Three-dimensional supramolecular network structure cooperative hydrogen bond and π - π interaction: synthesis, structure, and the fluorescence detection of balsalazide disodium

Chen Wang^a, Zi Xin You^a, Yong-Heng Xing^{a*}, Feng-Ying Bai^a, Zhan Shi^b

^{a.} College of Chemistry and Chemical Engineering, Liaoning Normal University, Huanghe Road 850#, Dalian 116029, P. R. China

^bState Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P. R. China

E-mail: xingyongheng2000@163.com (Yong-Heng Xing);

Materials and methods: The elemental analyses were carried out on a Perkin-Elmer 240C automatic analyzer. Infrared spectra were measured on a Bruker AXSTENSOR-27 FT-IR spectrometer with pressed KBr pellets in the range of 400-4000 cm-1 at room temperature. UV-vis spectra were recorded on JASCOV-570 spectrometer (200-2500 nm, in form of solid sample) and Lambda 35 UV/VIS Spectrometer (200-800 nm, in form of liquid sample). X-ray powder diffraction (XRD) data were collected on a Bruker Advance-D8 with Cu K α radiation, in the range 5° <2 θ < 50°, with a step size of 0.02° (20) and an acquisition time of 2 s per step. Thermogravimetric analysis (TG) was performed on a Perkin Elmer Diamond TG/DTA under the conditions of the N2 atmosphere in the temperature range from 30 to 800 °C. The photoluminescent spectra of the coordination polymers were measured on a HORIBA Fluoromax-4-TCSPC spectrofluorometer equipped with Spectra LED Pulsed LED sources at room temperature (200-1000 nm). The ¹H-NMR spectra were measured on Nuclear Magnetic Resonance Spectrometer (Bruker Avance II 400).

Synthesis of NDI-A: The NDI-A was successfully composed according to the previous literature^[1]. IR (KBr, cm⁻¹): 3492, 3159, 1693, 1595, 1409, 1306, 1244, 1198, 919, 846, 751. ¹H NMR (400 MHz, DMSO-d6) δ 11.93 (d, J = 15.9 Hz, 2H), 8.89 (dt, J = 4.5Hz, 4H), 8.86 (d, J = 1.7 Hz, 4H), 7.95(m, 4H).

Scheme S1: Synthesis of ligand NDI-A

Synthesis of H₃TIBTC: Based on the reported literature^[2], we have improved the synthesis of H₃TIBTC. 2,4,6-triiodo-1,3,5-trimethylbenzene (M -1): Combine 1,3,5-trimethylbenzene (M) (12.0 g), iodine (38.8 g), HIO₄·2H₂O (14.0 g), CH₃COOH (100 mL) and deionized water (20 mL) were added to the three-necked flask. After stirring for a while, 3 mL of concentrated H₂SO₄ was added dropwise. The mixture was heated to reflux at 90 °C for 10 hours, then filtered with suction and repeatedly washed with deionized water, and finally purified with acetone to obtain 2,4,6-triiodo-1,3,5-trimethylbenzene (M-1). H₃TIBTC: Add 5.0 g of 2,4,6-triiodo-1,3,5trimethylbenzene, 70 mL of pyridine and 25 mL of deionized water to a three-necked flask, and stir until the solid is completely dissolved to obtain milky white liquid. The temperature was then raised to 90 °C and solid KMnO₄ (10.0 g) was added every 1 hour for a total of 6 times. The mixture was heated to reflux for 10-12 hours. After the reaction was completed, it was filtered while hot, the solid in the solution was washed with 35 mL of 5% KOH solution, and then the pyridine was removed by rotary evaporation. Then, 75 mL of distilled water was added to remove insoluble materials, and the filtrate was adjusted to pH = 1 with concentrated HCl. Finally, it was extracted with 125 mL of ethyl acetate, washed with 20 mL of water, and then rotary evaporation to give 2,4,6-triiodo-1,3,5-trimellitic acid (H₃TIBTC) as a solid. Yield: 86%, m.p. > 280 °C. IR (KBr, cm⁻¹): 3444, 1616, 1501, 1373, 1308, 1160. ¹H NMR (M -1) (400 MHz, CDCl₃) δ 3.00 (d, J = 0.9 Hz, 1H).

Scheme S2: Synthesis of ligand H₃TIBTC

Synthesis of H₃DIBTC: The synthesis route of the H₃DIBTC was similarly to the H₃TIBTC^[3]. The only difference is that the molar ratio of 1,3,5-trimethylbenzene to iodine is changed from 1:3 to 1:2.5. IR (KBr, cm⁻¹): 3466, 1627, 1518, 1408, 1247, 1153. ¹H NMR (Compound M-2) (400 MHz, CDCl₃), δ 2.44 (s, 6H), δ 2.94 (s, 3H), δ 7.01 (s, 1H).

Scheme S3: Synthesis of ligand H₃DIBTC

Figure S1 The ¹H-NMR spectra of the ligand NDI-A, intermediate of H₃TIBTC (M -1),

intermediate of H₃DIBTC (M-2)

X-ray crystallographic determination

Suitable single crystals of three co-crystals (1-3) were mounted on glass fibers for Xray structure determination. Reflection data were collected at room temperature on a Bruker AXS SMART APEX II CCD diffractometer with graphite monochromatized Mo K α radiation ($\lambda = 0.71073$ Å). All absorption corrections were performed using the SADABS program^[4]. All calculations were performed using the SHELX-97 program^[5, 6] and OLEX-2 program^[7]. Crystal structures were solved by the direct method. All non-hydrogen atoms were refined anisotropic-ally. Hydrogen atoms were fixed at calculated positions and refined by using a riding mode. Structures were checked for additional symmetry using PLATON^[8].

co-crystals	1	2	3	
Formula	$C_{33}H_{19}N_6O_6$	$C_{14}H_7I_3NO_6$	$C_{14}H_8I_2NO_6$	
Molecular weight	595.54	665.91	540.01	
Crystal system	Monoclinic	Monoclinic	Monoclinic	
Space group	$P2_l/c$	$P2_l/n$	C2/c	
a/Å	10.7535(7)	8.9598(5)	14.811(6)	
b/Å	8.9587(6)	21.9155(11)	9.023(4)	
$c/{ m \AA}$	27.8995(19)	9.5862(5)	24.110(10)	
α/(°)	90	90	90	
β/(°)	96.3210(10)	116.7110(10)	106.673(7)	
γ (°)	90	90	90	
$V(\text{ nm}^3)$	2671.4(3)	1681.46(15)	3086(2)	
Ζ	4	4	8	
$D_{calc}/(g \cdot cm^{-3})$	1.481	2.630	2.324	
F(000)	1228	1220	2024	
μ (Mo Kα)/nm	0.105	5.607	4.106	
θ range/(°)	1.469-28.292	1.858-31.113	2.675-28.609	

 Table S1. Crystallographic data for the co-crystals 1-3*

Reflections collected	16538	11463	9783
Independent reflections $[I \ge 2\sigma(I)]$	6468	4822	3827
Parameters	406	218	209
Goodness of fit	0.995	1.076	1.030
R^a (R^b)	0.0578 (0.1367) ^b	0.0341(0.0390) ^b	0.0375(0.0637 ^b
$\mathrm{wR}_{2^{\mathrm{a}}}(\mathrm{R}_{2^{\mathrm{b}}})$	0.1396 (0.1774) ^b	0.0843 (0.0866) ^b	0.0800(0.0892) ^b
$\Delta(ho)$ (e Å ⁻³)	0.31 and -0.52	1.15and -2.00	1.27and -0.90

* a. $R=\Sigma |F_o| - F_o| |\Sigma| F_o|$, $wR_2 = (\Sigma(w(F_o^2 - F_c^2)^2)/\Sigma(w(F_o^2)^2)^{1/2}; b. [F_o > 4\sigma(F_o)]; b. based on all data.$

212(3) 324(3) 393(3) 217(3) 22.3(2) 19.8(2)
212(3) 324(3) 393(3) 217(3) 22.3(2) 19.8(2)
324(3) 393(3) 217(3) 22.3(2) 19.8(2)
393(3) 217(3) 22.3(2) 19.8(2)
217(3) 22.3(2) 19.8(2)
22.3(2) 19.8(2)
19.8(2)
5.6(13)
24.0(3)
281(5)
310(5)
497(8)
378(8)
20.9(6)
119.4
21.7(5)
081(4)
0 4 1 (5)

Table S2. Selected bond lengths (Å) and angles (°) for the co-crystals $1\text{-}3^{*}$

N1-C10	1.313(8)	N1-C14	1.321(8)
C12-C12#1	1.475(9)	C11-C10	1.379(8)
C5-C6-I2	119.7(13)	C1-C6-I2	118.8(3)
C10-N1-C14	120.4(5)	C13-C12-C12 ^{#1}	122.2(5)
C11-C12-C12 ^{#1}	120.3(6)	N1-C10-C11	121.1(6)
C3-C4-I1	119.7(3)	O1-C7-C1	114.1(4)

*co-crystal **2**: #1: x+1/2, -y+3/2, z+1/2. co-crystal **3**: #1: x+1/2, y-1/2, z.

D-H····A	d(D-H)	$d(H \cdots A)$	$d(D \cdots A)$	<(DHA)
co-crystal 1				
N5-H5…O1 ^{#1}	0.86	2.08	2.836(3)	146.8
N2-H2…N1 ^{#2}	0.86	2.10	2.941(3)	164.8
C21-H21…N6 ^{#3}	0.93	2.50	3.399(4)	162.1
C33-H33B…O2 ^{#4}	0.97	2.49	3.427(6)	163.4
C7-H7…O5 ^{#5}	0.93	2.57	3.199(3)	125.3
co-crystal 2				
O2-H2…O3 ^{#1}	0.82	1.75	2.524(4)	156.4
co-crystal 3				
O5-H5…O4 ^{#1}	0.82	1.70	2.514(5)	175.2
C14-H14…O6 ^{#2}	0.93	2.36	3.288(7)	174.6

Table S3. Hydrogen bond lengths (Å) and angles (°) for the co-crystals 1-3*

*co-crystal 1: #1:-x+1, -y+2, -z; #2: -x+2, y-1/2, -z+1/2; #3: -x+1, y+1/2, -z-1/2; #4: -x+2, -y+2, z; #5: x, y+1, z. co-crystal 2: #1: x+1/2, -y+3/2, z+1/2. co-crystal 3: #1: x+1/2, y-1/2, z; #2 -x+2, y, -z+1/2.

Figure S2 The FT-IR spectra of the moieties and the co-crystal 1-3

	NDI-A	H ₃ TIBTC	H ₃ DIBTC	co-crystal 1	co-crystal 2	co-crystal 3
$\nu_{\text{N-H}}$	3496	-	-	3473	-	-
ν_{Ar-H}	3144	-	3126	3170	3168	3104
	1687,	1692,	1683,	1703, 1400	1702 1400 1414 1205	1627, 1408
V _{C=O}	1413	1405	1403		1010, 1385	
$\nu_{C=N}$	1580	-	-	1576	1520	1521
$\nu_{C=C}$	1306	1307	1244	1302	1288	1247
v _{C-C}	1237	1201	1137	1243	1136	1153
v_{C-N}	1189	-	-	1195	-	-
2	915, 846,			921, 852,	960, 910,	905, 858,
0 _{Ar-H}	758	-	-	755	766	763

Table S4. Detailed attribution of IR data of the starting compounds and co-crystal 1-3 (cm⁻¹)

Figure S3 The solid UV-Vis spectra of the co-crystal 1-3

ao arristal	LI	LCT	Intramolecular charge
co-crystar	π-π*	n-π*	transfer
1	342	362	486
2	256	315	395
3	248	307	395

Table S5 UV-vis spectra identifications of co-crystal compounds 1-3

(b)

Figure S4 The PXRD patterns of the co-crystal 1-3

(c)

Figure S5 The TG curves of the co-crystal 1-3

Figure S6 The angles of the planes of the NDI-A moieties in co-crystal **1** (yellow, blue: the plane constructed by hydrogen bond ring; green, purple, pink: the plane constructed by NDI-A moieties)

Figure S7 The angles of the planes of the H_3DIBTC and 4,4-bipy moieties in co-crystal 3 (yellow:

the plane constructed by hydrogen bond ring; green: the I, I', I, I' plane; purple: the II, II'

plane)

Figure S8 The residuals of the fits of the luminescence decay traces of NDI-A, fluorene, and co-

crystal 1

Figure S9 Comparison of the liquid fluorescence lifetime of co-crystal 1 before and after adding

balsalazide disodium

References

- [1] S. Bhattacharjee, B. Maitia and S. Bhattacharya, Nanoscale, 2016, 8, 11224-11233.
- [2] B. Wang, X. L. Lv, D. W. Feng, L. H. Xie, J. Zhang, M. Li, Y. B. Xie, J. R. Li and H. C. Zhou,
- J. Am. Chem. Soc., 2016, 138, 6204-6216.
- [3] C. H. Liu, Q. L. Guan, X. D. Yang, F. Y. Bai, L. X. Sun and Y. H. Xing, Inorg. Chem., 2020,

59, 8081–8098.

- [4] G. M. Sheldrick, Acta Crystallogr A., 2008, 64, 112–122.
- [5] G. M. Sheldrick, University of Göttingen, Göttingen, 1996.
- [6] G. M. Sheldrick, University of Göttingen, Göttingen, 1997.
- [7] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, *J Appl Crystallogr.*, 2009. **42**, 339-341.
- [8] A.L. Spek, J Appl Crystallogr., 2003, 36, 7–13.