Supporting Information

Synthesis of New ATN-Type Zeolitic Imidazolate Framework Through Cooperative Effects of N,Ndipropylformamide and n-Butylamine

Qianqian Meng, Jiang Wang, Qi Shi* and Jinxiang Dong

College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China E-mail: shiqi594@163.com

Experimental materials and instruments

Chemicals

Zinc acetate dehydrate (Zn(OAc)₂·2H₂O, 98.0 %) and imidazole (Im, C₃H₄N₂, 99.0 %) were purchased from Sigma Aldrich Trading Co., Ltd. n-Butylamine (C₄H₁₁N, 99.5 %) was purchased from Aladdin Reagent Co., Ltd. N,N-dipropylformamide (C₇H₁₅NO, 96.0 %) was purchased from Meryer Chemical Technology Co., Ltd. All chemical reagents were obtained from commercial suppliers and used without any further purification.

Synthesis and activation of ZIFs

A mixture of $Zn(OAc)_2 \cdot 2H_2O$ (0.5 mmol, 110 mg) and n-butylamine (2 mL) was added to a 20 mL glass bottle. Imidazole (1 mmol, 68 mg) was dissolved in N,N-dipropylformamide (3 mL). The imidazole solution was slowly added to the glass bottle containing $Zn(OAc)_2 \cdot 2H_2O$ and N,N-dipropylformamide. The glass bottle was sealed and heated at 40 °C for 3 d. The resulting stick-like crystals of ATN-[$Zn(Im)_2$] were collected by filtration. nog-[$Zn(Im)_2$] was prepared in the absence of N,N-dipropylformamide, using n-butylamine as solvent. AFI-[$Zn(Im)_2$] was synthesized in the absence of n-butylamine, using N,N-dipropylformamide as the solvent.

Prior to the N₂ sorption measurement, the AFI- $[Zn(Im)_2]$ and nog- $[Zn(Im)_2]$ samples were immersed in dry acetone for 48 h and then activated under vacuum at 50 °C. The activated samples have the same structures as those of the as-synthesized samples (Fig. S13†). In contrast, by acetone exchanged, the flexible structure of ATN- $[Zn(Im)_2]$ (acetone exchanged) was formed (Fig. S14†).

Characterization

Powder X-ray diffraction (PXRD) data were collected using a Rigaku MiniFlex-II diffractometer with Cu-K α (λ = 1.5418 Å) radiation. Thermogravimetric analysis (TGA) was performed under an air atmosphere on a Labsystems EVO analyzer. IR spectroscopy was recorded using KBr pellets on a Shimadzu IRSpirit spectrometer. N₂ adsorption isotherms were recorded on a Micromeritics ASAP2020 surface area and porosity analyzer at 77 K. SEM images were obtained using a Hitachi TM3000 scanning electron microscope. ¹H \rightarrow ¹³C cross-polarization (CP) magic angle spinning (MAS) solid-state NMR spectroscopy was performed using a Bruker Avance III 600 WB spectrometer at 151 MHz and a magnetic field of 14.2 T using a 4 mm double-tuned MAS probe with a spinning speed of 10 kHz. Single crystal X-ray diffraction data

collection for ATN-[Zn(Im)₂] was performed on an Agilent Xcalibur Eos Gemini CCD plate diffractometer operating using graphite monochromatized CuK α radiation ($\lambda = 1.5418$ Å) at 293 K.

Scheme S1. The structural formula of N,N-dipropylformamide (DPF) and n-butylamine (BA).

Fig. S1 The PXRD patterns of the samples by using N,N-dipropylformamide (DPF) and nbutylamine (BA) as the reaction solvents.

Fig. S2 The PXRD patterns of the samples by using N,N-dipropylformamide (DPF) as the reaction solvents.

Fig. S3 The PXRD patterns of the samples by using n-butylamine (BA) as the reaction solvents.

Fig. S4 The PXRD pattern of samples by using N,N-dipropylformamide (DPF) and n-butylamine (BA)/NH₃·H₂O/n-propylamine as the reaction solvents.

Fig. S5 Experimental PXRD pattern of as-synthesized ATN-[Zn(Im)₂] sample.

Fig. S6 The TG plots of as-synthesized ATN-[Zn(Im)₂] sample.

Fig. S7 Different magnification SEM images of as-synthesized ATN-[Zn(Im)₂] sample.

Fig. S8 The FT-IR curve for ATN-[Zn(Im)₂] sample.

nog	nog-[Zn(Im) ₂]	Zn ₂ (Im) ₄	BA	This work
ATN	ATN-[Zn(Im) ₂]	Zn ₂ (Im) ₄	DPF+BA	This work
zni	IMIDZB	$Zn_2(Im)_4$	H ₂ O	10
zec	HICGEG	$Zn_{5}(Im)_{10}$	DEF	4
unknown	GOQSIQ	$Zn_{10}(Im)_{20}$	DBF	9
nog	HIFWAV	Zn ₅ (Im) ₁₀	DEF	4
neb	KEVLEE	$Zn(Im)_2$	pyridine	8
coi	EQOCOC	$Zn_4(Im)_8$	H ₂ O	7
cag	VEJYUF01	$Zn_2(Im)_4$	DMF	4
cag	ZIF-4	$Zn_2(Im)_4$	DMF	2
RHO	xMeMeCH ₂ @RHO -Zn ₁₆ Im ₃₂	Zn ₁₆ (Im) ₃₂	MeMeCH ₂	6
MER	mer-MeMeCH ₂ @ RHO-Zn ₁₆ Im ₃₂	Zn ₁₆ (Im) ₃₂	MeMeCH ₂	5
MER	ZIF-10	Zn(Im) ₂	DMF	2
GIS	HIFVUO	$Zn(Im)_2$	DEF	4
GIS	ZIF-6	Zn(Im) ₂	DMF	2
DFT	HIFVOI	$Zn(Im)_2$	NMP	4
DFT	ZIF-3	Zn(Im) ₂	DMF+NMP	2
CAN	CAN-[Zn(Im) ₂]	Zn ₃ (Im) ₆	DBF	1
BCT/crb	VEJYIT01	Zn ₂ (Im) ₄	DMF	4
BCT/crb	VEJYEP01	Zn ₂ (Im) ₄	DMA	4
BCT/crb	ZIF64	Zn ₄ (Im) ₈	DMF	3
BCT/crb	ZIF2	Zn ₂ (Im) ₄	DMF	2
BCT/crb	ZIF1	$Zn_2(Im)_4$	DMF	2
AFI	AFI-[Zn(Im) ₂]	Zn(Im) ₂	DPF	1
or zeolite code	CCDC code	formulas	directing-agent ^a	
RCSR topology	Name or	framework	solvent or structure	Ref.

Table S1. RCSR topology or zeolite codes, Name or CCDC codes, Framework formulas, Solvent or structure directing-agents of selected [Zn(Im)₂].

a: DMF=N,N-dimethylformamide; DMA=N,N-dimethylacetamide; DPF=N,N-dipropylformamide; DBF=N,N-dibutylformamide; BA=n-butylamine; NMP=N-methylpyrrolidone;

 $MeMeCH_2 = 1,7,11,15,21,23,25,28-octamethyl-2,20:3,19-dimetheno-1H,21H,23H,25Hbis[1,3]diox ocino[5,4-i:5',4'-i'] benzo[1,2-d:5,4-d']-bis[1,3] benzodioxocin.$

References:

[1] Q. Shi, W. J. Xu, R. K. Huang, W. X. Zhang, Y. Li, P. Wang, F. N. Shi, L. Li, J. Li and J. Dong. J. Am. Chem. Soc. 2016, **138**, 16232-16235.

[2] K. S. Park, Z. Ni, A. P. Côté, J. Y. Choi, R. D. Huang, F. J. Uribe-Romo, H. K. Chae, M. O'Keeffe and O. M. Yaghi. *PNAS*. 2006, **103**, 10186-10191.

[3] R. Banerjee, A. Phan, B. Wang, C. Knobler, H. Furukawa, M. O'Keeffe and O. M. Yaghi. Science 2008, **319**, 939-943.

[4] Y. Q. Tian, Y. M. Zhao, Z. X. Chen, G. N. Zhang, L. H. Weng and D. Y. Zhao. *Chem. Eur. J.* 2007, **13**, 4146-4154.

[5] J. R. Ramirez, H. Y. Yang, C. M. Kane, A. N. Ley and K. T. Holman. J. Am. Chem. Soc. 2016, **138**, 12017-12020.

[6] I. Brekalo, C. M. Kane, A. N. Ley, J. R. Ramirez, T. Feiscic and K. T. Holman. J. Am. Chem. Soc. 2018, 140, 10104-10108.

[7] Y. Q. Tian, C. X. Cai, X. M. Ren, C. Y. Duan, Y. Xu, S. Gao and X. Z. You. *Chem. Eur. J.* 2003, **9**, 5673-5685.

[8] C. A. Schroder, I. A. Baburin, L. V. Wullen, M. Wiebcke and S. Leoni. *CrystEngComm* 2013, **15**, 4036-4040.

[9] Q. Shi, X. Z. Kang, F. N. Shi and J. X. Dong. Chem. Commun. 2015, 51, 1131-1134.

[10] R. Lehnert and F. Z. Seel. Anorg. Allg. Chem. 1980, 464, 187-194.

X-ray crystallography. The reflection data was consequently corrected for empirical absorption corrections and Lorentz and polarization effects. The structure was solved by direct methods and refined by full-matrix least-squares using the SHELXL-97 package. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were generated geometrically with fixed isotropic thermal parameters, and included in the structure factor calculations. The block of SQUEEZE in PLATON was employed to eliminate the highly disordered solvent molecular.

Complex	ATN-[Zn(Im) ₂]			
Formula	$C_{12}H_{12}N_8Zn_2$			
Mr	399.04			
Crystal system	monoclinic			
Space group	C2/m			
a (Å)	25.7398(1)			
b (Å)	23.6271(1)			
c (Å)	9.7094(5)			
α (°)	90			
β (°)	106.926(3)			
γ (°)	90			
$V(Å^3)$	5649.0(5)			
Ζ	8			
$Dcalcd(g \cdot cm^{-3})$	0.938			
μ(mm ⁻¹)	2.131			
GOF	1.092			
$R_1[I \ge 2\sigma(I)]^a$	0.0753			
$wR_2[I \ge 2\sigma(I)]^b$	0.1984			
$R_1^{\rm a}$ (all data)	0.0934			
w R_2^b (all data)	0.2184			
$R_{ m int}$	0.0740			

Table S2. Crystallographic data and refinement parameters of ATN-[Zn(Im)₂]

Table S3. Selected bond lengths and angles for ATN-[Zn(Im)₂]

Selected bond lengths/Å							
Zn(1)-N(1)	1.969(5)	Zn(1)-N(2)	1.988(5)				
Zn(1)-N(5)	1.959(5)	Zn(1)-N(7)	1.980(5)				
Zn(2)-N(2)	1.985(5)	Zn(2)-N(4)#1	1.976(5)				
Zn(2)-N(6)#2	1.964(5)	Zn(2)-N(8)	1.972(5)				
N(4)-Zn(2)#3	1.976(5)	N(6)-Zn(2)#2	1.964(5)				
Selected angles/°							
N(1)-Zn(1)-N(3)	106.9(2)	N(1)-Zn(1)-N(7)	110.7(2)				
N(5)-Zn(1)-N(1)	110.9(2)	N(5)-Zn(1)-N(3)	108.6(2)				
N(5)-Zn(1)-N(7)	109.5(2)	N(7)-Zn(1)-N(3)	110.1(2)				
N(4)#1-Zn(2)-N(2)	108.5(2)	N(6)#2-Zn(2)-N(2)	107.9(2)				
N(6)#2-Zn(2)-N(4)#1	113.1(2)	N(6)#2-Zn(2)-N(8)	107.9(2)				
N(8)-Zn(2)-N(2)	108.26(19)	N(8)-Zn(2)-N(4)#1	111.0(2)				
Symmetry transformations used to generate equivalent atoms:							
#1 +x,+y,1+z; #2 1/2-x,1/2-y,1-z; #3 +x,+y,-1+z; #4 -x,+y,-z; #5 +x,-y,+z.							

Fig. 89 The 3D framework of ATN-[$Zn(Im)_2$].

Fig. S10 The Zn-Im-Zn angles in ATN-[Zn(Im)₂].

Fig. S11 a) The 4-, 6- and 8-membered rings (MRs) constructed by Im ligands with Zn(II) in ATN-[$Zn(Im)_2$]; b) The 4-MRs **dzc** chains; c) The simplified topology of ATN-[$Zn(Im)_2$].

Fig. S12 The composition part of tiling in the framework ATN-[Zn(Im)₂]: t-kaa+t-dmp+t-ocn tiles.

Fig. S13 PXRD patterns of synthesized and activated samples: (a) $AFI-[Zn(Im)_2]$ and (b) nog- $[Zn(Im)_2]$

Fig. S14 ATN- $[Zn(Im)_2]$ samples under different treated conditions: (a) PXRD patterns, (b) TG curves and (c) N₂ adsorption-desorption isotherms at 77 K.

The activated samples of AFI- $[Zn(Im)_2]$ and nog- $[Zn(Im)_2]$ were characterized by PXRD to confirm that they have the same structures as those of the as-synthesized samples (Fig S13⁺).

In contrast, by acetone exchanged, the guest DPF molecules were almost removed and the structure of ATN-[Zn(Im)₂] (acetone exchanged) was formed, as evidenced by the PXRD patterns and the long plateau in the TG traces (Fig S14⁺). Interestingly, when ATN-[Zn(Im)₂] (acetone exchanged) was soaked with DPF, the ATN-[Zn(Im)₂] structure could be reversed. Thus, PXPD

reveals the reversible nature of this transformation upon guest DPF adsorption-desorption. The occurrence of such a structural transformation was also hinted at by the observation of N_2 adsorption isotherm at 77 K. The hysteresis are observed in the relative pressure (P/P₀) range of 0.16–0.80.