Supporting Information

Two new luminescent Cd(II)-based coordination polymers by regulating the asymmetrical tetracarboxylate and

auxiliary ligands displaying high sensitivity for Fe³⁺ and CrO₄²⁻

Materials and Method

All the reagents to perform synthesis were obtained from commercial sources and were used without further purification. Powder X-ray diffraction (PXRD) data were collected using Bruker ADVANCE X-ray diffractometer with Cu-K α radiation (λ =1.5418 Å) at 50 kV, 20 mA with a scanning rate of 6°/min and a step size of 0.02°. Fourier transform infrared (FT-IR) spectra for both the coordination polymers as KBr discs were recorded on Nicolet Impact 750 FTIR in the range of 400-4000 cm⁻¹. Thermogravimetric analyses (TGA) were performed under nitrogen atmosphere from room temperature to 900 °C at a heating rate of 10 °C min⁻¹. The sensor investigations were carried out on spectrophotometer.

X-ray Crystallography

The single crystal X-ray diffraction data for both coordination polymers were collected on a Bruker SMART APEX diffractometer which was equipped with graphite monochromated MoK α radiation ($\lambda = 0.71073$ Å) by using an ω -scan technique. The structures were solved by direct method (SHLEXS-2014) and refined using the full-matrix least-square procedure based on F^2 (Shelxl-2014) [1]. All the hydrogen atoms were generated geometrically and refined isotropically using a riding model. All non-hydrogen atoms were refined with anisotropic displacement parameters. Crystallographic details and selected bond dimensions for 1-2 are listed in Tables S1-S3, respectively. CCDC numbers: 2049745-2049746.

Fig. S1 (a) and (b) Powder XRD patterns of the simulated diagram from single crystal data (black), after detection Fe^{3+} (green) and after detection CrO_4^{2-} (blue and red) for 1-2, respectively.

FTIR spectroscopy

In the FTIR spectra it displayed strong and broad stretching vibrations at ca. 3480 cm^{-1} , which can be assigned to the vibrations arising from the water molecules in 2 (Fig. S2). There is not any band around 1700 cm⁻¹ in 1 indicates that the H₄L ligands are completely deprotonated. The intense bands

observed at ca. 1650 and 1420 cm⁻¹ arises because of the asymmetric stretching and symmetric vibration of the carboxylate group of H₄L ligands, respectively. The value differences of $v_{as(COO)}$ -vs_(COO) suggest that the H₄L ligands adopts bidentate and monodentate coordination modes, respectively. Additionally, the band observed at ca. 1520 cm⁻¹ can be ascribed to the C=N stretching vibrations of N-donor ligand.

Fig. S2 view of the IR.

Thermal analyses

To evaluate the thermal stability of complexes 1-2, thermogravimetric (TG) analysis of complexes was performed under N₂ conditions from room temperature to 800 °C with a heating rate of 5 °C min⁻¹ (Fig. S3). Complex 2 displayed two weight loss stages. The first weight loss stage from 30 to 256 °C results from the complete decomposition of the coordinated H₂O molecules (obsd: 11.8%, calcd: 11.6%). The second weight loss stage from 406 to 550 °C results from the decomposition of the organic ligands. Complex 1 can be stabilized until 460 °C.

Fig. S3 view of the TGA.

Fig. S4 Luminescence emission spectra of the CPs and the ligands ($\lambda ex = 260$ nm for 1, 265 nm for 2).

Fig. S5 Emission spectra of **1** with different anions.

Fig. S6 Emission spectra of **2** with different anions.

Fig. S7 Emission spectra of **1** with different metal ions.

Fig. S8 Emission spectra of **2** with different metal ions.

Fig. S9 the UV-vis spectra of complexes and analytes in this work.

 $\frac{20 \ \mu m}{12/23/2020 \ 000048 \ High-vac. \ SED \ PC-std. \ 10 \ kV \ x \ 1300} \frac{20 \ \mu m}{12/25/2020 \ 000106}$ Fig. S10 The SEM images of **1** and **2**, (a) and (c) for the sample after sensing experiment, (b) and (d) for the original sample, respectively.

Fig. S11 Nitrogen adsorption-desorption isotherms of **1** and **2**.

Parameter	1	2
Formula	$C_{26}H_{14}Cd_2N_2O_8$	$C_{16}H_{14}Cd_2O_{12}$
Formula weight	707.19	623.07
Crystal system	Triclinic	Monoclinic
Space group	<i>P</i> -1	<i>P</i> 2 ₁ /c
Crystal color	yellow	yellow
<i>a</i> , [Å]	10.1590(8)	7.60650(10)
<i>b</i> , [Å]	11.0042(6)	13.9939(3)
<i>c</i> , [Å]	11.2516(10)	20.8616(4)
α, [°]	74.652(6)	90
β, [°]	66.351(8)	91.090(2)
γ, [°]	79.654(5)	90
V, Å ³	1107.27(16)	2220.20(7)
Ζ	2	4
$\rho_{calcd}, g/cm^3$	2.121	1.864
μ , mm ⁻¹	15.918	15.872
F(000)	688	1208
θ Range, deg	4.1690-71.0160	3.804-71.281
Reflection collected	7126/3965	14364/7239

 Table S1. Crystal data and structure refinement information for 1 and 2

Goodness-of-fit on <i>F</i> ²	1.070	1.068
$R_1, wR_2(I \ge 2\sigma(I))^*$	0.0456, 0.1148	0.0307, 0.0787
R_1, wR_2 (all data)**	0.0545, 0.1201	0.0370, 0.0811
$* D - \Sigma(E - E) / \Sigma(E)$	$** \dots D = (\sum [\dots (E^2) - E)]$	$2)21/\Sigma(E_{2})2)1/2$

* $R = \sum (F_{o} - F_{c}) / \sum (F_{o}), ** wR_{2} = \{ \sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum (F_{o}^{2})^{2} \}^{1/2}.$

Table S2. Selected bond distances (Å) and angles (°) of 1

			/
Cd(1)-O(1)	2.152(4)	Cd(1)-O(3A)	2.178(4)
Cd(1)-O(6B)	2.216(4)	Cd(1)-O(7B)	2.352(4)
Cd(1)-O(7C)	2.308(4)	Cd(2)-O(2D)	2.339(4)
Cd(2)-O(4)	2.297(5)	Cd(2)-O(5E)	2.326(4)
Cd(2)-O(8F)	2.322(4)	Cd(2)-N(1)	2.394(5)
Cd(2)-N(2)	2.347(5)		
O(1)-Cd(1)-O(3A)	90.69(18)	O(1)-Cd(1)-O(6B)	113.44(19)
O(6B)-Cd(1)-O(3A)	108.73(17)	O(7B)-Cd(1)-O(3A)	160.26(17)
O(7B)-Cd(1)-O(7C)	74.07(16)	O(6B)-Cd(1)-O(7C)	76.46(15)
O(2D)-Cd(2)-N(1)	104.70(17)	O(2D)-Cd(2)-N(2)	83.53(17)
O(2D)-Cd(2)-O(4)	161.14(17)	O(5E)-Cd(2)-O(4)	102.96(17)
O(8F)-Cd(2)-O(4)	80 98(17)	N(2)-Cd(2)-O(4)	114 94(17)

Table S3. Selected bond distances (Å) and angles (°) of **2**

)
Cd(1)-O(1)	2.251(3)	Cd(1)-O(10)	2.303(4)
Cd(1)-O(3A)	2.319(3)	Cd(1)-O(4A)	2.384(3)
Cd(1)-O(7B)	2.459(3)	Cd(1)-O(8B)	2.396(3)
Cd(1)-O(9)	2.336(5)	Cd(2)-O(2)	2.230(3)
Cd(2)-O(5C)	2.443(3)	Cd(2)-O(6C)	2.323(3)
Cd(2)-O(8B)	2.237(3)	Cd(2)-O(11)	2.335(4)
Cd(2)-O(12)	2.268(4)		

O(1)-Cd(1)-O(3A)	90.22(12)	O(1)-Cd(1)-O(4A)	145.29(12)
O(1)-Cd(1)-O(7B)	132.13(12)	O(1)-Cd(1)-O(8B)	80.18(11)
O(1)-Cd(1)-O(9)	90.5(2)	O(1)-Cd(1)-O(10)	90.81(19)
O(2)-Cd(2)-O(5C)	86.60(11)	O(2)-Cd(2)-O(6C)	135.19(12)
O(2)-Cd(2)-O(8B)	119.63(12)	O(2)-Cd(2)-O(11)	87.45(13)
O(2)-Cd(2)-O(12)	91.89(16)	O(6)-Cd(2)-O(5)	54.76(10)

Symmetry codes:A: -x, 1-y, 1-z; B: -1+x, 0.5-y, -0.5+z; C: x, 0.5-y, -0.5+z.

Table S4	Luminescent	sensors for	CrO_4^{2-}	sensing l	based o	on the	luminescent	MOFs.
				<u> </u>				

MOF	Solvent	Quenching	Working	Ref
		constant, K _{sv}	range	
$[Zn(L)(H_2O)] \cdot H_2O$	Water	1.02x10 ⁴ M ⁻¹	0-8 µM	
$[Zn_2(TPOM)(NH_2-bdc)_2] \cdot 4H_2O$	DMF	4.45x10 ³ M ⁻¹	0-100 μM	
[Zn(IPA)(L)]	Water	1.00x10 ³ M ⁻¹	-	
[Cd(IPA)(L)]	Water	1.30x10 ³ M ⁻¹	-	
$[Eu_2(tpbpc)_4(CO_3)(H_2O)_4]$ ·DMF	Water	4.83x10 ⁴ M ⁻¹	0-0.3 mM	
[Eu ₇ (mtb) ₅ (H ₂ O) ₁₆](NO ₃)(DMA) ₈ (H ₂ O) ₁₈	Water	3.30x10 ⁴ M ⁻¹	6 nM-2 mM	
[Zn(btz)]	Water	3.19x10 ³ M ⁻¹		
$[Zn_2(ttz)(H_2O)]$	Water	2.35x10 ³ M ⁻¹		
[Zn ₃ (bpanth)(oba) ₃]·2DMF	Water	1.24x10 ⁵ M ⁻¹	0-3 μM	
$[Y(BTC)(H_2O)_6]_n:0.1Eu$	Water	1.18x10 ³ M ⁻¹	0-300 µM	
$[Zn(NH_2-bdc)(4,4'-bpy)]$	Water	4.56x10 ³ M ⁻¹	0-50 µM	
1	Water	4.51x10 ⁵ M ⁻¹	0-10 µM	This work
2	Water	3.61 x10 ⁵ M ⁻¹	0-10 uM	This work

References

1. X.-Y. Guo, F. Zhao, J.-J. Liu, Z.-L. Liu and Y.-Q. Wang, An ultrastable zinc(II)–organic framework as a recyclable multi-responsive luminescent sensor for Cr(III), Cr(VI) and 4-nitrophenol in the aqueous phase with high selectivity and sensitivity, *J. Mater. Chem. A*, 2017, 5, 20035–20043.

2. R. Lv, J. Wang, Y. Zhang, H. Li, L. Yang, S. Liao, W. Gu and X. Liu, An amino-decorated dual-functional metal–organic framework for highly selective sensing of Cr(III) and Cr(VI) ions and detection of nitroaromatic explosives, *J. Mater. Chem. A*, 2016, 4, 15494–15500.

3. B. Parmar, Y. Rachuri, K. K. Bisht, R. Laiya and E. Suresh, Mechanochemical and Conventional Synthesis of Zn(II)/Cd(II) Luminescent Coordination Polymers: Dual Sensing Probe for Selective Detection of Chromate Anions and TNP in Aqueous Phase, *Inorg. Chem.*, 2017, 56, 2627–2638.

4. J. Liu, G. Ji, J. Xiao and Z. Liu, Ultrastable 1D Europium Complex for Simultaneous and Quantitative Sensing of Cr(III) and Cr(VI) Ions in Aqueous Solution with High Selectivity and Sensitivity, *Inorg. Chem.*, 2017, 56, 4197- 4205.

5. W. Liu, Y. Wang, Z. Bai, Y. Li, Y. Wang, L. Chen, L. Xu, J. Diwu, Z. Chai and S. Wang, Hydrolytically Stable Luminescent Cationic Metal Organic Framework for Highly Sensitive and Selective Sensing of Chromate Anions in Natural Water Systems, *ACS Appl. Mater. Interfaces.*, 2017, 9, 16448–16457.

6. H. R. Fu, Y. Zhao, Z. Zhou, X. G. Yang and L. F. Ma, Neutral ligand TIPA-based two 2D metal–organic frameworks: ultrahigh selectivity of C₂H₂/CH₄ and efficient sensing and sorption of Cr(VI), *Dalton Trans.*, 2018, 47, 3725–3732.

7. G. P. Li, G. Liu, Y. Z. Li, L. Hou, Y. Y. Wang and Z. Zhu, Uncommon Pyrazoyl-Carboxyl Bifunctional Ligand-Based Microporous Lanthanide Systems: Sorption and Luminescent Sensing Properties, *Inorg. Chem.*, 2016, 55, 3952–3959.

8. C. S. Cao, H. C. Hu, H. Xu, W. Z. Qiao and B. Zhao, Two solvent-stable MOFs as a recyclable luminescent probe for detecting dichromate or chromate anions *Cryst Eng.Comm.*, 2016, 18, 4445–4451.

9. L. Wei, H. Xin, X. Cong, C. Chunyang, Y. Lizi, D. Wei, C. Wanmin, Y. Huan and L.Weisheng, A Multi-responsive Regenerable Europium–Organic Framework Luminescent Sensor for Fe³⁺, Cr^{VI} Anions, and Picric Acid, *Chem. Eur. J.*, 2016, 22, 18769–18776.

10. Y. Zhao-Quan, L. Guang-Yu, X. Jian, H. Tong-Liang and B. Xian-He, A Water-Stable Luminescent Zn^{II} Metal-Organic Framework as Chemosensor for High-Efficiency Detection of Cr^{VI} -Anions ($Cr_2O_7^{2-}$ and CrO_4^{2-}) in Aqueous Solution, *Chem. Eur. J.*, 2018, 24, 3192–3198.

11. T.W. Duan, B. Yan, H. Weng, Europium Activated Yttrium Hybrid Microporous System for Luminescent Sensing Toxic Anion of Cr (VI) Species, *Microporous Mesoporous Mater.*, 2015, 217, 196-202.

Table S5. A comparison of the Stern-Volmer constant (Ksv), detection limit used for Fe³⁺ detection for selected MOFs.

No.	Compounds	<i>K</i> sv (M ⁻¹)	detection limit	Ref
1	$[Zr_6O_6(OH)_2(CF_3COO)_2(C_{11}H_5NO_4)_4(H_2O)_4]$	2.25×10 ⁷	1.7×10 ⁻⁹ M	1
2	EuL3	4.1×10 ³	10 ⁻⁴ M	2
3	Eu ³⁺ @MIL-124	3.87×10 ⁴	0.28×10 ⁻⁶ M	3
4	Tb ³⁺ @Cd-MOF	1.108×10 ⁵	0.010 mM	4
5	$[Zr_6O_4(OH)_4(2,7-CDC)_6]$	5.5×10 ³	9.10×10 ⁻⁷ M	5
6	1	2.99×10 ⁵	2.47×10 ⁻⁸ M	This work
7	2	1.23×10^{6}	1.35×10 ⁻⁹ M	This work

References:

1. C. Gogoi, S. Biswas, Dalton Trans. 2018, 47, 14696

2. M. Zheng, H. Tan, Z. Xie, L. Zhang, X. Jing and Z. Sun, ACS Appl. Mater. Interfaces, 2013, 5, 1078–1083.

3. X.-Y. Xu and B. Yan, ACS Appl. Mater. Interfaces, 2014, 7, 721-729.

4. H. Weng and B. Yan, Sens. Actuator B-Chem., 2016, 228, 702-708.

5. A. Das and S. Biswas, Sens. Actuator B-Chem, 2017, 250, 121-131.