Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2021

Supplementary information

A Photoluminescent Organosuperelastic Crystal of 7-Amino-4-Methylcoumarin

Toshiyuki Sasaki, Subham Ranjan, Satoshi Takamizawa* Department of Materials System Science, Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027, Japan staka@yokohama-cu.ac.jp

Table of contents

Mechanical characterization	S2
Crystallographic studies	S4
Supporting references	S6

Other supplementary material

Movie S1. Superelastic behavior of a single crystal of 1 sheared by tweezers under PW light.Movie S2. Superelastic behavior of a single crystal of 1 sheared by tweezers under PW light (left) and PW+UV light (right).

Movie S3. Superelastic behavior of a single crystal of **1** sheared by a glass jig under PW light (left) and UV light (right).

Mechanical characterization

Entry	$\sigma_{\rm f}/{ m MPa}^a$	$\sigma_{\rm r}$ / MPa ^a	E_s / kJ m ^{-3b}	η ^c	χ^{d}	heta / °e
1-PW	0.63	0.04	4	0.07	0.01	3.8
1-UV	0.63	0.04	3	0.06	0.01	3.8
TPA ^f	0.50	0.46	62	0.93	0.13	6.5
FBA ^g	0.07	0.01-0.03	12	0.29	0.26	27.8
\mathbf{BPPB}^h	0.53	0.42	50	0.79	0.10	5.3
\mathbf{MNA}^i	0.03	0.01	4	0.39	0.20	20.5
PDA ^j	0.49	0.28	110	0.61	0.29	23.9
$\mathbf{D}\mathbf{C}\mathbf{B}^k$	0.03	0.02	8	0.77	0.28	18.6
FPC ¹	0.35	0.03	8	0.08	0.04	16.3
MPU ^m	0.25	0.16	8	0.64	0.04	2.9
7Cl ⁿ	1.53	0.66	560	0.43	0.51	42.1
TCNB ^o	0.11	0.04	15	0.35	0.19	21.4
\mathbf{MNBA}^p	0.69	0.38	31	0.55	0.06	3.3
PFPI ^q	0.28	0.19	72	0.69	0.31	22.2
TCIB ^r	0.18	0.02	1.6	0.09	0.02	5.84~

Table S1. Mechanical parameters of superelastic molecular crystals.

^{*a*}Effective shear stress for deformation: proceeding in the forward (σ_f) and reverse (σ_r) directions. ^{*b*}Energy storage density ($E_s = W_{out}/V$). The symbols W_{out} and V represent the output work and volume, respectively, in a deformed region of a specimen during superelastic deformation. ^{*c*}Energy storage efficiency ($\eta = W_{out}/W_{in}$) where W_{in} represents input work. ^{*d*}Superelastic index ($\chi = 2E_s/(\sigma_f + \sigma_r)$). ^{*e*}Representative crystal bending angles: a crystal bending angle is variable depending on a crystal morphology. ^{*f*}Terephthalamide.^{S1} ^{*g*}3,5-difluorobenzoic acid.^{S2} ^{*h*}5tetrabutyl-*n*-phosphonium tetraphenylborate.^{S3} ^{*i*}N,N-dimethyl-4-nitroaniline.^{S4} ^{*j*}Pentadecanoic acid.^{S5} ^{*k*}1,4-dicyanobenzene^{S6} ^{*l*}4,5,7,8,12,13,15,16-octafluoro[2.2]paracyclophane.^{S7} ^{*m*}1,3-bis(4methoxyphenyl)urea.^{S8} ^{*n*}7-chloro-2-(2'-hydroxyphenyl)imidazo[1,2-*a*]pyridine.^{S9} ^{*o*}1,3,5tricyanobenzene.^{S10} ^{*p*}3-methyl-4-nitrobenzoic acid.^{S11} ^{*q*}N-(2,3,4,5,6-pentafluorophenyl)-1phenylmethanimine.^{S12} ^{*r*}1,3,5-trichlorobenzene.^{S13}

Figure S1. Photographic images of a deformed crystal of 1 under PW light (left) and UV light (right).

Crystallographic studies

Figure S2. (a) Hydrogen bonding networks with graph set denotations^{S14–S17} and (b) π - π interactions in the crystalline state.

Figure S3. (a) A photographic image of a twinned crystal of 1 and (b) its face indices.

Sample	Mechanically twinned			
Domain	α_{M}	α _D		
T / K	296	296		
Molecular formula	$C_{10}H_9NO_2$	$C_{10}H_9NO_2$		
Crystal size/mm ³	0.245x0.124x0.099	0.171x0.115x0.082		
Molecular weight	175.18	175.18		
Crystal system	triclinic	triclinic		
Space group	$p\bar{1}$	$P^{\overline{1}}$		
<i>a</i> / Å	6.9349(19)	6.9361(7)		
b / Å	7.1467(15)	7.1569(6)		
<i>c /</i> Å	9.558(2)	9.5654(9)		
lpha / °	71.817(6)	71.825(3)		
eta / °	84.968(8)	84.915(3)		
γ / °	70.026(8)	69.902(3)		
$V/~{ m \AA}^3$	422.89(18)	423.58(7)		
Ζ	2	2		
$D_{ m calcd}$ / Mg m ⁻³	1.376	1.374		
μ (Mo Ka) / mm ⁻¹	0.097	0.097		
Reflections collected	5217	5247		
Independent reflections (R_{int})	1468 (0.0610)	1473 (0.0449)		
Goodness of fit	1.653	1.060		
$R_1 (I > 2\sigma \text{ (all data)})$	0.1819 (0.2083)	0.0632 (0.0803)		
$_{\rm w}R_2 \ (I > 2\sigma \ (all \ data))$	0.4492 (0.4751)	0.1731 (0.1973)		
Largest diff. peak (hole)/eÅ ³	1.328 (-0.538)	0.281 (-0.225)		
CCDC No.	2069188	2069189		

Table S2. Crystallographic parameters of a mechanically twinned crystal of 1.

Supporting references

- [S1]. S. Takamizawa, Y. Miyamoto, Superelastic Organic Crystals. Angew. Chem. Int. Ed. 2014, 53, 6970–6973.
- [S2]. S. Takamizawa, Y. Takasaki, Superelastic Shape Recovery of Mechanically Twinned 3,5-Difluorobenzoic Acid Crystals. *Angew. Chem. Int. Ed.* 2015, 54, 4815–4817.
- [S3]. S. Takamizawa, Y. Takasaki, Shape-Memory Effect in an Organosuperelastic Crystal. *Chem. Sci.* 2016, 7, 1527–1534.
- [S4]. S. Takamizawa, Y. Takasaki, T. Sasaki, N. Ozaki, Superplasticity in an Organic Crystal. Nat. Commun. 2018, 9, 3984.
- [S5]. Takamizawa, Y. Takasaki, Versatile Shape Recoverability of Odd-Numbered Saturated Long-Chain Fatty Acid Crystals. *Cryst. Growth Des.* 2019, 19, 1912–1920.
- [S6]. S. Sakamoto, T. Sasaki, A. Sato-Tomita, S. Takamizawa, Shape Rememorization of an Organosuperelastic Crystal via Superelasticity—Ferroelasticity Interconversion. Angew. Chem. Int. Ed. 2019, 58, 13722–13726.
- [S7]. T. Sasaki, S. Sakamoto, S. Takamizawa, Twinning Organosuperelasticity of a Fluorinated Cyclophane Single Crystal. *Cryst. Growth Des.* 2019, 10, 5491–5493.
- [S8]. T. Sasaki, S. Sakamoto, S. Takamizawa, A Multidirectional Superelastic Organic Crystal by Versatile Ferroelastical Manipulation. *Angew. Chem. Int. Ed.* 2020, 59, 4340–4343.
- [S9]. T. Mutai, T. Sasaki, S. Sakamoto, I. Yoshikawa, H. Houjou, S. Takamizawa, A Superelastochromic Crystal. *Nat. Commun.* 2020, 11, 1824.
- [S10]. T. Sasaki, S. Sakamoto, S. Takamizawa, Flash Shape-Memorization Processing and Inversion of a Polar Direction in a Chiral Organosuperelastic Crystal of 1,3,5-Tricyanobenzene. *Cryst. Growth Des.* 2020, 20, 4621–4626.
- [S11]. Y. Takasaki, T. Sasaki, S. Takamizawa, Temperature-Diversified Anisotropic Superelasticity and Ferroelasticity in a 3-Methyl-4-Nitrobenzoic Acid Crystal. *Cryst. Growth Des.* 2020, 20, 6211– 6216.
- [S12]. T. Sasaki, S. Sakamoto, S. Takamizawa, Twinning-Based Organosuperelasticity and Chirality in a Single Crystal of an Achiral Donor-Acceptor Type Schiff Base Induced by Charge-Transfer Interactions. *Cryst. Growth Des.* 2020, 20, 8079–8083.
- [S13]. T. Sasaki, K. Nishizawa, S. Takamizawa, Versatile Organosuperelastic Deformability by Multiple Mechanical Twinning. *Cryst. Growth Des.* 2021, in press (DOI: 10.1021/acs.cgd.1c00054).
- [S14]. Graph M. C. Etter, Encoding and Decoding Hydrogen-Bond Patterns of Organic Compounds. Acc. Chem. Res. 1990, 23, 120–126.
- [S15]. J. Bernstein, R. E. Davis, L. Shimoni, N.-L. Chang, Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals. *Angew. Chem. Int. Ed. Engl.* 1995, 34, 1555–1573.
- [S16]. T. Sasaki, Y. Ida, I. Hisaki, T. Yuge, Y. Uchida, N. Tohnai, M. Miyata, Characterization of Supramolecular Hidden Chirality of Hydrogen-Bonded Networks by Advanced Graph Set

Analysis. Chem. Eur. J. 2014, 20, 2478–2487.

[S17]. T. Sasaki, M. Miyata, H. Sato, Helicity and Topological Chirality in Hydrogen-Bonded Supermolecules Characterized by Advanced Graph Set Analysis and Solid-State Vibrational Circular Dichroism Spectroscopy. *Cryst. Growth Des.* 2018, 18, 4621–4627.