Assembly, structures and properties of polyoxometalate-based supramolecular complexes involving in situ transformation of single-branch N-donor cyano ligands

Xiang Wang,* Yunhui Li, Tong Zhang, Sijia Ma, Xiuli Wang*

Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121000, P. R. China

	Comp	lex 1	
Cu(1)-O(2)	1.963(6)	Cu(1)-N(1)	1.988(7)
Cu(1)-O(1W)	1.970(6)	Cu(1)- N(3)	1.978(7)
Cu(1)-O(2W)	2.263(6)	Cu(2)- N(4)	1.865(6)
Cu(2)-O(1)	2.367(5)	Cu(2)- N(5)	1.867(6)
O(2)-Cu(1)-O(2W)	90.4(2)	O(2)-Cu(1)-O(1W)	87.7(2)
O(2)-Cu(1)-N(1)	89.8(3)	O(2)-Cu(1)-N(3)	170.4(3)
O(1W)-Cu(1)-O(2W)	92.8(3)	O(1W)-Cu(1)-N(1)	172.8(3)
O(1W)-Cu(1)-N(3)	86.7(3)	N(1)-Cu(1)-O(2W)	94.0(3)
N(3)-Cu(1)-O(2W)	97.7(3)	N(3)-Cu(1)-N(1)	94.8(3)
N(4)-Cu(2)-O(1)	92.4(2)	N(4)-Cu(2)-N(5)	172.5(3)
N(5)-Cu(2)-O(1)	94.0(2)		
	Comp	lex 2	
Cu(1)-O(3)	2.476(6)	Cu(1)-N(1)	1.869(8)
Cu(1)-N(2)	1.863(8)	Cu(2)-N(6)	1.869(8)
Cu(2)-N(7)	1.877(8)	Cu(2)-O(15)	2.554(7)
Cu(3)-O(5)	2.613(8)	Cu(3)-N(10)	1.861(10)
Cu(3)-N(12)	1.888(11)	N(6)-Cu(2)-N(7)	176.6(4)
N(6)-Cu(2)-O(15)	91.4(3)	N(7)-Cu(2)-O(15)	90.6(3)
N(10)-Cu(3)-O(5)	98.8(4)	N(10)-Cu(3)-N(12)	166.3(5)
N(12)-Cu(3)-O(5)	90.8(4)		

Table S1. Selected bond lengths (Å) and angles (°) of complexes 1-6.

Complex 3

Cu(1)-O(1W)	1.971(6)	Cu(1)-O(4)	1.966(5)
Cu(1)-O(2W)	2.261(6)	Cu(1)-N(12)	1.990(6)
Cu(1)-N(14)	1.972(7)	Cu(2)-N(2)	1.880(6)
Cu(2)-O(8)	2.375(5)	Cu(2)-N(8)	1.875(6)
O(1W)-Cu(1)-O(2W)	94.0(3)	O(1W)-Cu(1)-N(12)	87.3(3)
O(1W)-Cu(1)-N(14)	172.1(3)	O(4)-Cu(1)-O(1W)	87.3(2)
O(4)-Cu(1)-O(2W)	90.2(2)	O(4)-Cu(1)-N(12)	170.5(3)
O(4)-Cu(1)-N(14)	90.1(3)	N(12)-Cu(1)-O(2W)	97.9(3)
N(14)-Cu(1)-O(2W)	93.4(3)	N(14)-Cu(1)-N(12)	94.2(3)
N(2)-Cu(2)-O(8)	92.6(2)	N(8)-Cu(2)-N(2)	172.5(3)
N(8)-Cu(2)-O(8)	94.0(2)		

Complex 4

Cu(1)-N(1)	1.966(6)	Cu(1)-N(2)	2.003(6)
Cu(1)-O(5)	2.429(4)	Cu(1)-O(10)	2.392(4)
Cu(1)-O(14)	2.023(4)	Cu(1)-O(2W)	2.007(5)
Cu(2)-O(1W)	2.026(4)	Cu(2)-N(4)	1.999(5)
Cu(2)-N(5)	1.987(5)	Cu(2)-N(34)	2.090(5)
Cu(2)-N(39)	2.122(4)	N(1)-Cu(1)-N(2)	82.5(3)
N(1)-Cu(1)-O(5)	88.9(2)	N(1)-Cu(1)-O(10)	107.2(2)
N(1)-Cu(1)-O(14)	103.0(2)	N(1)-Cu(1)-O(2W)	168.3(2)
N(2)-Cu(1)-O(5)	96.8(2)	N(2)-Cu(1)-O(10)	114.7(2)
N(2)-Cu(1)-O(14)	171.7(2)	N(2)-Cu(1)-O(2W)	89.2(3)
O(10)-Cu(1)-O(5)	145.87(15)	O(14)-Cu(1)-O(5)	89.56(16)
O(14)-Cu(1)-O(10)	57.97(16)	O(2W)-Cu(1)-O(5)	83.8(2)
O(2W)-Cu(1)-O(10)	83.79(19)	O(2W)-Cu(1)-O(14)	86.2(2)
O(1W)-Cu(2)-N(34)	137.28(17)	O(1W)-Cu(2)-N(39)	119.37(18)
N(4)-Cu(2)-O(1W)	87.9(2)	N(4)-Cu(2)-N(34)	100.7(2)
N(4)-Cu(2)-N(39)	80.0(2)	N(5)-Cu(2)-O(1W)	89.3(2)
N(5)-Cu(2)-N(4)	176.8(2)	N(5)-Cu(2)-N(34)	80.4(2)
N(5)-Cu(2)-N(39)	102.67(19)	N(34)-Cu(2)-N(39)	103.35(17)

Complex 5

Cu(1)-N(5)	1.90(2)	Cu(1)-N(2)	1.99(2)
Cu(1)-N(4)	2.03(3)	Cu(1)-N(3)	2.07(3)
Cu(1)-N(1)	2.20(3)	N(5)-Cu(1)-N(2)	177.4(12)
N(5)-Cu(1)-N(4)	94.3(10)	N(2)-Cu(1)-N(4)	85.9(10)
N(5)-Cu(1)-N(3)	80.4(11)	N(2)-Cu(1)-N(3)	97.8(11)
N(4)-Cu(1)-N(3)	139.1(13)	N(5)-Cu(1)-N(1)	102.5(11)
N(2)-Cu(1)-N(1)	79.8(11)	N(4)-Cu(1)-N(1)	111.1(12)
N(3)-Cu(1)-N(1)	109.7(11)		
	Complex 6		
Co(1)-O(13)	2.128(15)	Co(1)-O(1W)	2.09(2)
Co(1)-N(1)	2.09(2)	Co(1)-N(4)	2.123(19)
Co(1)-N(3)	2.143(17)	Co(1)-O(2W)	2.053(18)
O(13)-Co(1)-N(3)	94.4(7)	O(1W)-Co(1)-O(13)	85.1(8)
O(1W)-Co(1)-N(4)	95.3(8)	O(1W)-Co(1)-N(3)	171.1(7)
N(1)-Co(1)-O(13)	169.7(7)	N(1)-Co(1)-O(1W)	88.5(8)
N(1)-Co(1)-N(4)	102.5(7)	N(1)-Co(1)-N(3)	93.2(7)
N(4) -Co(1)-O(13)	86.1(6)	N(4) -Co(1)-N(3)	75.9(7)
O(2W)-Co(1)-O(13)	85.0(6)	O(2W)-Co(1)-O(1W)	89.4(9)

99.4(8)

O(2W)-Co(1)-N(1)

O(2W)-Co(1)-N(3)

86.9(7) O(2W)-Co(1)-N(4) 169.6(7)

Figure S1 The XPS patterns of complexes 1-6.

Figure S2 IR spectra of complexes 1-6.

Figure S3 The PXRD patterns for complexes 1-6.

Figure S4 The PXRD patterns of 1-6 after immersion in 0.1 M $H_2SO_4 + 0.5$ M Na_2SO_4 aqueous solution.

Figure S5 Cyclic voltammograms of 5– and 6–CPEs in 0.1 M $H_2SO_4 + 0.5$ M Na_2SO_4 aqueous solution at different scan rates.

Figure S6 The influences on the degradation efficiencies of the concentrations of catalyst (a), H_2O_2 (b) and dye (c).

Complex –	CV (10	0 mg/L)	MB (1	0 mg/L)
	Catalyst (g/L)	H ₂ O ₂ (mmol/L)	Catalyst (g/L)	H ₂ O ₂ (mmol/L)
1	0.5	40	0.5	40
2	0.7	50	0.7	50
3	0.5	40	0.5	40
4	0.5	40	0.5	40
5	0.5	40	0.5	50
6	0.7	60	0.7	60

Table S2. The optimized concentrations of catalyst, H_2O_2 and dyes.

Figure S7 Absorption spectra of the CV (a-b) and MB (c-d) solutions under UV irradiation in the presence of complexes 2 and 6.

Figure S8 The PXRD patterns of simulated and recycled after acting as catalysts of 1, 3, 4 and 5.