Driving a sustainable application of s-triazines Ametryn and Atrazine herbicides through multicomponent crystals with improved solubility

Amandha Kaiser da Silva^a, Luan F. Diniz^b, Juan C. Tenorio^c, Carlos E. D. Nazario^a, Caue Ribeiro^d, Paulo de Sousa Carvalho Jr^{e*}

^aInstituto de Química, Universidade Federal do Mato Grosso do Sul, 79074-460, Campo Grande, MS, Brazil.^bLaboratório de Controle de Qualidade, Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil. ^cInstituto de Química, Universidade Estadual de Campinas, 13083-970, Campinas, SP, Brazil. ^dNational Nanotechnology Laboratory for Agribusiness (LNNA), EMBRAPA Instrumentação, 13560-970, São Carlos, SP, Brazil. ^eInstituto de Física, Universidade Federal do Mato Grosso do Sul, 79070-900, Campo Grande, MS, Brazil. *e-mail: <u>paulo.sousa@ufms.br</u>

	ATZ-H ₂ Fum·H ₂ O	ATZ-H ₂ Fum	AMT-NO3	AMT-TFA
Empirical formula	C ₁₀ H _{16.22} ClN ₅ O _{2.11}	$C_{10}H_{16}ClN_5O_2$	$C_9H_{18}N_6O_3S$	$C_{11}H_{18}F_3N_5O_2S$
Formula weight	275.71	273.73	290.35	341.36
Temperature (K)	120.0	120.0	298.0	298.0
Crystal system	Monoclinic	Monoclinic	Triclinic	Monoclinic
Space group	C2/c	C2/c	P1	$P2_1/c$
a/Å	18.892(4)	18.922(13)	9.1659(7)	8.2238(3)
b/Å	6.2547(15)	6.297(4)	9.5067(8)	10.1689(3)
c/Å	24.173(6)	24.311(16)	9.6825(8)	19.8066(5)
α/°	90	90	77.541(7)	90
β/°	104.589(4)	104.748(6)	72.346(7)	99.017(3)
γ/°	90	90	67.479(7)	90
Volume/Å ³	2764.3(11)	2801(3)	737.90(11)	1635.90(9)
Z	8	8	2	4
pcalcg/cm3	1.325	1.298	1.307	1.386
µ/mm ⁻¹	0.281	0.276	0.234	0.241
F(000)	1161.0	1152.0	308.0	712.0
Crystal size/mm ³	$\begin{array}{c} 0.222 \times 0.14 \times \\ 0.08 \end{array}$	$0.239 \times 0.149 \times 0.052$	$0.52 \times 0.38 \times 0.3$	$0.34 \times 0.22 \times 0.03$
2Θ range for data collection/°	6.31 to 53.46	6.3 to 52.724	6.802 to 53.438	6.988 to 54.968
	$-23 \le h \le 23$,	$-22 \le h \le 23$,	$-11 \le h \le 11$,	$-10 \le h \le 10$,
Index ranges	$-7 \le k \le 7,$	$-7 \le k \le 7,$	$-12 \le k \le 11$,	$-11 \le k \le 13$,
	$-30 \le l \le 30$	$-30 \le l \le 30$	$-12 \le l \le 12$	$-25 \le l \le 25$
Reflections collected	28552	38166	15139	20777
Independent reflections	$\begin{array}{c} 2928 \ [R_{int}=\\ 0.2164, \ R_{sigma}=\\ 0.0811 \end{array}$	2851 [R_{int} = 0.0743, R_{sigma} = 0.0306]	$\begin{array}{c} 3125 \ [R_{int}=\\ 0.0288, \ R_{sigma}=\\ 0.0198] \end{array}$	$3703 [R_{int} = 0.0320, R_{sigma} = 0.0236]$
Data/restraints/parameters	2928/36/179	2851/36/167	3125/58/204	3703/0/203
Goodness-of-fit on F ²	1.079	1.093	1.046	1.041
Final R indexes [I>= 2σ (I)]	R1= 0.0865, wR2= 0.22249	R1= 0.0889, wR2= 0.2619	R1= 0.0657, wR2= 0.1806	R1= 0.0711, wR2= 0.2156
Final R indexes [all data]	R1= 0.0972, wR2= 0.2348	R1= 0.0984, wR2= 0.2714	R1= 0.0861, wR2= 0.1951	R1= 0.0948, wR2= 0.2365
Largest diff. peak/hole / e Å-3	0.65/-0.89	0.84/-1.27	0.34/-0.24	0.92/-0.45

Table S1. Crystal data and structure refinement parameters for the s-triazine organic salts.

D-H•••A	Н•••А	D•••A	D-H•••A	Symmetry code	
ATZ-H ₂ Fum·H ₂ O					
01-H1•••N1	2.674(4)	1.859(3)	172.17(2)	<i>x,y,z</i>	
N2-H2•••O2	2.931(5)	2.079(3)	170.61(2)	<i>x,y,z</i>	
C7-H7C•••OW1	3.222(3)	2.273(3)	169.40(8)	<i>x,y,z</i>	
OW1-HW1B•••N3	3.388(3)	2.709(3)	137.99(2)	<i>x,y,z</i>	
N5-H5•••N4	3.040(4)	2.181(3)	176.78(2)	- <i>x</i> +2,+ <i>y</i> ,- <i>z</i> +1/2+1	
C10-H10•••OW1	3.622(3)	2.865(3)	139.37(7)	- <i>x</i> +1/2+1,+ <i>y</i> -1/2,- <i>z</i> +1/2+1	
С5-Н5С•••О2	3.624(6)	2.705(3)	160.45(3)	<i>x</i> + <i>1</i> /2,+ <i>y</i> - <i>1</i> /2,+ <i>z</i>	
		ATZ-H ₂ Fı	ım		
N2-H2•••O2	2.943(6)	2.091(4)	170.69(3)	<i>x,y,z</i>	
01–H1•••N1	2.686(5)	1.871(4)	172.58(2)	<i>x,y,z</i>	
N5-H5•••N4	3.047(5)	2.187(3)	177.67(3)	- <i>x</i> ,+ <i>y</i> ,- <i>z</i> +1/2	
С5-Н5А•••О2	3.633(7)	2.712(4)	161.13(4)	<i>x</i> - <i>1</i> /2, + <i>y</i> - <i>1</i> /2, + <i>z</i>	
		AMT-NO	3		
N1-H1•••O1	2.748(3)	1.890(2)	175.78(2)	<i>x,y,z</i>	
N1-H1•••O2	3.490(3)	2.826(3)	135.20(2)	<i>x,y,z</i>	
N2-H2•••O2	2.889(3)	2.036(3)	171.20(2)	<i>x,y,z</i>	
С9-Н9В•••О1	3.452(4)	2.579(2)	151.24(2)	<i>-x,-y</i> +1, <i>-z</i> +2	
С9-Н9В•••О3	3.466(4)	2.592(3)	151.48(2)	<i>-x,-y</i> +1, <i>-z</i> +2	
С8-Н8С•••О3	3.679(7)	2.781(3)	156.03(3)	- <i>x</i> , - <i>y</i> +2, - <i>z</i> +1	
AMT-TFA					
N1-H1•••O1	2.643(3)	1.784(3)	176.16(2)	<i>x,y,z</i>	
N2-H2•••O2	2.974(3)	2.117(2)	173.59(2)	<i>x,y,z</i>	
N5-H5•••O2	3.146(4)	2.361(3)	151.98(2)	<i>x</i> ,- <i>y</i> + <i>1</i> /2,+ <i>z</i> - <i>1</i> /2	
С9-Н9В•••F3	3.634(7)	2.859(4)	138.44(3)	x, -y+1/2, +z-1/2	
C5-H5A•••F2	3.347(7)	2.594(4)	135.52(3)	<i>x,-y</i> + <i>1</i> /2,+ <i>z</i> - <i>1</i> /2	
C8-H8C•••F2	3.655(6)	2.834(3)	143.96(3)	- <i>x</i> +1,+ <i>y</i> -1/2,- <i>z</i> +1/2+1	
С7–Н7А•••F2	3.561(6)	2.713(4)	147.56(3)	- <i>x</i> +1,+ <i>y</i> -1/2,- <i>z</i> +1/2+1	
С9-Н9С•••О1	3.786(6)	2.828(3)	175.58(3)	- <i>x</i> +2,- <i>y</i> +1,- <i>z</i> +1	
C5-H5B•••F1	3.666(6)	2.904(3)	137.07(3)	<i>x</i> - <i>1</i> ,- <i>y</i> + <i>1</i> /2,+ <i>z</i> - <i>1</i> /2	

 Table S2. H-bond and intermolecular interactions for the s-triazine organic salts.

Compound	pKa		
Ametryn	4.0 ²		
Atrazine	$1.7^{2,3}$		
Fumaric acid (H ₂ Fum)	3.03 and 4.44 ⁴		
Nitric acid (HNO ₃)	- 1.5 ⁵		
Trifluoracetic acid (3FAH)	0.52^{6}		
Malic acid	3.4, 5.2 and 14.5 ⁷		
Oxalic acid	1.27 and 4.27 ⁸		

Table S3. pKa values for atrazine, ametryn, and multicomponent formers

Table S4. Principal FT-IR bands (cm⁻¹) for ATZ and AMT multicomponent crystals

Assignment (cm ⁻¹)	ATZ	ATZ-H ₂ Fum	AMT	AMT-NO ₃	AMT-TFA
v(N-H)	3257, 3103	3269, 3210	3251, 3093	3261, 3095	3269, 3083
v(C-H)	2972, 2931	2972, 2935	2968, 2933	2972, 2929	2981, 2939
v(C=O)	-	1701	-	-	-
$v(C_3N_{3 ring})$	1618, 1546	1620, 1558	1606, 1523	1658, 1612	1679, 1608
v(COO ⁻)	-	-	-	-	1559, 1443
v(C=N)	1338	1344	1334	1332	1346
$v(NO_3)$	-	-	-	1382, 1160	-
v(C-S)	-	-	1001	999	995
δ(С-Н)	808	800	806	806	790
v(C-Cl)	690	692	-	-	-

Table S5. Equilibrium solubility values (mg mL⁻¹) of ATZ cocrystal and AMT salts. The

ATZ and AMT were added for comparison purpose.

Compound	Solubility (mg mL ⁻¹)
ATZ	0.682
ATZ-H ₂ Fum	3.88
AMT	0.215
AMT-NO ₃	4.50
AMT-TFA	2.96

Figure S1. View of the asymmetric unit (ASU) of (a) ATZ-Fum (C2/c, Z'=1), (b) ATZ-H₂Fum.H₂O (C2/c, Z'=1), (c) AMT-NO3 (P¹, Z'=1), (d) AMT-3FA (P21/c, Z'=1).

Figure S2. The isostructural packing of (a) ATZ-H2FumH2O and the (b) dehydrates ATZ-H2Fum. The coexistence of isostructural hydrate and dehydrated phases have identified as outcome of the crystallization. Notably, the ATZ-Fum H_2O structure showed poor thermal stability, releasing the water molecules below 330 K converting into the isostructural dehydrate. This type of hydrate occurs owing to the structure formed be able to generate channels that allow the flow of water molecules with low retention.

Figure S3. Fourier difference map for the neutral ATZ molecule in the (a) $ATZ-H_2Fum.H_2O$ and (b) $ATZ-H_2Fum$ cocrystals. And for the AMT⁺ cation in (c) AMT-NO3 and (d) AMT-TFA salts. The cocrystal formation is confirmed by the non-protonation of COOH groups of the fumaric acid. In the ametryn salts, it has seen the protonation of AMT molecule on the N5-atom for both cases.

Figure S4. The ATZ-H₂Fum·H₂O parking. The association between the water and ATZ molecules are highlighted in the blue square.

Figure S5. (a) The amino-triazine \cdots H₂Fum and amino-triazine \cdots amino-triazine synthons along to axis 100. (b) projection of chains arranged in opposite positions along the axis 010 forming crystalline packaging.

