Four anionic Ln-MOF for remarkable separations for C2H2–CH4 / CO2–CH4 and highly sensitive sensing of nitrobenzene

Cai-Hong Zhan#, Dan-Ping Huang#, Yu Wang, Wei-Tao Mao, Xiao-Juan Wang*, Zhan-Guo Jiang*, and Yun-Long Feng

These authors contributed equally to this work; E-mail: wangxj@zjnu.cn, jzg@zjnu.cn

Table of Contents

S1	Materials1
S2 (General Experimental Section1
	Powder X-ray Diffraction (PXRD)1
	Thermogravimetric Analyses (TGA)2
	Single-crystal X-ray diffraction (SCXRD)2
S3.	Synthesis and Experimental Section2
	Synthesis of [Gd ₃ L ₃ (HCOO)]·Me ₂ NH ₂ ⁺ ·7DMF (1)2
	Synthesis of $[Tb_3L_3(HCOO)] \cdot Me_2NH_2^+ \cdot 7DMF$ (2)
	Synthesis of [Ho ₃ L ₃ (HCOO)]·Me ₂ NH ₂ ⁺ ·7DMF (3)
	Synthesis of [Dy ₃ L ₃ (HCOO)]·Me ₂ NH ₂ ⁺ ·7DMF (4)3
S4.	Crystal data and structure refinement

S5 Powder X-ray diffraction (PXRD)	4
S6 Thermogravimetric analyses (TGA)	6
S7 Reference	6
S8 Tables for bond lengths	7

S1 Materials

All starting materials and regents were purchased from commercial suppliers and used without further purification. 3-(3,5-dicarboxylphenyl)-5-(4-carboxylphenyl)-1,2,4-triazole; $HO(NO_3)_3 \cdot 6H_2O$; $Dy(NO_3)_3 \cdot 6H_2O$; $Tb(NO_3)_3 \cdot 6H_2O$; $Gd(NO_3)_3 \cdot 6H_2O$; DMF; H_2O ; HNO_3 .

S2 General Experimental Section

Powder X-ray Diffraction (PXRD)

Powder XRD patterns were obtained using a Bruker D8 Advance X-ray diffractometer with (λ (CuK α) = 1.5405 Å) radiation.

Thermogravimetric Analyses (TGA)

They were carried out on a TA Instruments STA499 F5 thermobalance with a 100 mL·min⁻¹ flow of nitrogen; the temperature was ramped from 20 °C to 800 °C at a rate of 5 °C·min⁻¹.

Single-crystal X-ray diffraction (SCXRD)

A suitable crystal of $[Gd_3L_3(HCOO)] \cdot Me_2NH_2^+ \cdot 7DMF$ (1); $[Tb_3L_3(HCOO)] \cdot Me_2NH_2^+ \cdot 7DMF$ (2); $[Ho_3L_3(HCOO)] \cdot Me_2NH_2^+ \cdot 7DMF$ (3); $[Dy_3L_3(HCOO)] \cdot Me_2NH_2^+ \cdot 7DMF$ (4) were mounted in a Hampton cryoloop with Paratone® N oil cryoprotectant. Intensity data collections were carried out at T =296(2) K with a Bruker D8 VENTURE diffractometer equipped with a PHOTON

100 CMOS bidimensional detector using a high brilliance IµS microfocus X-ray Mo Ka monochromatized radiation ($\lambda = 0.71073$ Å). The structures were solved by intrinsic phasing methods and refined by full-matrix least squares using the SHELX-TL package.¹ Single crystal X-ray analysis shows that: 1-4 are heterogeneous homocrystalline structures, monoclinic crystal system, C2/m space group. In the process of structural refinement, it was found that the two positions of the benzoate (C24-C29, C31, O9 and O10) of one of the ligands L³⁻ were statistically distributed, and the occupancy ratio was 0.5:0.5. Crystallographic data and structural refinement parameters of 1-4 are listed in Table 1-4. Further details about of the crystal structure determinations may be obtained free of charge via the Internet at https://www.ccdc.cam.ac.uk/. CCDC 2063236-2063239. Crystallographic data for single-crystal X-ray diffraction studies are summarized in Table S1.

S3. Synthesis and Experimental Section

Synthesis of [Gd₃L₃(HCOO)]·Me₂NH₂⁺·7DMF (1)

H₃L (5.0 mg, 0.014 mmol), Gd(NO₃)₃·6H₂O (15 mg, 0.033 mmol) , 1.5 mL DMF, 0.3 mL H₂O, 30 μ L 68% HNO₃, then the mixture was sealed in a 20 mL Teflon-lined bomb, put it in the programed raising and cooling oven (first heat up to 160°C for 4 h, keep 160°C constant temperature for 3 days, then cool down for 3 days to 35°C). The reaction kettle was taken out, washed with DMF, and the colorless bulk single crystal 10 was synthesized. Yield: 65% (based on H₃L), chemical formula: C₇₅H₈₂N₁₇O₂₇Gd₃. Elemental analysis calcd for 1 (%): C, 42.38; H, 3.89; N, 11.21. Found (%): C, 42.36; H, 3.91; N, 11.23. Main infrared spectrum peak position (KBr, cm⁻¹): 3425, 1654, 1576, 1415, 1099, 1021, 859, 788, 665, 516.

Synthesis of [Tb₃L₃(HCOO)]·Me₂NH₂⁺·7DMF (2)

Tb(NO₃)₃·6H₂O was used to replace Gd(NO₃)₃·6H₂O, and 2 was obtained by using the synthesis method of 1. Yield: 76% (based on H₃L), chemical formula: $C_{75}H_{82}N_{17}O_{27}Tb_3$. Elemental analysis calcd for 2 (%): C, 42.28; H, 3.88; N, 11.18. Found (%): C, 42.25; H, 3.80; N, 11.20. Main infrared spectrum peak position (KBr, cm⁻¹): 3425, 1654, 1557, 1402, 1092, 1021, 859, 794, 658, 516.

Synthesis of [Ho₃L₃(HCOO)]·Me₂NH₂⁺·7DMF (3)

Ho(NO₃)₃·6H₂O was used to replace Gd(NO₃)₃·6H₂O, and 3 was obtained by using the synthesis method of 1. Yield: 58% (based on H₃L), chemical formula: $C_{75}H_{82}N_{17}O_{27}Ho_3$. Elemental analysis calcd for 3 (%): C, 41.93; H, 3.85; N, 11.09. Found (%):C, 41.69; H, 3.91; N, 11.23. Main infrared spectrum peak position (KBr, cm⁻¹): 3425, 1654, 1538, 1402, 1105, 1021, 859, 795, 665, 516.

Synthesis of [Dy₃L₃(HCOO)]·Me₂NH₂⁺·7DMF (4)

 $Dy(NO_3)_3 \cdot 6H_2O$ was used to replace $Gd(NO_3)_3 \cdot 6H_2O$, and 4 was obtained by using the synthesis method of 1. Yield: 76% (based on H_3L), chemical formula: : $C_{75}H_{82}N_{17}O_{27}Dy_3$. Elemental analysis calcd for 4 (%): C, 42.07; H, 3.86; N, 11.12 Found (%): C, 41.90; H, 3.92; N, 11.23. Main infrared spectrum peak position (KBr, cm⁻¹): 3425, 1654, 1545, 1408, 1099, 1021, 859, 795, 665, 516.

S4. Crystal data and structure refinement

Compound	H ₃ LGd	H ₃ LTb	H ₃ LHo	H ₃ LDy
Empirical formula	$C_{52}H_{25}Gd_{3}N_{9}O_{20}$	$C_{52}H_{25}Tb_{3}N_{9}O_{20} \\$	$C_{52}H_{25}Ho_{3}N_{9}O_{20}$	$C_{52}H_{25}Dy_{3}N_{9}O_{20} \\$
Formula weight	1567.56	1572.60	1590.60	1583.31
Temperature/K	296(2)	296(2)	296(2)	296(2)
Crystal system	monoclinic	monoclinic	monoclinic	monoclinic
Space group	C2/m	C2/m	C2/m	C2/m
a/Å	19.2170(13)	19.173(3)	19.0512(16)	19.120(5)
b/Å	28.514(2)	28.476(3)	28.4046(16)	28.411(5)
c/Å	15.3668(11)	15.403(2)	15.4074(10)	15.383(4)
α/°	90.00	90.00	90.00	90.00
β/°	100.677(4)	100.962(11)	101.195(5)	100.982(18)

Table S1. Crystal data and structure refinement for compounds 1-4.

γ/°	90.00	90.00	90.00	90.00
Volume/Å ³	8274.6(10)	8255.7(19)	8178.9(10)	8203(3)
Z	4	4	4	4
pcalcg/cm ³	1.258	1.265	1.292	1.282
µ/mm ⁻¹	2.467	2.632	2.965	2.795
F(000)	4236.0	4248.0	4272.0	4260.0
Crystal size/mm3	$0.21\times0.14\times0.10$	$0.23 \times 0.12 \times 0.11$	$0.20 \times 0.13 \times 0.12$	$0.22 \times 0.12 \times 0.10$
Radiation	MoK α ($\lambda = 0.71073$)	MoK α ($\lambda = 0.71073$)	MoK α ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
2Θ range for data collection / °	2.7 to 55.38	2.6 to 49.98	2.6 to 55.4	2.6 to 50
Index ranges	$\begin{array}{l} \text{-}25 \leq h \leq 25, \ \text{-}37 \leq k \leq \\ \\ 37, \ \text{-}20 \leq l \leq 20 \end{array}$	$\begin{array}{l} -22 \leq h \leq 22, \ -33 \leq k \leq \\ \\ 33, \ -18 \leq l \leq 18 \end{array}$	$\label{eq:constraint} \begin{array}{l} \text{-}24 \leq h \leq 24, \ \text{-}36 \leq k \leq \\ \\ 36, \text{-}20 \leq l \leq 20 \end{array}$	$\label{eq:22} \begin{array}{l} -22 \leq h \leq 22, \ -33 \leq k \leq \\ \\ 33, -18 \leq l \leq 18 \end{array}$
Reflections collected	110232	121194	133145	110073
Independent	9793 [Rint = 0.0905,	7432 [Rint = 0.2065,	9693 [Rint = 0.1420,	7396 [Rint = 0.1524,
reflections	Rsigma = N/A]	Rsigma = N/A]	Rsigma = N/A]	Rsigma = N/A]
Data/restraints/para meters	9793/41/360	7432/120/348	9693/78/360	7396/125/360
Goodness-of-fit on F^2	1.046	1.047	1.039	1.283
Final R indexes	R1 = 0.0533, wR2 =	R1 = 0.0966, wR2 =	R1 = 0.0823, wR2 =	R1 = 0.0986, wR2 =
[I>=2σ (I)]	0.1359	0.2632	0.2078	0.2263
Final R indexes [all	R1 = 0.0736, wR2 =	R1 = 0.1208, wR2 =	R1 = 0.1099, wR2 =	R1 = 0.1184, wR2 =
data]	0.1441	0.2860	0.2267	0.2392
Largest diff. peak/	3.41/-2.58	3.77/-3.37	2.64/-3.78	4.10/-1.58
hole / e Å-3				

S5 Powder X-ray diffraction (PXRD)

As shown in Figure S1, from the theoretical simulation and experimental PXRD spectra of 1-4, it can be seen that the main peak positions of the four MOFs are the same, and the individual small peaks are different, mainly due to the influence of the solvent molecules in the MOFs. It shows that the experimentally synthesized crystal is a pure phase substance and can be used for the determination of other properties

Figure S1 Experimental and simulated PXRD patterns.

S6 Thermogravimetric analyses (TGA)

As shown in Figure S2, from the thermogravimetric curve of 1-4, it can be seen that their TG curves are very similar, which indicates that they have similar thermal stability. Take 1 as an example for analysis. The thermogravimetric curve of 1 shows that the first significant weight loss occurred in the temperature range of $30-301^{\circ}$ C, with a total loss of 25.3%. In this interval, seven DMF molecules and one counterion were lost (theoretical value 25.7%). As the temperature slowly increased, the ligand L³⁻ began to decompose, and the 1-4 skeleton opened and slowly collapsed.

Figure S2 Thermogravimetric curve of 1-4

Figure S3 The estimated aperture of one-dimensional tunnels viewed by two directions.

S7 Reference

1 Sheldrick, G. M. Acta Cryst. A 2008, 64, 112.

S8 Tables for bond lengths

Table 1. Bond lengths	(Å)) for compound 1
-----------------------	-----	------------------

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Gd1	O8	2.281(4)	N5	N511	1.240(14)
Gd1	081	2.281(4)	N5	C2311	1.240(14)
Gd1	O32	2.363(3)	N5	C24	1.748(8)
Gd1	O33	2.363(3)	C1	C6	1.380(8)
Gd1	O64	2.425(4)	C1	C2	1.402(6)
Gd1	O65	2.425(4)	C1	C15	1.498(6)
Gd1	055	2.560(3)	C2	C3	1.392(7)
Gd1	054	2.560(3)	C3	C4	1.396(8)

Gd1	C175	2.860(5)	С3	C16	1.493(7)
Gd1	C174	2.860(5)	C4	C5	1.391(7)
Gd1	Gd2	4.0088(4)	C5	C6	1.385(8)
Gd1	Gd21	4.0088(4)	C5	С7	1.478(9)
Gd2	011	2.278(6)	C8	C9	1.474(9)
Gd2	0122	2.355(5)	C9	C14	1.386(9)
Gd2	O106	2.362(10)	C9	C10	1.403(9)
Gd2	07	2.370(4)	C10	C11	1.367(8)
Gd2	022	2.383(4)	C11	C12	1.392(8)
Gd2	01	2.444(4)	C12	C13	1.371(8)
Gd2	055	2.478(4)	C12	C17	1.511(7)
Gd2	033	2.534(3)	C13	C14	1.376(8)
Gd2	097	2.550(9)	C16	Gd28	2.892(5)
Gd2	043	2.557(4)	C17	Gd19	2.860(5)
Gd2	02	2.610(3)	C18	C19	1.385(6)
Gd2	C163	2.892(5)	C18	C1911	1.385(6)
01	C15	1.263(6)	C19	C20	1.391(7)
02	C15	1.266(6)	C19	C30	1.525(6)
02	Gd22	2.383(4)	C20	C21	1.386(7)
03	C16	1.293(7)	C21	C2011	1.386(7)
03	Gd12	2.363(3)	C21	C22	1.495(13)
03	Gd28	2.534(3)	C22	N411	1.315(9)
04	C16	1.226(6)	C24	C25	1.4016
04	Gd28	2.557(4)	C24	C29	1.4018
05	C17	1.256(7)	C25	C26	1.4008
05	Gd29	2.478(4)	C26	C27	1.4016
1			1		1

05	Gd19	2.560(3)	C27	C28	1.402
O6	C17	1.275(7)	C27	C31	1.411
O6	Gd19	2.425(4)	C27	C3210	1.5366
07	C30	1.247(6)	C28	C29	1.4014
08	C30	1.263(6)	C31	C3210	0.3224
09	01110	0.330(9)	C31	01210	1.0988
09	C3210	0.956(9)	C31	O1110	1.5682
09	C31	1.251(9)	011	097	0.330(12)
09	Gd210	2.550(9)	011	C32	1.264
O10	01210	0.254(11)	011	C317	1.5682
O10	C31	1.235(9)	C32	C317	0.3224
O10	C3210	1.438(9)	C32	097	0.956(15)
010	Gd26	2.362(10)	C32	012	1.271
N1	C8	1.314(9)	C32	0107	1.438(15)
N1	C7	1.337(8)	C32	C277	1.5366
N2	C7	1.323(9)	012	O107	0.254(18)
N2	N3	1.365(8)	012	C317	1.0988
N3	C8	1.307(9)	012	Gd22	2.355(8)
N4	C22	1.315(9)			

Table 2. Bond lengths (Å) for compound 2

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Tb1	08	2.275(9)	N5	N511	1.313(19)
Tb1	O81	2.275(9)	N5	C2311	1.313(19)
Tb1	032	2.354(9)	N5	C24	1.733(18)
Tb1	O33	2.354(9)	C1	C2	1.387(17)

Tb1	O64	2.414(10)	C1	C6	1.396(19)
Tb1	O65	2.414(10)	C1	C15	1.482(16)
Tb1	054	2.565(9)	C2	C3	1.374(17)
Tb1	O55	2.565(9)	С3	C4	1.395(19)
Tb1	C174	2.869(13)	C3	C16	1.491(18)
Tb1	C175	2.869(13)	C4	C5	1.37(2)
Tb1	Tb21	4.0016(8)	C5	C6	1.36(2)
Tb1	Tb2	4.0016(8)	C5	C7	1.48(2)
Tb2	0122	2.317(11)	C8	C9	1.50(2)
Tb2	011	2.320(15)	C9	C10	1.39(2)
Tb2	O106	2.33(2)	C9	C14	1.38(2)
Tb2	07	2.335(9)	C10	C11	1.41(2)
Tb2	022	2.346(9)	C11	C12	1.38(2)
Tb2	01	2.428(9)	C12	C13	1.412(19)
Tb2	O55	2.496(9)	C12	C17	1.473(19)
Tb2	033	2.519(9)	C13	C14	1.38(2)
Tb2	097	2.53(2)	C16	Tb28	2.904(13)
Tb2	043	2.561(10)	C17	Tb19	2.869(13)
Tb2	02	2.609(8)	C18	C19	1.389(16)
Tb2	C163	2.904(13)	C18	C1911	1.389(16)
01	C15	1.278(16)	C19	C20	1.362(17)
02	C15	1.295(15)	C19	C30	1.552(16)
02	Tb22	2.346(9)	C20	C21	1.402(16)
03	C16	1.292(15)	C21	C2011	1.402(16)
03	Tb12	2.354(9)	C21	C22	1.46(4)
03	Tb28	2.519(9)	C22	N411	1.34(2)

04	C16	1.253(16)	C24	C29	1.402(2)
04	Tb28	2.561(10)	C24	C25	1.404(2)
05	C17	1.250(14)	C25	C26	1.402(2)
05	Tb29	2.496(9)	C26	C27	1.402(2)
05	Tb19	2.565(9)	C27	C28	1.405(2)
O6	C17	1.260(15)	C27	C31	1.412(2)
06	Tb19	2.414(10)	C27	C3210	1.504(2)
07	C30	1.247(14)	C28	C29	1.403(2)
08	C30	1.245(14)	C31	C3210	0.2595
09	01110	0.270(19)	C31	01210	1.1470(18)
09	C3210	1.051(16)	C31	01110	1.479(2)
09	C31	1.244(15)	011	097	0.27(3)
09	Tb210	2.53(2)	011	C32	1.2665(19)
O10	01210	0.16(2)	011	C317	1.479(2)
O10	C31	1.231(16)	C32	C317	0.2595
O10	C3210	1.366(16)	C32	097	1.05(3)
O10	Tb26	2.33(2)	C32	012	1.2705(19)
N1	C8	1.32(2)	C32	0107	1.37(3)
N1	С7	1.33(2)	C32	C277	1.504(2)
N2	C7	1.33(2)	012	O107	0.16(4)
N2	N3	1.348(19)	012	C317	1.1470(17)
N3	C8	1.32(2)	012	Tb22	2.317(19)
N4	C22	1.34(2)			

Table 3. Bond lengths (Å) for compound 3

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Ho1	081	2.247(7)	N5	C2311	1.288(18)

Ho1	08	2.247(7)	N5	N511	1.288(18)
Ho1	032	2.333(6)	N5	C24	1.711(14)
Ho1	O33	2.333(6)	C1	C2	1.385(12)
Ho1	O64	2.396(7)	C1	C6	1.393(12)
Ho1	O65	2.396(7)	C1	C15	1.495(12)
Ho1	O54	2.541(6)	C2	С3	1.390(12)
Ho1	O55	2.541(6)	C3	C4	1.405(13)
Ho1	C174	2.843(10)	C3	C16	1.470(13)
Ho1	C175	2.843(10)	C4	C5	1.399(14)
Ho1	Ho2	3.9660(5)	C5	C6	1.380(13)
Ho1	Ho21	3.9660(5)	C5	C7	1.438(14)
Ho2	O106	2.272(18)	C8	С9	1.476(16)
Ho2	07	2.322(6)	C9	C10	1.353(15)
Ho2	0123	2.334(8)	C9	C14	1.392(16)
Ho2	011	2.349(11)	C10	C11	1.413(14)
Ho2	023	2.350(6)	C11	C12	1.413(15)
Ho2	01	2.402(6)	C12	C13	1.385(14)
Ho2	054	2.457(6)	C12	C17	1.474(13)
Ho2	O32	2.491(6)	C13	C14	1.381(15)
Ho2	O97	2.502(16)	C16	Ho28	2.861(10)
Ho2	O42	2.540(7)	C17	Ho19	2.843(10)
Ho2	02	2.583(6)	C18	C1911	1.394(11)
Ho2	C162	2.861(10)	C18	C19	1.394(11)
01	C15	1.270(11)	C19	C20	1.367(13)
02	C15	1.264(11)	C19	C30	1.525(11)
02	Ho23	2.350(6)	C20	C21	1.400(12)

03	C16	1.299(11)	C21	C2011	1.400(12)
03	Ho13	2.333(6)	C21	C22	1.46(3)
03	Ho28	2.491(6)	C22	N411	1.334(18)
04	C16	1.232(12)	C24	C29	1.3941(16)
04	Ho28	2.540(7)	C24	C25	1.4022(16)
05	C17	1.252(10)	C25	C26	1.3972(16)
05	Ho29	2.457(6)	C26	C27	1.3941(16)
05	Ho19	2.541(6)	C27	C28	1.4025(16)
O6	C17	1.266(12)	C27	C31	1.4062(16)
O6	Ho19	2.396(7)	C27	C3210	1.4709(16)
07	C30	1.225(10)	C28	C29	1.3979(16)
08	C30	1.275(10)	C31	C3210	0.2938
O9	01110	0.276(15)	C31	01210	1.0868(12)
O9	C3210	1.048(13)	C31	01110	1.5038(17)
O9	C31	1.265(13)	011	097	0.28(2)
09	Ho210	2.502(16)	011	C32	1.2644(14)
O10	01210	0.161(16)	011	C317	1.5038(17)
O10	C31	1.224(13)	C32	C317	0.2938
O10	C3210	1.404(13)	C32	097	1.05(2)
O10	Ho26	2.272(18)	C32	012	1.2637(14)
N1	C8	1.326(15)	C32	0107	1.40(2)
N1	C7	1.326(16)	C32	C277	1.4709(17)
N2	C7	1.352(15)	012	0107	0.16(3)
N2	N3	1.351(14)	012	C317	1.0868(12)
N3	C8	1.314(18)	012	Ho23	2.334(14)
N4	C22	1.334(18)			

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Dy1	08	2.251(8)	N5	C2311	1.300(18)
Dy1	081	2.251(8)	N5	N511	1.300(18)
Dy1	032	2.342(8)	N5	C24	1.705(15)
Dy1	033	2.342(8)	C1	C2	1.402(15)
Dy1	O64	2.393(8)	C1	C6	1.370(17)
Dy1	O65	2.393(9)	C1	C15	1.462(16)
Dy1	054	2.552(8)	C2	C3	1.369(16)
Dy1	O55	2.552(8)	C3	C4	1.402(18)
Dy1	C174	2.874(10)	C3	C16	1.487(16)
Dy1	C175	2.874(10)	C4	C5	1.394(17)
Dy1	Dy2	3.9800(10)	C5	C6	1.375(18)
Dy1	Dy21	3.9800(10)	C5	C7	1.45(2)
Dy2	0122	2.317(10)	C8	C9	1.46(2)
Dy2	O106	2.30(2)	C9	C14	1.398(19)
Dy2	011	2.325(14)	C9	C10	1.37(2)
Dy2	07	2.328(8)	C10	C11	1.382(18)
Dy2	022	2.340(8)	C11	C12	1.401(17)
Dy2	01	2.395(9)	C12	C13	1.398(18)
Dy2	O54	2.466(8)	C12	C17	1.465(17)
Dy2	O33	2.505(7)	C13	C14	1.357(18)
Dy2	097	2.514(18)	C16	Dy28	2.889(12)
Dy2	O43	2.547(10)	C17	Dy19	2.874(10)
Dy2	02	2.597(7)	C18	C1911	1.385(14)
Dy2	C163	2.889(12)	C18	C19	1.385(14)

Table 4. Bond lengths (Å) for compound 4

01	C15	1.292(14)	C19	C20	1.396(15)
02	C15	1.273(14)	C19	C30	1.530(14)
02	Dy22	2.340(8)	C20	C21	1.377(14)
03	C16	1.307(14)	C21	C2011	1.377(14)
03	Dy12	2.342(8)	C21	C22	1.49(3)
03	Dy28	2.505(7)	C22	N411	1.342(18)
04	C16	1.232(15)	C24	C29	1.3966(19)
04	Dy28	2.547(10)	C24	C25	1.3999(19)
05	C17	1.259(13)	C25	C26	1.3976(19)
05	Dy29	2.466(8)	C26	C27	1.3966(19)
05	Dy19	2.552(7)	C27	C28	1.4003(19)
O6	C17	1.273(14)	C27	C31	1.4072(19)
O6	Dy19	2.393(8)	C27	C3210	1.513(2)
07	C30	1.222(12)	C28	C29	1.3980(19)
08	C30	1.278(13)	C31	C3210	0.2912
09	01110	0.274(17)	C31	01210	1.1301(16)
09	C3210	1.038(15)	C31	01110	1.501(2)
09	C31	1.257(15)	011	097	0.27(3)
09	Dy210	2.514(18)	011	C32	1.2626(17)
010	01210	0.14(2)	011	C317	1.501(2)
010	C31	1.228(15)	C32	C317	0.2912
010	C3210	1.374(15)	C32	097	1.04(3)
010	Dy26	2.30(2)	C32	012	1.2660(17)
N1	C8	1.32(2)	C32	0107	1.37(3)
N1	C7	1.337(19)	C32	C277	1.513(2)
N2	C7	1.34(2)	012	0107	0.14(4)

N2	N3	1.363(19)	012	C317	1.1301(15)
N3	C8	1.30(2)	012	Dy22	2.317(17)
N4	C22	1.342(18)			