3437 (*m*), 1601 (*s*), 1555 (*s*), 1502 (*s*), 1440 (*m*), 1418 (*s*), 1223 (*m*), 1140 (*m*), 1071(*s*), 962 (*m*), 809 (*s*), 785 (*m*), 690 (*s*), 544 (*m*).

Isolation of bpbpvpcb: A mixture of $\text{Na}_2\text{H}_2\text{edta} \cdot 2\text{H}_2\text{O}$ (112 mg, 0.3 mmol), NaOH (24 mg, 0.6 mmol), H_2O (15 mL), CH_2Cl_2 (20 mL) and **2** (114 mg, 0.2 mmol) was placed in a 100 mL flask

and stirred for 2 h. The organic phase was separated from the reaction mixture and the aqueous layers were extracted with CH_2Cl_2 (3×20 mL). The combined organic phase was washed with NaOH solution and H_2O and dried with anhydrous Na_2SO_4 . The organic phase was concentrated to dryness in vacuo to give bpbpvpcb as light-yellow powder. Yield: 47 mg (83% yield based on **2**). ^1H NMR (600 MHz, DMSO- d_6): δ 8.75 (d, 2H), 8.49 (d, 2H), 8.45 (dd, 2H), 8.25 (dd, 2H), 8.02 (d, 2H), 7.68 (d, 2H), 7.51 (s, 2H), 7.40 (dd, 2H), 7.31 (m, 4H), 7.18 (m, 8H), 4.69 (s, 4H).

X-ray diffraction crystallography: Single-crystal X-ray diffraction data for **1** and **2** were collected with a Bruker SMART APEX II CCD diffractometer equipped with graphite-monochromated Mo-K α ($\lambda = 0.71073$ Å) by using the Φ/ω scan technique. Absorption correction was based on symmetry equivalent reflections using the SADABS program.¹ Single crystals of **1** and **2** suitable for X-ray analysis were obtained directly from the above preparation procedure. And its structure was solved by direct methods and refined on F^2 by full-matrix least-squares methods with the *SHELXL-2014* program.² All non-hydrogen atoms refined anisotropically. The hydrogen atoms of the water molecules in **1** and **2** were located from the Fourier map and included in the final refinement by the use of geometrical restraints with the O–H distances being fixed at 0.85 Å and $U_{\text{iso}}(\text{H})$ equivalent to 1.5 times $U_{\text{eq}}(\text{O})$. All other H atoms were introduced at the calculated positions and included in the structure-factor calculations.

References:

- 1 G. M. Sheldrick, *A program for the Siemens Area Detector Absorption correction*, University of Göttingen, Göttingen, Germany, 1997.
- 2 G. M. Sheldrick, *Acta Cryst.*, 2015, **C71**, 3-8.

Table S1 Summary of Crystallographic Data for **1** and **2**.

Compound	1	2
chemical formula	C ₂₆ H ₂₀ CdN ₂ O ₆	C ₂₆ H ₂₀ CdN ₂ O ₆
formula weight	568.85	568.85
crystal system	triclinic	triclinic
space group	<i>P</i> Error!	<i>P</i> Error!
<i>a</i> (Å)	9.330(2)	9.353(6)
<i>b</i> (Å)	10.120(3)	10.076(6)
<i>c</i> (Å)	12.688(3)	12.911(8)
α (°)	101.561(8)	97.09(2)
β (°)	90.354(10)	96.377(19)
γ (°)	98.996(8)	100.882(16)
<i>V</i> (Å ³)	1158.4(5)	1174.4(13)
<i>Z</i>	2	2
<i>D_c</i> (g/cm ³)	1.631	1.609
F(000)	572	572
μ (MoK α ,cm ⁻¹)	0.989	0.975
total no. of reflns	63141	61910
no. of unique reflns	5314	5339
no. of obsd. reflns	316	316
<i>R</i> _{int}	0.0270	0.0497
<i>R</i> ₁ ^a	0.0202	0.0315
<i>wR</i> ₂ ^b	0.0533	0.0652
<i>GOF</i> ^c	1.064	1.122

^a $R = \sum ||F_o| - |F_c|| / \sum |F_o|$. ^b $wR = \{\sum w(F_o^2 - F_c^2)^2 / \sum w(F_o^2)^2\}^{1/2}$. ^c $GOF = \{\sum w[(F_o^2 - F_c^2)^2] / (n-p)\}^{1/2}$,

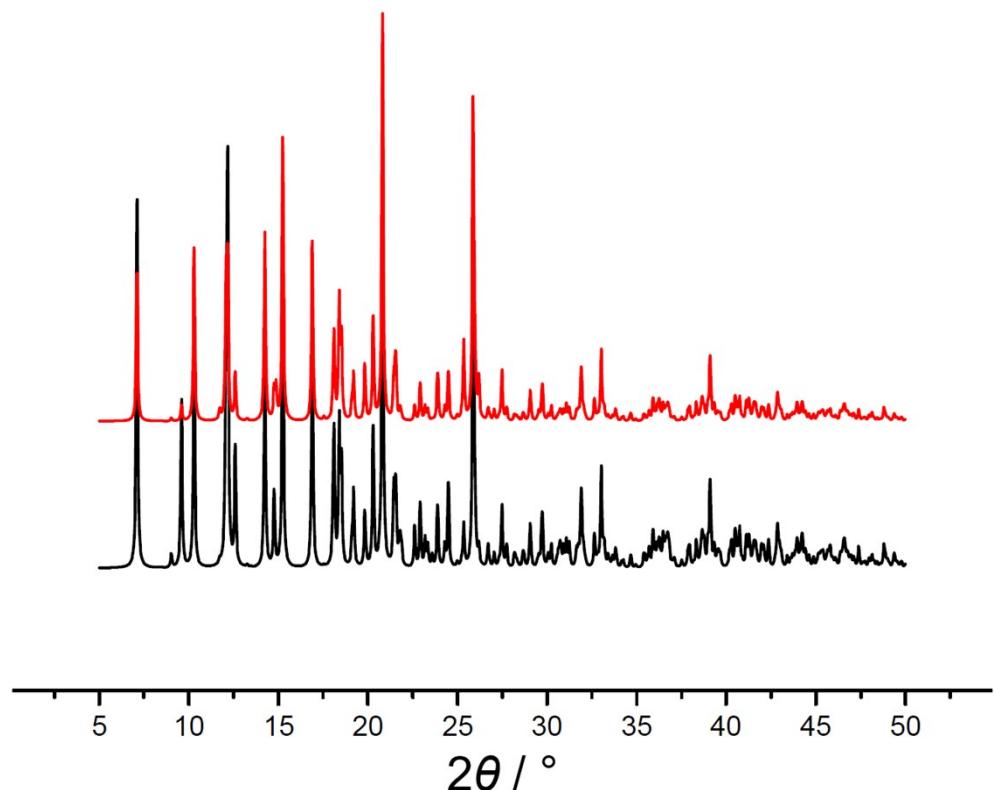
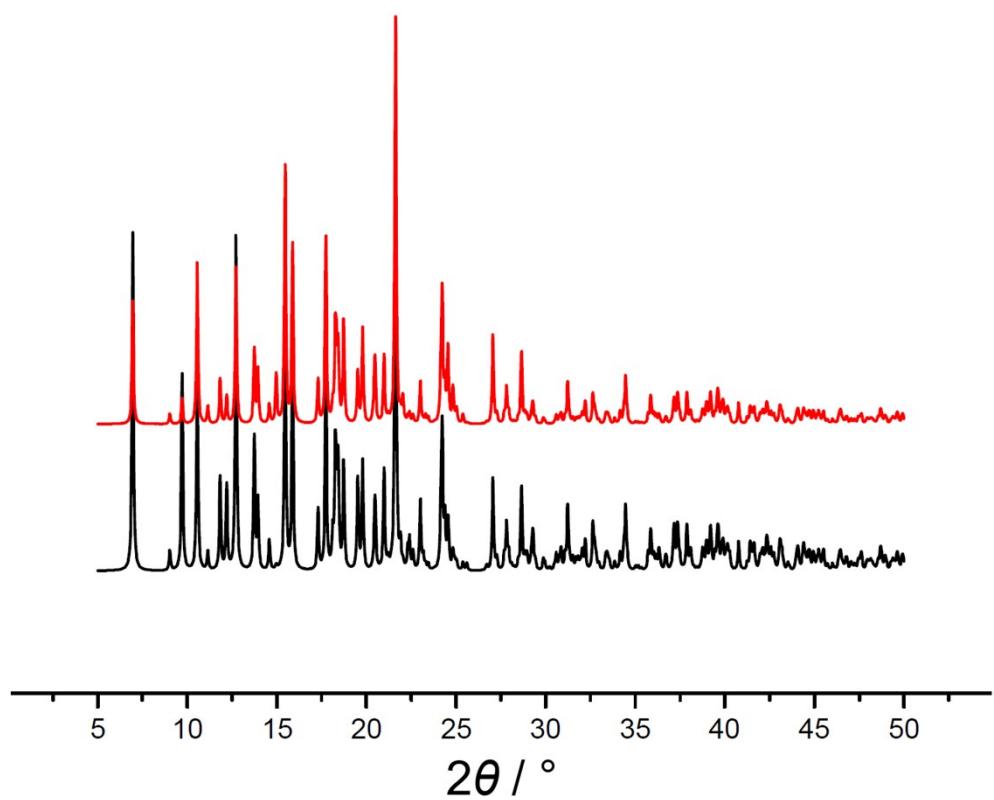
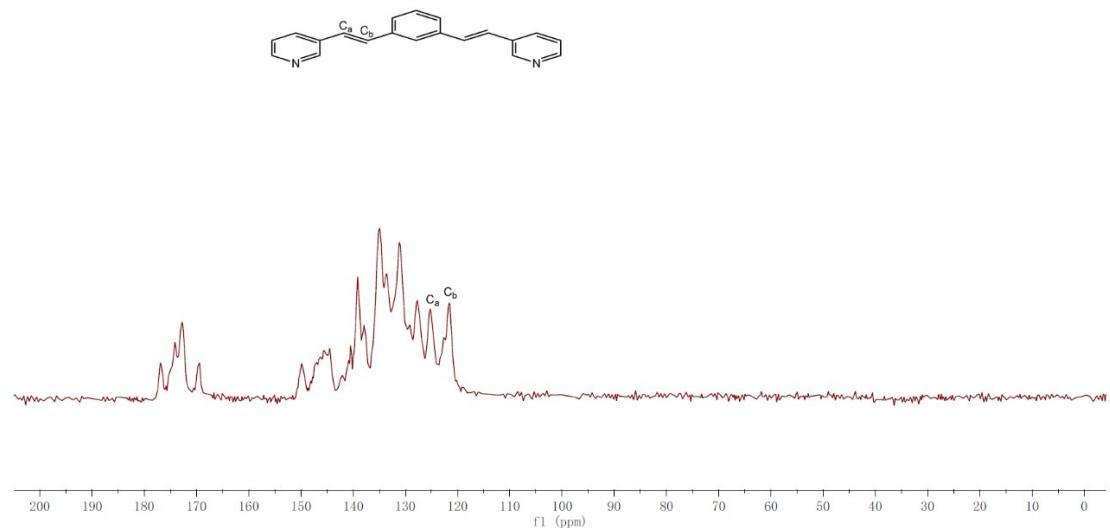

where *n* is the number of reflections and *p* is total number of parameters refined.

Table S2. Selected bond lengths (Å) and angles (°) for **1** and **2**.


1			
Cd(1)-O(1)	2.2533(13)	Cd(1)-O(6)	2.2822(14)
Cd(1)-O(3A)	2.3214(13)	Cd(1)-N(1)	2.3260(15)
Cd(1)-N(2B)	2.3534(16)	Cd(1)-O(4A)	2.5666(14)
O(1)-Cd(1)-O(6)	126.49(5)	O(1)-Cd(1)-O(3A)	96.50(5)
O(6)-Cd(1)-O(3A)	136.64(5)	O(1)-Cd(1)-N(1)	90.03(5)
O(6)-Cd(1)-N(1)	91.67(5)	O(3A)-Cd(1)-N(1)	93.83(5)
O(1)-Cd(1)-N(2B)	87.42(5)	O(6)-Cd(1)-N(2B)	90.40(5)
O(3A)-Cd(1)-N(2B)	85.77(5)	N(1)-Cd(1)-N(2B)	177.36(5)
O(1)-Cd(1)-O(4A)	149.50(5)	O(6)-Cd(1)-O(4A)	83.86(5)
O(3A)-Cd(1)-O(4A)	53.84(4)	N(1)-Cd(1)-O(4A)	85.63(5)
N(2B)-Cd(1)-O(4A)	96.22(5)		
2			
Cd(1)-O(6)	2.265(2)	Cd(1)-O(1)	2.281(2)
Cd(1)-N(1)	2.322(3)	Cd(1)-N(2A)	2.341(3)
Cd(1)-O(4B)	2.371(2)	Cd(1)-O(3B)	2.478(2)
O(6)-Cd(1)-O(1)	127.38(8)	O(6)-Cd(1)-N(1)	93.34(8)
O(1)-Cd(1)-N(1)	91.67(8)	O(6)-Cd(1)-N(2A)	89.71(8)
O(1)-Cd(1)-N(2A)	87.52(8)	N(1)-Cd(1)-N(2A)	176.68(8)
O(6)-Cd(1)-O(4B)	142.26(7)	O(1)-Cd(1)-O(4B)	89.68(8)
N(1)-Cd(1)-O(4B)	92.31(8)	N(2A)-Cd(1)-O(4B)	84.47(8)
O(6)-Cd(1)-O(3B)	89.42(7)	O(1)-Cd(1)-O(3B)	143.05(7)
N(1)-Cd(1)-O(3B)	81.75(8)	N(2A)-Cd(1)-O(3B)	96.97(7)
O(4B)-Cd(1)-O(3B)	54.61(7)		

Symmetry codes: **(1)** A: $x, y + 1, z$; B: $-x + 1, -y, -z + 1$. **(2)** A: $-x + 2, -y + 1, -z + 1$; B: $x, y - 1, z$.

(a)



(b)

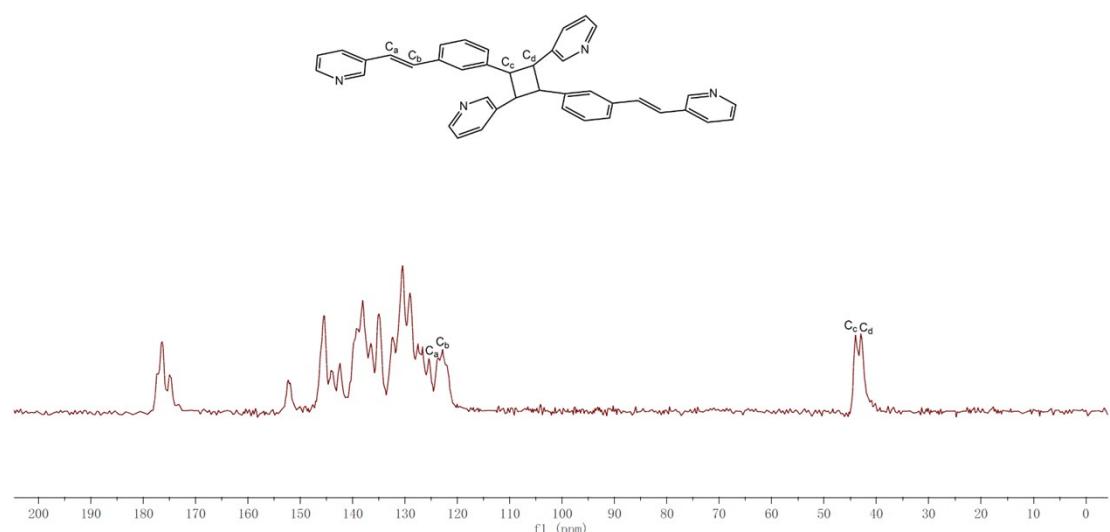
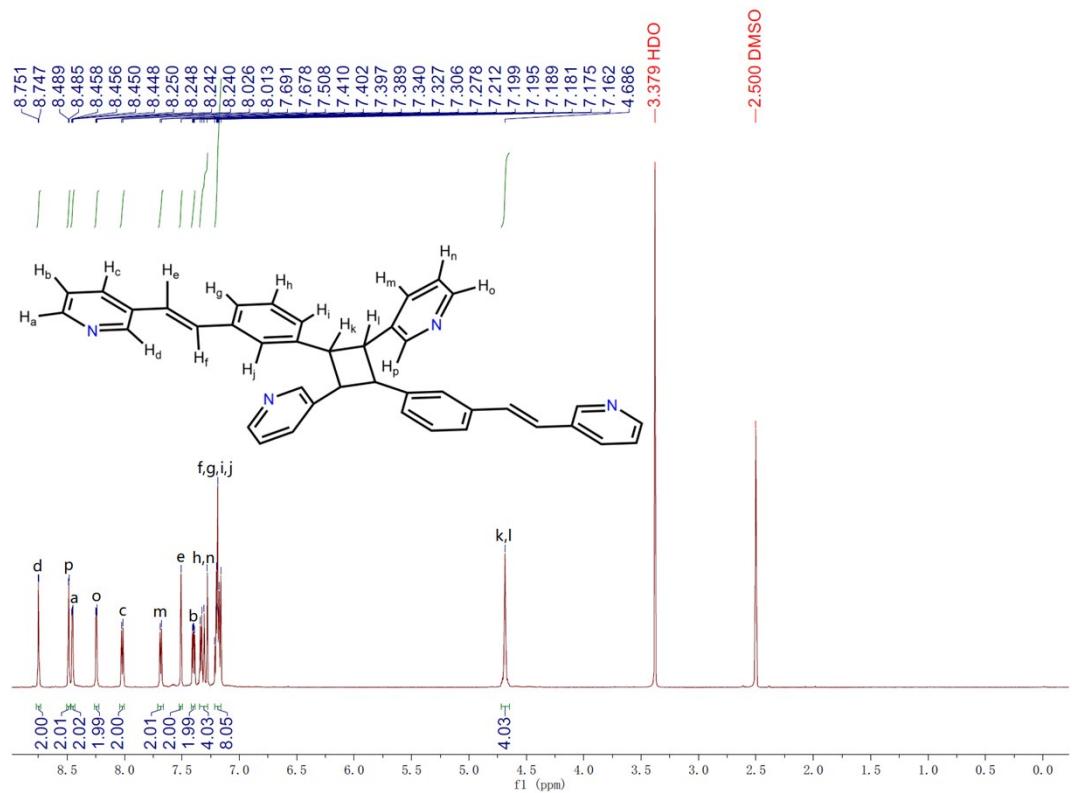


Fig. S1 PXRD patterns for **1** (a) and **2** (b). Simulated: black; Experimental: red.

(a)



(b)

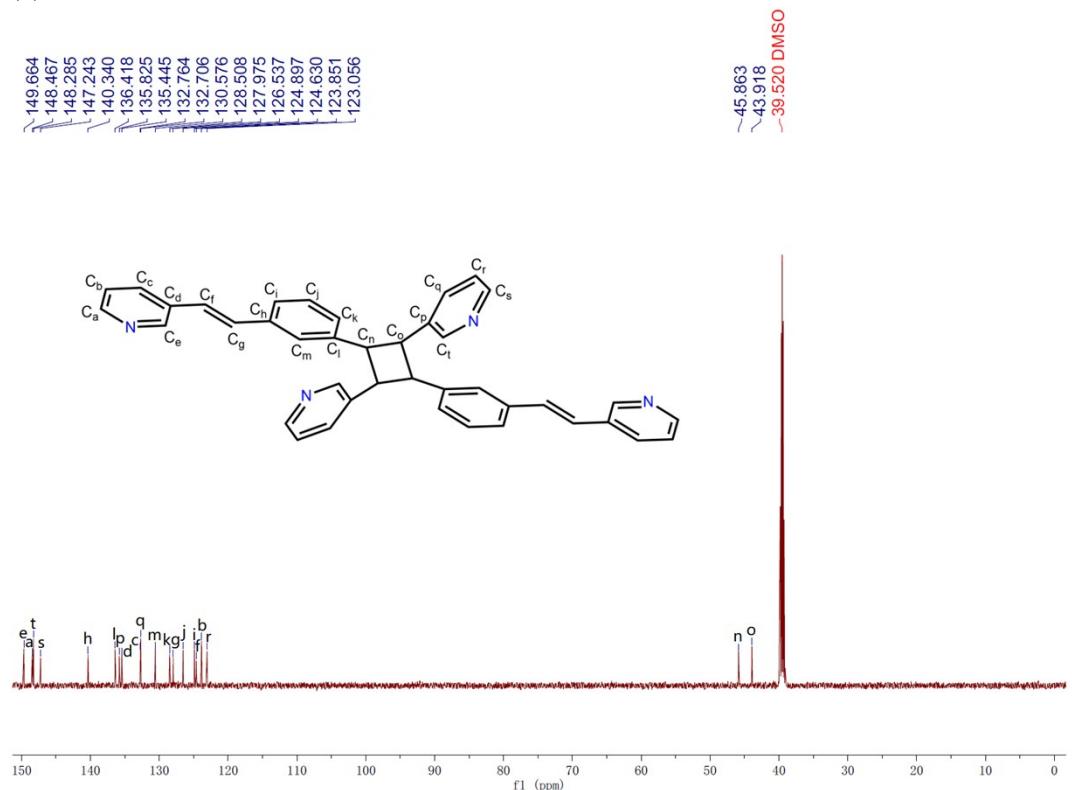
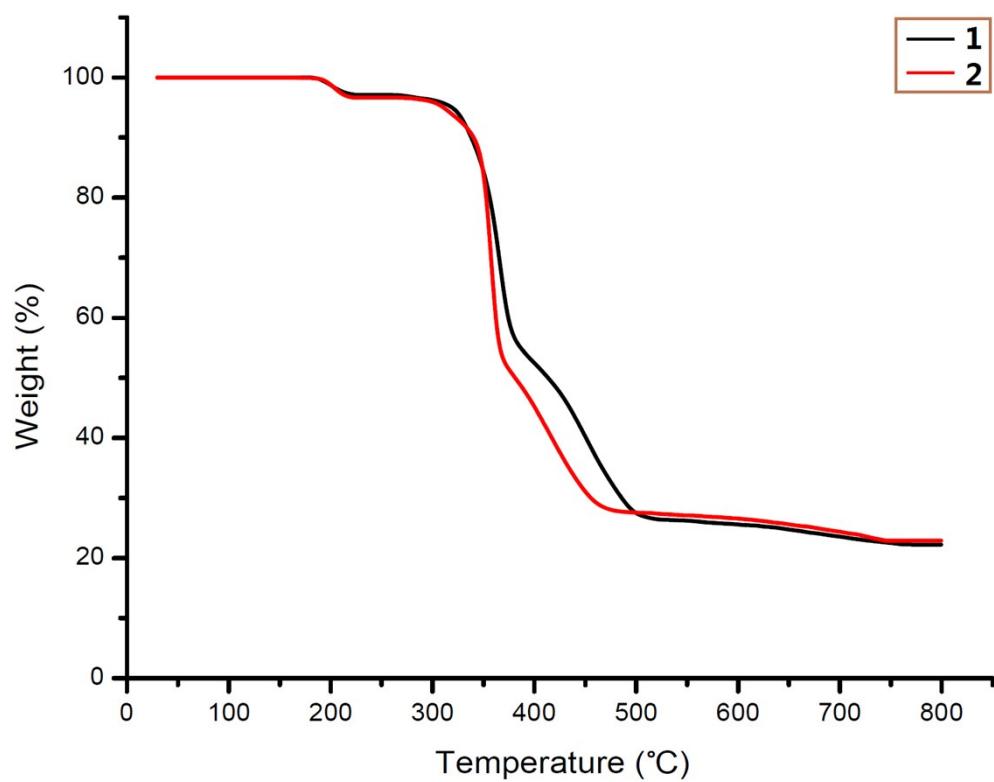


Fig. S2 The ¹³C CPMAS NMR spectra of **1** (a) and **2** (b).


(a)

(b)

Fig. S3 (a) The ¹H NMR spectrum of bpbpvpcb in *d*₆-DMSO at ambient temperature. (b) The ¹³C NMR spectrum of bpbpvpcb in *d*₆-DMSO at ambient temperature.

Fig. S4 The TGA curves for **1** and **2**.