Supporting Information

Study of GUPT-2, a Water-Stable Zinc-based Metal–Organic Framework as a Highly Selective and Sensitive Fluorescence Sensor in the Detection of Al³⁺ and Fe³⁺ Ions

San-Tai Wang^{†,‡}, Xiao Zheng[‡], Shu-Hua Zhang,^{†,‡,*} Guangzhao Li[†], Yu Xiao^{†,*}

[†]College of Chemistry, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, People's Republic of China

[‡]Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials(College of Chemistry and Bioengineering), Guilin University of Technology, Guilin 541004, People's Republic of China.

[†]College of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, People's Republic of China

Correspondence author e-mail: E-mail: zhangshuhua@gdupt.edu.cn (S. Zhang), Xiaoyu@gdupt.edu.cn (Y. Xiao).

Fig. S1 IR spectra of GUPT-2, H₂DHT ligand and BPP ligand.

Fig. S2 The TGA and DTG plots of GUPT-2.

Fig. S3 Powder X-ray diffraction patterns for GUPT-2.

Fig. S4 Powder XRD patterns of GUPT-2 immersed in different pH values.

Fig. S5 Solid state emission spectra of **GUPT-2**, free H₂DHT ligand and BPP linker upon excitation at 360 nm, 370 nm and 310 nm, respectively.

Fig S6 Emission spectra of GUPT-2 dispersed in different solvents when excited at 360 nm.

Fig. S7 Powder XRD patterns of GUPT-2 immersed in different solvents at room temperature.

Fig. S8 Optimized structures of BPP linker, H2DHT ligand and GUPT-2

Fig. S9 Powder XRD patterns of GUPT-2 immersed in different mental ions at room temperature.

Fig. S10 The fluorescence spectra of blank **GUPT-2** (1 mg·mL⁻¹) at different measurements.

concentration

Fig. S13 The luminescence of intensity of interacting with different metal ions in water solution with and without Al³⁺ ions.

Fig. S14 Powder XRD patterns of simulated from the single-crystal data of **GUPT-2**, synthesized compound and **GUPT-2**/Mⁿ⁺

Fig. S15 IR spectra of Zn-MOF/Al³⁺ and Zn-MOF, respectively.

Fig. S16 UV-vis adsorption spectra of metal ions in water (10⁻³ mol/L) and the excitation spectrum of **GUPT-2** dispersed in aqueous solution.

Fig. S17 EDS spectra of GUPT-2 before (a) and after the sensing of $Al^{3+}(b)$ and $Fe^{3+}(c)$.

Fig. S18 XPS spectra of GUPT-2 after the sensing of Fe^{3+} .

Fig. S19 XPS spectra of GUPT-2 after the sensing of Al³⁺.

Table S1 Selected bond lengths (Å	(°) and angles (°)) for GUPT-2
-----------------------------------	--------------------	--------------

Zn1-N1	2.056(4)	O2-Zn1-O5A	142.5(3)	
Zn1–O2	1.950(3)	O2-Zn1-N2B	97.25(16)	
Zn1-O5A	1.973(6)	O5A-Zn1-N1	91.4(2)	
Zn1-N2B	2.041(4)	O5A-Zn1-N2B	109.1(2)	
O2-Zn1-N1	106.19(16)	N2B-Zn1-N1	106.94(18)	
Symmetry codes: (A) $r = v + 1/2$ $r + 1/2$: (B) $r = 1$ $v = 7$				

codes: (A) x, -y+1/2, z+1/2; (B) x-1, y, z.

Table S2 Hydrogen bond parameters for GUPT-2

D–H···A	d(D–H)	$d(D \cdots A)$	d(H···A)	<(DHA)
O(3)–H(3)···O(1)	0.82	2.572(7)	1.84	147
O(4)−H(4)···O(6)	0.82	2.526(8)	1.79	148

Table S3 TD-DFT calculated main emission energies (nm) and electronic transitions of GUPT-2, H₂DHT and BPP ligands.

Compounds	Calcd. λ (nm)	Exp. λ (nm)	Significant contributions /Osc. Strengths (f)
GUPT-2	491	524	HOMO→LUMO+1 (99.8%)/0.1839
H ₂ DHT	487	480	HOMO→LUMO (99%) / 0.1561
BPP	350	380	HOMO→LUMO (98.7%)

Table S4 Highly Occupied and Lowest Unoccupied Molecular Orbitals for all ligands involved in the main luminescent charge transitions.

H ₂ DHT		BPP		
MO's	Energy (eV)	MO's Energy (e		

Table S5 Vertical excitation energies (Eex), oscillator strengths (f), and Key transitions of the lowest few excited singlets obtained from TDDFT calculations of **GUPT-2**.

E _{excitation}	excitation	Osc.	Vou transitions	Orbital
(eV)	(nm)	Strength (f)	Key transitions	contribution
3.4305	361.42	0.1202	HOMO→LUMO	0.040
			HOMO→LUMO+1	0.941
5.0392	246.04	0.3006	HOMO-5→LUMO+1	0.77
			HOMO-2→LUMO+2	0.05
			HOMO→LUMO+5	0.12
5.3207	233.02	0.1331	HOMO-8→LUMO	0.46
			HOMO-5→LUMO+2	0.05
			HOMO→LUMO+6	0.32
			HOMO→LUMO+7	0.10
			HOMO→LUMO+8	0.02
5.8060	213.54	0.1844	HOMO-11→LUMO+1	0.05
			HOMO-5→LUMO+1	0.03
			HOMO→LUMO+6	0.05
			HOMO→LUMO+7	0.51
			HOMO→LUMO+8	0.31

Table S6 The energy values of some HOMO-LUMO of GUPT-2.

MO's	Energy (eV)
LUMO+5	-0.41
LUMO+4	-0.75
LUMO+3	-0.97
LUMO+2	-1.11
LUMO+1	-1.50
LUMO	-1.72
НОМО	-5.40
HOMO-1	-6.18

HOMO-2	-6.46
HOMO-3	-6.52
HOMO-4	-6.93
HOMO-5	-6.98

	Table S7	Some HOMO	and LUMO	of GUPT-2.
--	----------	-----------	----------	------------

НОМО	LUMO+5	
НОМО-1	LUMO+4	
НОМО-2	LUMO+3	
НОМО-3	LUMO+2	
НОМО-4	LUMO+1	
НОМО-5	LUMO	

Metals	Materials	Solvents	$K_{sv}(M^{-1})$	LOD(µM)	References
Al ³⁺	$\{[H_3O]_2[Eu_{2.5}(BTB)_3(OAc)_{0.5}(H_2O)_3]$	DMF	5.57×10 ⁴	100	[1]
	UiO-66-NH ₂ -SA	Water	-	6.98	[2]
	$[Co_2(dmimpym)(nda)_2]_n$	Water	1.1×10^{4}	0.7	[3]
	$[Cd(CDC)(L)]_n$	Water	2.6×10 ³	61	[4]
	[Cd(PAM)(4-bpdb)1.5]·DMF	Water	2.3×10 ⁴	7.41	[5]
	Zn(DMA)(TBA)	Water	-1.3×10 ⁴	1.97	[6]
	$[Eu_2(ppda)_2(npdc)(H_2O)] \cdot H_2O$	Water	8.68×10 ⁵	109	[7]
	GUPT-2	Water	-1.21×10 ⁴	0.269	This work
Fe ³⁺	$[Eu_2(FDC)_3DMA(H_2O)_3] \cdot DMA \cdot 4.5H_2O$	Water	1.1×10 ⁴	2.22	[8]
	[Zn ₂ (BDC) ₂ (4-bpdh)]·3DMF	DMF	2.8×10 ⁴	0.2	[9]
	${[Cd(L)(SDBA)(H_2O)] \cdot 0.5H_2O}_n$	Water	3.59×10 ⁴	7.14	[10]
	${[Co_3(phen)_2(HL)_2] \cdot (H_2O)_2}_n$	Water	8.5×10 ³	1.79	[11]
	$[Zr_6O_4(OH)_8(H_2O)_4(L^1)_2]$	Water	2.17×10 ³	3.79	[12]
	Eu ³⁺ @Zn-MOF	Water	1.9×10 ⁴	2	[13]
	$[Cd_2(pbdc)(H_2O)_3]$	Water	1.86×10 ⁵	0.167	[14]
	GUPT-2	Water	1.77×10 ⁴	0.446	This work

Table S8 Comparison of the performance of various MOF sensors for A1³⁺ and Fe³⁺ ions.

Notes and references

- [1] H. Xu, M. Fang, C.-S. Cao, W.-Z. Qiao, B. Zhao, Inorg. Chem. 55(10) (2016) 4790-4794.
- [2] S.-Y. Zhu, B. Yan, Dalton Trans. 47 (2018) 1674-1681
- [3] W.-M. Chen, X.-L. Meng, G.-L. Zhuang, Z. Wang, M. Kurmoo, Q.-Q. Zhao, X.-P. Wang, B. Shan, C.-H. Tung, D. Sun, J. Mater. Chem. A, 5(25) (2017) 13079-13085.
- [4] S. Chand, M. Mondal, S.-C. Pal, A. Pal, S. Maji, D. Mandal, M.-C. Das, New J. Chem. 42(15) (2018) 12865-12871.
- [5] R. Lv, Z. Chen, X. Fu, B. Yang, H. Li, J. Su, W. Gu, X. Liu, J. Solid State Chem. 259 (2018) 67-72.
- [6] X. Zhang, X. Luo, N. Zhang, J. Wu, Y. Huang, Inorg. Chem. Front. 4 (2017) 1888-1894
- [7] Z. Zhan, X. Liang, X. Zhang, Y. Jia, M. Hu, Dalton trans. 48(5) (2019) 1786-1794.
- [8] L. Li, Q. Chen, Z. Niu, X. Zhou, T. Yang, W. Huang, J. Mater. Chem. C 4(9) (2016) 1900-1905.
- [9] Y.-D. Farahani, V. Safarifard, J. Solid State Chem. 275 (2019) 131-140.
- [10] S. Chen, Z. Shi, L. Qin, H. Jia, H. Zheng, Cryst. Growth Des. 17(1) (2016) 67-72.
- [11] Y. Liu, C. Liu, X. Zhang, L. Liu, C. Ge, X. Zhuang, N. Zhang, Q. Yang, Y.-Q. Huang, Z. Zhang, J. Solid State Chem. 272 (2019) 1-8.
- [12] B. Wang, Q. Yang, C. Guo, Y. Sun, L.-H. Xie, J.-R. Li, ACS Appl. Mater. Interfaces 9(11) (2017)

10286-10295.

- [13] R. Lv, H. Li, J. Su, X. Fu, B. Yang, W. Gu, X. Liu, Inorg. Chem. 56(20) (2017) 12348-12356.
- [14] C. Zhang, H. Shi, L. Sun, Y. Yan, B. Wang, Z. Liang, L. Wang, J. Li, Cryst. Growth Des. 18(12) (2018) 7683-7689.