Electronic Supplementary Information

Enhanced room-temperature ethanol sensing performance of

porous MoO₃/V_{0.13}Mo_{0.87}O_{2.935} heterostructures self-assembled

with 2D nanosheets

Jia Guo, Hang Li, Shushu Chu, Qi Zhang, Ziqiong Lin, Qian Ma*

School of Material Science and Engineering, University of Jinan, 250022, Jinan, P. R.

China

*To whom correspondence should be addressed.

E-mail: mse_maq@ujn.edu.cn

Fax: +86-531-87974453, Tel: +86-531-89736225

Materials

Ammonium molybdate tetrahydrate ((NH₄)₆Mo₇O₂₄·4H₂O, AR, Aladdin Reagent Company), ammonium metavanadate (NH₄VO₃, AR, Tianjin Guangfu Fine Chemical Research Institute), ethanol (CH₃CH₂OH, AR, Tianjin Chemical Reagent Institute), and ethanolamine (C₂H₇NO, AR, Sinopharm Chemical Reagent Company) were reagent grade without further purification.

Characterization

Crystalline structures of various samples were measured by an X-ray diffractometer (XRD, D8-ADVANCE of Bruker Corporation, Cu Ka radiation source of $\lambda = 1.54186$ A) in the 20 range of 15 to 80°. The morphologies of different samples were tested by the field-emission scanning electron microscope (FESEM, QUANTA 260 FEG, FEI, U.S.A.) and transmission electron microscopy (TEM/HRTEM, Tecnai F20, FEI). Surface chemical analysis can be investigated by the X-ray photoelectron spectroscopy (XPS, ESCALAB 260). Raman spectra were conducted by the high-resolution Raman spectrometer (LabRAM HR Evolution, HORIBA JOBIN YVON SAS). UV-vis diffuse reflectance spectra were obtained in UVvis spectrometer (Hitachi U-4100). The specific surface area and pore size distribution were acquired by the multifunction adsorption instrument (MFA-140, Builder Company, Beijing).

Gas-sensing measurement

CGS-4TPs (Beijing Elite Tech Co., Ltd.) was employed for estimating the gas-sensing performances of different samples. The as-prepared powders were mixed with the deionized water to form a paste, which was coated on the Ag-Pd interdigital electrodes. The sensor was kept drying at room temperature for 12 h to improve the stability. Gas response was defined as $|Ra-Rg|/Ra \times 100 \%$, where Ra and Rg are measured as the resistance of sensors in air and in target gas, respectively.

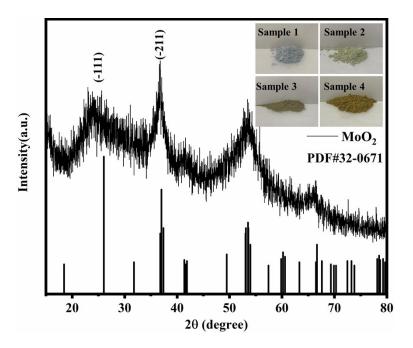
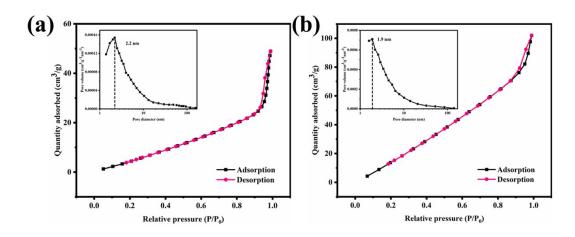



Fig. S1. XRD pattern of MoO_2 precursors.

Fig. S2. Nitrogen adsorption/desorption isotherms and the inset pore size distributions of (a) Sample 1 and (b) Sample 3.

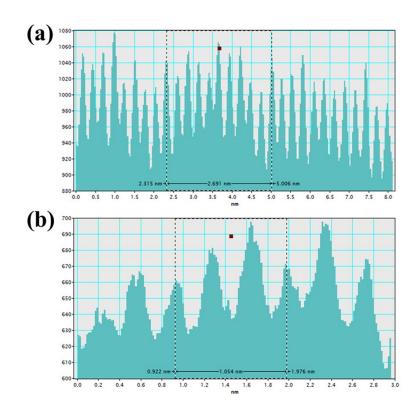


Fig. S3. The lattice spacings of (a) MoO_3 (101) and (b) $V_{0.13}Mo_{0.87}O_{2.935}$ (210) in Sample 3.

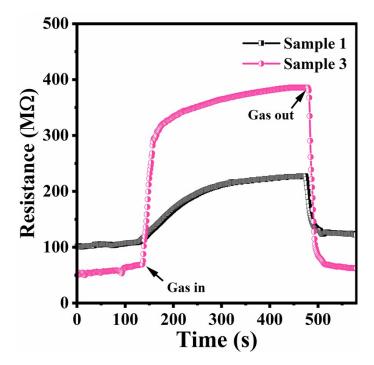


Fig. S4. The resistance variation of Sample 1 and 3 to 100 ppm ethanol at different operating temperatures

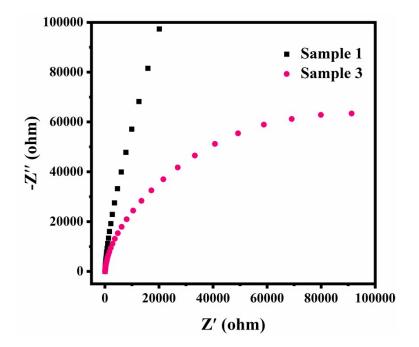


Fig. S5. Electrochemical impedance spectroscopy of Sample 1 and 3.

Samples	Concentration (ppm)	Temperature (°C)	Response	Response/recovery time (s)	References
MoO ₃ microboxes	100	260	78	15/5 s	S1
C/A-C/S MoO ₃ nanorods	500	180	56	_/_	S2
α -MoO ₃ /ZnO nanobelts	100	250	19	2.5/5 s	S3
Zn doped MoO3 nanobelts	5	240	2.4	46/76 s	S4
MoO3-rGO nanoflakes	100	310	53	6/54 s	S5
MoO ₃ /In ₂ O ₃ nanoflowers	100	185	7	11/94 s	S6
MoO ₃ /V _{0.13} Mo _{0.87} O _{2.935} microspheres	100	30	480 %	124.8/17.6 s	This work

Table S1 Comparison of ethanol sensing characteristics of MoO_3 -based sensors.

References

- S1 J. Zhang, P. Song, J. Li, Z. X. Yang and Q. Wang, Sens. Actuators, B, 2017, 249, 458-466.
- S2 L. Q. Wang, P. Gao, D. Bao, Y. Wang, Y. J. Chen, C. Chang, G. B. Li and P. P. Yang, Cryst. Growth Des., 2014, 14, 569-575.
- S3 J. T. Li, H. J. Liu, H. Fu, L. Xu, H. Jin, X. W. Zhang, L. W. Wang and K. F. Yu, J. Alloys Compd., 2019, 788, 248-256.
- S4 S. Yang, Y. L. Liu, T. Chen, W. Jin, T. Q. Yang, M. C. Cao, S. S. Liu, J. Zhou, G.S. Zakharova and W. Chen, Appl. Surf. Sci., 2017, **393**, 377-384.
- S5 Z. L. Tang, X. C. Deng, Y. Zhang, X. D. Guo, J. Q. Yang, C. L. Zhu, J. fan, Y. F. Shi, B. J. Qing and F.
 Y. Fan, Sens. Actuators, B, 2019, 297, 126730.
- S6 J. Hu, X. Wang, M. Zhang, Y. J. Sun, P. W. Li, W. D. Zhang, K. Lian, L. Chen and Y. Chen, RSC Adv., 2017, 7, 23478-23485.