Supporting Information

Morphological evolution of carbonated hydroxyapatite to faceted nanorods through intermediate states

Yuki Hagiwara, Mihiro Takasaki, Yuya Oaki, and Hiroaki Imai*

Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan. E-mail*: <u>hiroaki@applc.keio.ac.jp</u>

Fig. S1 FTIR spectra of the products from calcite. Reaction time: 0.2 h (a), 0.5 h (b), 2 h (c), 6 h (d), and 24 h (e). Broad signals from 3000 to 3700 cm⁻¹ and around 1600 cm⁻¹ are assigned to stretching and bending vibrations of H_2O that were adsorbed on the surface of HA nanosheets.

Fig. S2 Estimation of the concentration of CO_3^{2-} based on the FTIR signal intensity of CO_3^{2-} (1415 cm⁻¹) and PO_4^{3-} (575 cm⁻¹).

Fig. S3 SEM (a) and TEM (b) images of the original calcite nanoparticles.

Fig. S4 SEM (a) and TEM (b) images of the products from calcite after the reaction for 6 h.

Fig. S5 XRD patterns of the products from calcite after the reaction at 60 °C for 0.5 h (a) and 6 h (b).

.

Fig. S6 TEM images of the products from calcite after the reaction at 60 °C for 0.5 h (a) and 6 h (b).

Fig. S7 FTIR spectra of the products from ion precursors after hydrothermal treatment for 0.5 h. Broad signals from 3000 to 3700 cm⁻¹ and around 1600 cm⁻¹ are assigned to stretching and bending vibrations of H_2O that were adsorbed on the surface of HA nanosheets.