Supporting Information for

Influence of intermolecular interactions and crystal structure on desolvation mechanisms of solvates

Wanying Liu,^a Baohong Hou,^{ab} Xin Huang,^{*ab} Shuyi Zong,^a Zhixin Zheng,^a Shuyu

Li,^a Bugui Zhao,^d Songqiang Liu,^d Lina Zhou,^{ab} and Hongxun Hao*^{abc}

^a National Engineering Research Center of Industrial Crystallization Technology,

School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.

^b Collaborative Innovation Center of Chemical Science and Engineering (Tianjin),

Tianjin 300072, China

^c School of Chemical Engineering and Technology, Hainan University, Haikou
570208, China.

^d Shandong Lukang Pharmaceutical Group Co., Ltd, Shandong 272021, China.

solvent	Chemical	α	β	π*	Results
	structures				
Acetonitrile	₩N	0.07	0.32	0.75	S1
Acetone	° (0.04	0.49	0.71	S2
n-propanol	OH	0.37	0.48	0.52	S3
isopropanol	OH	0.33	0.56	0.48	S4

Table S1. Properties of the Solvents used.

Crystal Forms	20 of characteristic peaks
Solvate S1	6.2, 7.0, 8.0, 10.7, 11.8, 12.6, 14.1, 18.5, 19.0, 21.3, 21.7, 22.2±0.2°
Solvate S2	7.0, 8.1, 8.9, 10.4, 12.0, 14.1, 19.3, 21.4, 21.6, 22.0, 23.6±0.2°
Solvate S3	7.4, 8.3, 9.1, 10.6, 12.9, 14.5, 14.7, 15.1, 16.9, 21.7, 22.2, 22.5±0.2°
Solvate S4	6.5, 8.2, 11.4, 12.1, 13.5, 13.7, 21.8, 22.6, 27.0±0.2°
Solvate III	6.9, 7.7, 10.8, 13.6, 14.1, 16.9, 19.8, 20.5, 22.9, 23.9±0.2°
Form I	7.6, 8.1, 10.5, 14.8, 17.3, 18.4, 18.6, 20.7, 23.3, 23.5±0.2°
Form I	7.4, 7.9, 12.0, 12.7, 16.9, 17.3, 19.9, 20.9, 21.4, 22.6, 23.3±0.2°

Table S2. 2-theta of characteristic peaks of various crystal forms

Fig. S1 FTIR spectra of various crystal forms of cefathiamidine.

Fig. S2 The simulated and experimented PXRD of Solvate S1, S2, S3 and S4.

Fig. S3 Asymmetric units of Solvate S1(a), Solvate S2(b), Solvate S3(c) and Solvate S4(d). The H atoms are omitted for clarity.

Solvate	D-H…A	D-H (Å)	H…A (Å)	D…A (Å)	θ(DHA) (°)	Symop for A
S 1	N1-H1…O1	0.88	1.90	2.742(4)	161	
	N5-H5A…O7	0.88	2.27	2.929(4)	132	
	N7-H7····O3	0.88	1.94	2.758(4)	153	
	N3-H3…O9	0.88	1.87	2.720(4)	163	1-x, -1/2+y, 1.5-z
	N2-H2…O4	0.88	1.92	2.778(4)	166	
	N6-H6…O10	0.88	2.10	2.931(4)	157	-1+x, y, z
	O14-H14B…O13	0.87	1.82	2.682(6)	169	-x, -1/2+y, 1.5-z

Table S3. Hydrogen bonds data of different cefathiamidine solvates

	O13-H13D…N11	0.87	2.17	3.03(1)	173	
	O14-H14A…O6	0.87	1.95	2.801(5)	167	
S2	N2-H2…O1	0.88	1.90	2.762(5)	167	
	N5-H5A…O7	0.88	2.03	2.844(5)	153	
	O16-H16B…O6	0.85	2.01	2.857(5)	174	
	O17-H17D…O16	0.86	1.91	2.768(7)	172	1/2+x, 1.5-y, 1-z
	O17-H17C…O14	0.86	2.22	2.992(7)	150	
	O16-H16A…O3	0.85	1.88	2.732(5)	177	
	N7-H7…O3	0.88	1.97	2.770(5)	151	
	N1-H1…O4	0.88	1.89	2.749(5)	165	
	N6-H6…O10	0.88	2.06	2.900(5)	159	
	N3-H3…O9	0.88	1.83	2.699(5)	170	
S 3	N1-H1…O1	0.88	1.99	2.776(4)	148	
	N5-H5…O7	0.88	1.88	2.751(4)	172	
	N2-H2…O3	0.88	1.97	2.788(4)	153	-1+x, y, z
	N3-H3…O10	0.88	1.96	2.706(4)	142	
	N6-H6A…O10	0.851	1.93	2.784(4)	163	1/2-x, 1-y, -1/2+z
	N7-H7⋯O4	0.88	1.83	2.684(4)	164	
	O15-H15B…O6	0.86	2.08	2.921(7)	169	
	015-H15A…07	0.85	2.09	2.855(6)	150	
	O14-H14A…O15	0.85	2.30	2.839(9)	121	
	O13-H13…O9	0.84	1.94	2.774(5)	170	

S4	O14-H14…O3	0.84	1.96	2.79(2)	170	
	015-Н15…Об	0.84	2.63	2.96(2)	105	
	O13-H13…O10	0.84	1.96	2.792(9)	171	
	N5-H5A…O4	0.88	2.00	2.778(8)	146	
	N7-H7…O3	0.88	1.92	2.781(9)	168	
	N2-H2…O9	0.88	2.05	2.851(7)	151	x, 1+ y, z
	N3-H3…O9	0.88	1.94	2.798(9)	165	-y, x, 1/4+z

Fig. S4 The relative contributions of different interactions to the Hirshfeld surface.

Fig. S5 The packing similarity tree diagram of the cefathiamidine solvates calculated using CrystalCMP. A part of the diagram between 13.74 and 61.84 was deleted to make the figure shorter and more readable which is indicated by blue curved line.

solvate	ratio	calculated	measured	Guest	Resulting	Total
		weight	mass loss,	loss T_{on}	phase via	Energy
		loss, %	%	(°C)	heating	(kJ/mol)
Acetonitrile solvate	1:1.5: 1	14.4	14.6	30	Form I	1289.3
monohydrate S1						
Acetone solvate	1:1.5: 1	18.1	18.2	30	Form II	1249.8
monohydrate S2						
N-propanol solvate	1:0.5:1.5	10.8	10.5	48	Form I	1144.4
1.5 hydrate S3						
Isopropanol solvate	1:1	11.3	11.2	30	Amorphous	1502.5
S4						

T 11 04	TT1 1	1		1.
Table V/L	Thermal	ana	VCIC	reculte
	1 norman	ana	1 9 515	results
			2	

Figure S6. Thermogravimetric analysis (TGA) and differential scanning calorimetry

(DSC) curves of cefathiamidine (a) solvate III, (b) form I and (c) form II.