Interaction, Bond Formation or Reaction Between a Dimethylamino Group and an Adjacent Alkene or Aldehyde Group in Aromatic Systems Controlled by Remote Molecular Constraints.

Jonathan C. Bristow, Stacey V. A. Cliff, Songjie Yang and John D. Wallis, School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, UK.

Synthesis:

Peri-Diphenylnaphthalenes. p. 2
Acenaphthenes. p. 6
9,9-Dimethylfluorenes. p. 10
X-ray Crystallography. p. 19
Peri-Diphenylnaphthalenes. p. 20
Acenaphthenes. p. 25
9,9-Dimethylfluorenes. p. 29

I. Synthesis of Compounds.

General. Solution NMR spectra were measured on a Jeol ECLIPSE 400 ECX or ECZ spectrometer at 400 MHz for ${ }^{1} \mathrm{H}$ and at 100.6 MHz for ${ }^{13} \mathrm{C}$ using CDCl_{3} as solvent and tetramethylsilane (TMS) as standard unless otherwise stated, and measured in p.p.m. downfield from TMS with coupling constants reported in Hz. IR spectra were recorded on a Perkin Elmer Spectrum 100 FT-IR Spectrometer using Attenuated Total Reflection sampling on solids or oils and are reported in cm^{-1}. Mass spectra were recorded at the EPSRC Mass Spectrometry Centre at the University of Swansea. Chemical analysis data were obtained from Mr Stephen Boyer, London Metropolitan University.

A. DIPHENYLS DERIVATIVES.

Experimental details for preparation and characterisation of 16, 17 and $\mathbf{1 8}$ have been previously described. ${ }^{\mathbf{S 1}}$

Preparation of methyl (E)-2-cyano-3-(8'-(dimethylamino)-4',5'-diphenylnaphthalen-1'-

 yl)propenoate, 19/20.Dimethylamino-aldehyde 17 ($75 \mathrm{mg}, 0.21 \mathrm{mmol}$), methyl cyanoacetate ($0.075 \mathrm{~mL}, 0.85 \mathrm{mmol}$) and ethylenediamine diacetate ($6 \mathrm{mg}, 0.03 \mathrm{mmol}$) were dissolved in anhydrous methanol (10 mL) under nitrogen and refluxed for 24 h . The solvent was removed in vacuo and the crude product purified by flash column chromatography ($4: 1$ hexane: ethyl acetate) to give $\mathbf{1 9 / 2 0}$ as a yellow solid ($80 \mathrm{mg}, 87 \%$), m.p. $165-168^{\circ} \mathrm{C}$. (19 in the solid state, 20 in CDCl_{3} solution). $\delta \mathrm{H}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 24^{\circ} \mathrm{C}$): $8.95(1 \mathrm{H}, \mathrm{s}, 3-H), 7.58\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, \mathrm{Ar}-H_{1}\right), 7.39-7.51(3 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{Ar}-\mathrm{H}_{3}\right)$, 6.87-6.97 (10H, m, Ar- H_{10}), $3.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 2.77\left(6 \mathrm{H}, \mathrm{s}, 8\right.$ ' $\left.-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta \mathrm{C}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}, 2{ }^{\circ} \mathrm{C}$): $161.8(C=\mathrm{O}), 156.7$ (3-C), 148.4 ($\left.8^{\prime}-C\right), 142.9,142.3,142.0,138.9$, $132.6,131.6,131.5,130.5,129.9,129.8,127.9,126.4,126.2,126.1,118.7$ (Ar- C_{21}), 117.4 $(\mathrm{CN}), 87.5(2-\mathrm{C}), 52.7\left(\mathrm{OCH}_{3}\right), 45.7\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right) ; v_{\max } / \mathrm{cm}^{-1}: 2167(\mathrm{C} \equiv \mathrm{N}), 1638(\mathrm{C}=\mathrm{O}), 1433$, 1371, 1345, 1276, 1250, 1189, 1095, 918, 849, 756, 695; Found: C, 80.53; H, 5.70; N, 6.57\%. Calc. for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 80.53; H, 5.59; $\mathrm{N}, 6.48 \%$.

Preparation of $1-\left(1^{\prime}, 1^{\prime}-\right.$ dimethyl- $5^{\prime}, 6^{\prime}-$ diphenyl $-1^{\prime}, 2^{\prime}$-dihydrobenzo[cd]indol-1'-ium-2'-yl)-2,6-dioxocyclohexan-1-ide, 21.
Dimethylamino-aldehyde 17 ($100 \mathrm{mg}, 0.28 \mathrm{mmol}$), 1,3-cyclohexandione ($28 \mathrm{mg}, 0.25 \mathrm{mmol}$) and ethylenediamine diacetate ($5 \mathrm{mg}, 0.03 \mathrm{mmol}$) were dissolved in anhydrous methanol (10 mL) under nitrogen and refluxed for 24 h . The solvent was removed in vacuo and the crude oil triturated with $\mathrm{Et}_{2} \mathrm{O}$, yielding a precipitate which was isolated give 21 as a yellow solid (35 mg , 31%), m.p. decomp. $>150^{\circ} \mathrm{C} . \delta \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 24^{\circ} \mathrm{C}\right): 7.53\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, 8^{\prime}-H\right)$, 7.49-7.52 ($\left.2 \mathrm{H}, \mathrm{m}, 4^{\prime}-, 7^{\prime}-H\right), 7.23\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.3,1.4 \mathrm{~Hz}, 3^{\prime}-H\right), 7.12\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.4 \mathrm{~Hz}, 2^{\prime}-\right.$ H), 6.85-7.04 ($10 \mathrm{H}, \mathrm{m}, \mathrm{Ar}-\mathrm{H}_{10}$), $\left.3.62\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.23(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH})_{3}\right), 2.43-2.50(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 2.17-2.32 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.90-2.06 ($2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}$); $\delta \mathrm{C}(100$ $\left.\mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 24^{\circ} \mathrm{C}\right): 195.4 \& 193.4(C=\mathrm{O}), 146.8\left(8 \mathrm{a}^{\prime}-C\right), 141.4,140.9,140.6,137.6,137.5$, $134.1,130.8,130.0,129.6,127.5,127.3,127.1,126.5,126.0\left(\mathrm{Ar}-C_{14}\right), 119.0\left(3^{\prime}-C\right), 112.2\left(8^{\prime}-\right.$ C), $101.3\left(\mathrm{Ar}-\mathrm{C}_{1}\right), 89.8(2-\mathrm{C}), 55.5 \& 50.2\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 37.7 \& 36.7$ (3-, 5-C), 21.5 (4-C); $v_{\max } / \mathrm{cm}^{-1}: 3028,2965,2927,2868,1587,1522(\mathrm{C}=\mathrm{O}), 1444,1431,1401,1384,1349,1179$, $1120,1073,998,982,941,844,754,726,697 ;$ HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 446.2120 , found: 446.2137 .
${ }^{1} \mathrm{H}$ NMR spectrum for 21.

${ }^{13} \mathrm{C}$ NMR spectrum for 21.

(diethyl ether present)

Preparation of N, N-Bis(4', 5^{\prime} 'diphenyl-8'-dimethylamino-naphthalen-1'-methylidene)-

 1,2-ethanediamine, 22.Dimethylamino aldehyde 17 ($100 \mathrm{mg}, 0.28 \mathrm{mmol}$), nitromethane ($0.05 \mathrm{~mL}, 0.85 \mathrm{mmol}$) and ethylenediamine diacetate ($8 \mathrm{mg}, 0.04 \mathrm{mmol}$) were dissolved in anhydrous methanol (10 mL) under nitrogen and stirred at room temperature for 24 h . The solvent was removed in vacuo and the crude oil triturated with $\mathrm{Et}_{2} \mathrm{O}$, and the resultant precipitate 22 was isolated as a yellow solid ($22 \mathrm{mg}, 69 \%$), m.p. $218-221^{\circ} \mathrm{C} . \delta \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 24^{\circ} \mathrm{C}\right.$): $9.27(2 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{N}=\mathrm{CH})$, $7.69\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \times 2^{\prime}-H\right), 7.30-7.33\left(4 \mathrm{H}, \mathrm{m}, 2 \times 3\right.$ '-, $\left.6^{\prime}-H\right), 7.26(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, 2$ x 7’-H), 6.87-6.96 (20H, m, $4 \times \mathrm{Ph}-H_{5}$), 4.05 ($4 \mathrm{H}, \mathrm{s}, 1-, 2-\mathrm{H}_{2}$), 2.78 ($12 \mathrm{H}, \mathrm{s}, 2 \mathrm{x} 8$ ' $\left.-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$;
 134.7, 131.4, 130.9, 130.4, 130.3, 130.0, 129.9, 127.3 (Ar- C_{34}), 125.9 (2 x 2'-C), 125.8, 125.5 ($\mathrm{Ar}-\mathrm{C}_{4}$), $115.6\left(2 \times 7{ }^{\prime}-\mathrm{C}\right), 62.3(1-2-\mathrm{C}), 44.9\left(2 \times \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right) ; v_{\max } / \mathrm{cm}^{-1}: 3075,2865,1632,1492$, 1440, 1390, 1354, 1276, 1183, 1146, 1114, 1036, 928, 833, 758, 695; HRMS (ESI) calcd for $\mathrm{C}_{52} \mathrm{H}_{47} \mathrm{~N}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 727.3800$, found: 727.3771.

${ }^{1} \mathrm{H}$ NMR spectrum for 22.

${ }^{13} \mathrm{C}$ NMR spectrum for 22.

Preparation of 2-hydroxy-1,1-dimethyl-5,6-diphenyl-1,2-dihydrobenzo[cd]indol-1-ium chloride, 26.

Dimethylamino-aldehyde 17 ($75 \mathrm{mg}, 0.21 \mathrm{mmol}$) was dissolved in anhydrous diethyl ether (5 mL) and ethereal hydrochloric acid ($1 \mathrm{M}, 0.32 \mathrm{~mL}, 0.32 \mathrm{mmol}$) was added dropwise with immediate formation of a white precipitate. The solution was stirred for a further 1 h . before the solid was collected by careful filtration under a flow of nitrogen. The solid was washed with cold anhydrous diethyl ether and dried under vacuum to give $\mathbf{2 6}$ as an off-white solid (61 $\mathrm{mg}, 74 \%)$, m.p. decomp. $>150^{\circ} \mathrm{C} . \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 24^{\circ} \mathrm{C}\right): 7.81(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, 3-H)$,
$7.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, 4-H), 7.63(2 \mathrm{H}, \mathrm{AB}$ system, $\mathrm{J}=7.6 \mathrm{~Hz}, 7-, 8-H), 7.31(1 \mathrm{H}, \mathrm{s}, 2-H)$, 6.86-7.03 (11H, m, OH, Ar- H_{10}), $3.84\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right), 3.43\left(3 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)\right) ; \delta_{C}(100 \mathrm{MHz}$, $\mathrm{CDCl}_{3}, 24^{\circ} \mathrm{C}$): 144.0 ($8 \mathrm{a}-C$), 142.1, 141.6, 140.0, 139.9 ($\mathrm{Ar}-C_{4}$), 134.3 (4-C), 131.7 (7-C), 131.3, 129.4, 129.1, 127.4, 126.9, 126.7 (Ar- C_{13}), 122.7 (3-C), 113.7 (8-C), 110.5 (2-C), 53.5 \& $48.7\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right) ; \mathrm{v}_{\max } / \mathrm{cm}^{-1}: 3050,2957,1492,1466,1442,1291,1176,1133,1105,930,861$, 842, 821, 762, 697; Found: C, 77.20; H, 5.58; N, 3.58\%. Calc. for $\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{NOCl}: \mathrm{C}, 77.41$; H, 5.72; N, 3.61\%.

Preparation of 2-hydroxy-1,1-dimethyl-5,6-diphenyl-1,2-dihydrobenzo[cd]indol-1-ium monomalonate, 27.

Dimethylamino-aldehyde 17 ($100 \mathrm{mg}, 0.28 \mathrm{mmol}$) and Meldrum's acid ($82 \mathrm{mg}, 0.56 \mathrm{mmol}$) were dissolved in anhydrous methanol (10 mL) under nitrogen and stirred at room temperature for 24 h . The solvent was removed in vacuo and the crude oil triturated with $\mathrm{Et}_{2} \mathrm{O}$, yielding a precipitate which was isolated and recrystallised from ethyl acetate to give 27 as an off-white solid ($63 \mathrm{mg}, 49 \%$), m.p. $168-171^{\circ} \mathrm{C} . \delta_{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 24^{\circ} \mathrm{C}\right): 7.80(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, 3-$ $H), 7.72(1 \mathrm{H}, \mathrm{br}$ s, 2-H), $7.70(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, 4-H), 7.58(2 \mathrm{H}, \mathrm{m}, 7-, 8-H), 6.86-7.06(10 \mathrm{H}$, $\left.\mathrm{m}, \operatorname{Ar}-\mathrm{H}_{10}\right), 3.50\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 3.31\left(2 \mathrm{H}, \mathrm{s},(\mathrm{O}=\mathrm{C})_{2} \mathrm{CH}_{2}\right) ; \delta_{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 24{ }^{\circ} \mathrm{C}\right)$: $173.4(2 \times C=0), 144.4(8 \mathrm{a}-C), 141.9,141.8,140.0,139.8\left(\mathrm{Ar}-C_{4}\right), 134.1(4-C), 132.3\left(\mathrm{Ar}-C_{1}\right)$, 131.5 (7-C), 129.4, 129.3, 127.7, 127.4, 127.3, 126.9, 126.7 (Ar-C9), 123.1 (3-C), 113.7 (8-C), $49.6\left(\mathrm{~N}^{(+)}\left(\mathrm{CH}_{3}\right)_{2}\right), 38.8\left(\mathrm{CH}_{2}\right) ; v_{\text {max }} / \mathrm{cm}^{-1}: 3051,2415 \mathrm{br}, 2117 \mathrm{br}, 1890 \mathrm{br}, 1724(\mathrm{C}=\mathrm{O}), 1588$, $1485,1465,1440,1407,1366,1260,1180,1139,1098,985,930,869,821,753,712,695$; Found: C, $73.50 ; \mathrm{H}, 5.27$; N, 2.87\%. Calc. for $\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{NO}_{5}$: C, $73.88 ; \mathrm{H}, 5.53 ; \mathrm{N}, 3.08 \%$.

B. ACENAPTHENE DERIVATIVES.

Experimental details for preparation and characterisation of $\mathbf{2 8}$ and $\mathbf{2 9}$ have been previously described. ${ }^{\mathbf{S 1}}$

Preparation of methyl (E)-2-cyano-3-(6'-(dimethylamino)-1', $\mathbf{2}^{\prime}$-dihydroacenaphthylen-

 5'-yl)propenoate, 30.Dimethylamino-aldehyde 28 ($100 \mathrm{mg}, 0.44 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{MeOH}(10 \mathrm{~mL})$. Methyl cyanoacetate ($0.12 \mathrm{~mL}, 1.33 \mathrm{mmol}$) and ethylenediamine diacetate ($8 \mathrm{mg}, 0.04 \mathrm{mmol}$) were added and the deep orange solution was heated to reflux for 16 h . The solvent was
removed in vacuo to yield a crude dark orange solid which was purified by flash column chromatography (1:4 EtOAc:petrol 40-60), to give 30 as an orange solid ($120 \mathrm{mg}, 88 \%$), m.p. $82-85^{\circ} \mathrm{C} . \delta \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 24^{\circ} \mathrm{C}\right)$: $9.80(1 \mathrm{H}, \mathrm{s}, 3-H), 7.92\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, 4^{\prime}-H\right), 7.29$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, 3^{\prime}-H$), $7.26\left(2 \mathrm{H}, \mathrm{s}, 7^{\prime}-, 8^{\prime}-H\right), 3.95\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 3.31-3.438\left(4 \mathrm{H}, \mathrm{m}, 1^{\prime}-, 2^{\prime}-\right.$ H), 2.69 ($\left.6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$; $\delta \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 24^{\circ} \mathrm{C}\right)$: $163.6(\mathrm{C}=\mathrm{O})$, 160.3 (3-C), 151.9 (2a'C), 147.9 ($6^{\prime}-C$), 142.2 ($8 a^{\prime}-C$), 140.9 ($5^{\prime}-C$), 129.7 ($4^{\prime}-C$), 126.7 ($5 \mathrm{a}^{\prime}-C$), 125.1 ($2 \mathrm{a}^{\prime}{ }^{\prime}-C$), 120.4 \& $120.3\left(7^{\prime}-, 8^{\prime}-C\right), 119.3\left(3^{\prime}-C\right), 115.9(C \equiv \mathrm{~N}), 100.0(2-\mathrm{C}), 52.9\left(\mathrm{OCH}_{3}\right), 45.3\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 30.9 \& 29.7 ($1^{\prime}-, 2^{\prime}-C$); $v_{\max } / \mathrm{cm}^{-1}: 2922$, 2849, 2825, 2786, $2223(\mathrm{C}=\mathrm{N}), 1727(\mathrm{C}=\mathrm{O}), 1589$, 1436, 1263, 1246, 1209, 1088, 957, 842, 829, 764, 751; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{2}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 307.1440$, found: 307.1447.
${ }^{1} \mathrm{H}$ NMR spectrum for 30.

${ }^{13} \mathrm{C}$ NMR spectrum for 30 .

Preparation of $1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}$-Tetrahydro-1',2,2-trimethyl-spiro[1,3-dioxane-5,3'-acenaphth[5,6-bc]azepine]-4,6-dione, 34.

Dimethylamino-aldehyde 28 ($120 \mathrm{mg}, 0.53 \mathrm{mmol}$) was dissolved in anhydrous DMSO (10 mL) under nitrogen and Meldrum's acid ($115 \mathrm{mg}, 0.8 \mathrm{mmol}$) was added, the deep orange solution was stirred at room temperature. After 24 h , a precipitate had formed which was collected via filtration and dried under vacuum to give 34 as a yellow solid ($150 \mathrm{mg}, 80 \%$), m.p. 198-201 ${ }^{\circ} \mathrm{C}$. $\delta \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 24^{\circ} \mathrm{C}\right)$: 7.08-7.14 (2H, m, $\left.6^{\prime}-, 9^{\prime}-H\right), 6.99\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right)$, $6.75\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, 10^{\prime}-H\right), 3.70-3.90\left(4 \mathrm{H}, \mathrm{m}, 2^{\prime}-, 4^{\prime}-H_{2}\right), 3.25-3.35\left(4 \mathrm{H}, \mathrm{m}, 8^{\prime}-, 7^{\prime}-H_{2}\right)$, $3.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 1.86\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right), 1.75\left(3 \mathrm{H}, \mathrm{s}, 2-\mathrm{CH}_{3}\right) ; \delta \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2 \mathrm{C}^{\circ} \mathrm{C}\right)$: $169.0(2 \times C=O), 148.4,145.5,141.2,137.9,129.0\left(\mathrm{Ar}-C_{5}\right), 128.2\left(5^{\prime}-C\right), 124.7\left(\mathrm{Ar}-C_{1}\right), 119.5$ \& 119.1 ($6^{\prime}-, 9^{\prime}-C$), 110.3 (10’-C), 104.9 (2-C), 63.6 ($3^{\prime}-C$), 55.3 (2’-C), 41.5 ($4^{\prime}-C$), 40.8 $\left(\mathrm{NCH}_{3}\right), 30.5 \& 29.6\left(7^{\prime}-, 8^{\prime}-\mathrm{C}\right), 29.4 \& 29.0\left(2-\mathrm{CH}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1}: 1772,1735(\mathrm{C}=\mathrm{O}), 1589$, $1502,1472,1448,1422,1388,1295,1276,1239,1176,1151,1129,1101,1082,1030,941$, 913, 820, 777; Found: C, 71.65 ; H, 5.99; N, 4.05\%. Calc. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{4}$: C, 71.72; H, 5.98 ; N, 3.98\%.

Preparation of $\mathbf{1 '}^{\prime}, \mathbf{2}^{\prime}, \mathbf{3}^{\prime}, \mathbf{4}^{\prime}$-Tetrahydro-1'-methyl-spiro[cyclohexan-1,3'-acenaphth[5,6-bc]azepine]-2,6-dione, 35.

Dimethylamino-aldehyde 28 ($100 \mathrm{mg}, 0.44 \mathrm{mmol}$) was dissolved in anhydrous DMSO (10 mL) under nitrogen and 1,3-cyclohexanedione ($88 \mathrm{mg}, 0.79 \mathrm{mmol}$) was added, and the deep orange solution was stirred at room temperature. After $24 \mathrm{~h}, \mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added to produce a pale orange precipitate. The precipitate was collected via filtration and dried under vacuum to give 35 as a pale orange solid ($84 \mathrm{mg}, 59 \%$), m.p. decomp. $>155^{\circ} \mathrm{C} . \delta \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 24^{\circ} \mathrm{C}\right.$): $7.08\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, 9^{\prime}-H\right), 7.04\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, 6^{\prime}-H\right), 6.94\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, 5^{\prime}-H\right)$, $6.78\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, 10^{\prime}-H\right), 3.63-3.72\left(4 \mathrm{H}, \mathrm{m}, 2^{\prime}-, 4^{\prime}-H_{2}\right)$, 3.22-3.33 (4H, m, 7’-, $8^{\prime}-H_{2}$), $3.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.62-3.00\left(4 \mathrm{H}, \mathrm{m}, 3-, 5-H_{2}\right), 2.10-2.25\left(1 \mathrm{H}, \mathrm{m}, 4-H_{\alpha}\right), 1.75-1.89(1 \mathrm{H}, \mathrm{m}, 4-$ H_{β}); $\delta \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 24^{\circ} \mathrm{C}\right): 207.5(2 \times \mathrm{C}=\mathrm{O}), 149.6,145.4,141.2,137.1,129.4\left(\mathrm{Ar}-C_{5}\right)$, $127.0\left(5^{\prime}-C\right), 125.3\left(\mathrm{Ar}_{-}\right), 119.4 \& 119.3\left(6^{\prime}-, 9^{\prime}-C\right), 109.9\left(10^{\prime}-C\right), 73.7\left(3^{\prime}-C\right), 57.8\left(2^{\prime}-C\right)$, $40.8\left(4^{\prime}-C\right), 40.6\left(\mathrm{NCH}_{3}\right), 37.9(3-, 5-C), 30.7 \& 29.7\left(7^{\prime}, 8^{\prime}-C\right), 18.5(4-C) ; v_{\max } / \mathrm{cm}^{-1}: 1718$, 1684 (C=O), 1593, 1504, 1470, 1431, 1317, 1272, 1190, 1108, 1079, 1004, 834, 767; Found: C, 78.90; H, 6.65; N, 4.37\%. Calc. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{2}$: C, 78.90; H, 6.58; N, 4.38\%.

Preparation of $\mathbf{1}^{\prime}, \mathbf{2}^{\prime}, 3^{\prime}, 4^{\prime}$-Tetrahydro-1'-methyl-spiro[cyclopentan-1,3'-acenaphth $[5,6-$ bc]azepine]-2,5-dione, 36.

Dimethylamino-aldehyde $\mathbf{2 8}$ ($100 \mathrm{mg}, 0.44 \mathrm{mmol}$) was dissolved in anhydrous DMSO (10 mL) under nitrogen and 1,3 -cyclopentanedione ($65 \mathrm{mg}, 0.67 \mathrm{mmol}$) was added, the deep orange solution was stirred at room temperature for 24 h to give a pale orange solution, $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added to produce a pale orange precipitate. The precipitate was dissolved by the addition of DCM (30 mL) and the organic layer separated. The aqueous solution was extracted further with DCM ($2 \times 30 \mathrm{~mL}$). The combined organics were washed with $\mathrm{H}_{2} \mathrm{O}(30 \mathrm{~mL})$ and brine (30 mL), dried over MgSO_{4} and filtered. The solvent was removed in vacuo to give a crude orange solid which was purified by flash column chromatography (1:2 EtOAc:petrol 40-60), to give 36 as an off-white solid ($54 \mathrm{mg}, 40 \%$), m.p. $180-183^{\circ} \mathrm{C} . \delta \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 24^{\circ} \mathrm{C}\right.$): 7.07$7.11\left(2 \mathrm{H}, 2\right.$ overlapping $\left.\mathrm{d}, 6^{\prime}-, 9^{\prime}-H\right), 6.91\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.9 \mathrm{~Hz}, 5^{\prime}-H\right), 6.72\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, 10^{\prime}-\right.$ H), $3.41\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, 4^{\prime}-H_{2}\right), 3.36\left(2 \mathrm{H}, \mathrm{s}, 2^{\prime}-H_{2}\right), 3.25-3.34\left(4 \mathrm{H}, \mathrm{m}, 7{ }^{\prime}-, 8^{\prime}-H_{2}\right), 3.05(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{3}\right), 2.91-3.01\left(2 \mathrm{H}, \mathrm{m}, 3-\right.$ or $\left.4-\mathrm{H}_{2}\right), 2.70-2.81\left(2 \mathrm{H}, \mathrm{m}, 3-\right.$ or $\left.4-\mathrm{H}_{2}\right) ; \delta \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $24^{\circ} \mathrm{C}$): $213.6(2 \times \mathrm{x}=\mathrm{O}), 148.6,145.3,141.1,137.5,128.8\left(\mathrm{Ar}-C_{5}\right), 127.6\left(5^{\prime}-\mathrm{C}\right), 124.9$ (Ar$\left.C_{1}\right), 119.3 \& 119.1\left(6^{\prime}-, 9^{\prime}-C\right), 110.3\left(10^{\prime}-C\right), 63.5\left(3^{\prime}-C\right), 59.0\left(2^{\prime}-C\right), 41.1\left(\mathrm{~N} C H_{3}\right), 38.9\left(4^{\prime}-\right.$ C), 34.7 (3-, 4-C), $30.5 \& 29.5\left(7^{\prime}-, 8^{\prime}-C\right) ; v_{\max } / \mathrm{cm}^{-1}: 2917,1707(\mathrm{C}=\mathrm{O}), 1591,1502,1470$, 1416, 1285, 1271, 1149, 1101, 1077, 1037, 1000, 943, 834, 805, 766; HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 306.1494$, found: 306.1486 .
${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{3 6}$.

C. FLUORENE DERIVATIVES.

Preparation of 4,5-diiodo-9,9-dimethyl-9H-fluorene, 43.
9, 9-Dimethylfluorene $\mathbf{4 2}^{\mathrm{S} 2}(1.00 \mathrm{~g}, 5.15 \mathrm{mmol})$ was stirred in anhydrous TMEDA (3.09 mL , 20.62 mmol) whilst n-BuLi (1.6 M in hexanes, $12.89 \mathrm{~mL}, 20.62 \mathrm{mmol}$) was steadily added, producing an orange solution which was heated to $60^{\circ} \mathrm{C}$ for $5 \mathrm{~h} .{ }^{\mathrm{S} 3}$ The deep brown solution was diluted with anhydrous THF (100 mL), cooled to $-78^{\circ} \mathrm{C}$ and iodine ($13.09 \mathrm{~g}, 51.50 \mathrm{mmol}$) added. The reaction was allowed to warm to room temperature and stirred for 16 h . The deep brown solution was quenched with sat. sodium thiosulfate solution $(150 \mathrm{~mL})$ and stirred for 10 min. The aqueous layer was washed with EtOAc ($3 \times 40 \mathrm{~mL}$) and the combined organic layers washed with sat. sodium thiosulfate solution (3 x 40 mL), $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$, brine (40 mL) and dried over MgSO_{4}. The solvent was removed in vacuo to give a crude thick brown oil which was first purified by flash column chromatography (hexanes), to give two close running bands ($R_{f}: 0.32$ and 0.27). The faster band contained a mono-iodinated-9,9-dimethyl-fluorene ($\delta \mathrm{H}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 24^{\circ} \mathrm{C}$): $8.82\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz}, \operatorname{Ar}-H_{1}\right), 7.83\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=6.8 \mathrm{~Hz} \mathrm{Ar}-\mathrm{H}_{1}\right)$, 7.41-7.46 (4H, m, Ar- H_{4}), $7.00\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, \mathrm{Ar}-\mathrm{H}_{1}\right), 1.48(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}), \delta \mathrm{C}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}, 24^{\circ} \mathrm{C}$): 156.6, 154.1, 140.3, 139.0, 128.2, 128.1, 126.2, 122.4, 122.3 ($\mathrm{Ar}-\mathrm{C}_{11}$), 88.2 (C-I), 46.4 (9-C), $27.3\left(2 \times \mathrm{CH}_{3}\right)$). The slower band contained starting material 42 and the diiodo compound 43. Increasing the polarity of the solvent eluted further materials. The mixture of $\mathbf{4 2}$ and $\mathbf{4 3}$ co-eluted in most solvent combinations, however they just separated (R_{f} : 0.54 (42), 0.49 (43)) in hexane/ethyl acetate $59 / 5$, though to gain a reasonable amount of material for further reactions it was necessary to accept some $\mathbf{4 2}$ as impurity. The product was
obtained as a pale yellow solid ($570 \mathrm{mg}, 25 \%$), m.p. $50-53^{\circ} \mathrm{C} . \delta \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 24^{\circ} \mathrm{C}\right)$: $7.93(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, 3,6-H), 7.40(2 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 1,8-H), 7.04(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2,7-$ H), $1.43\left(6 \mathrm{H}, \mathrm{s}, 9-\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2{ }^{\circ} \mathrm{C}\right): 156.9,142.7\left(\mathrm{Ar}-\mathrm{C}_{4}\right), 140.8(3,6-\mathrm{C})$, $128.9(2,7-C), 121.5(1,8-C), 87.3(4,5-C), 47.1(9-\mathrm{C}), 27.7\left(9-\left(\mathrm{CH}_{3}\right)_{2}\right) ; \mathrm{v}_{\max } / \mathrm{cm}^{-1}: 2957,2920$, 2857, 1442, 1392, 1075, 931, 779, 762, 732, 661. Crystal structure determined (p. 29). This synthesis was not optimised.

${ }^{1} \mathrm{H}$ NMR spectrum of 43 .

${ }^{13} \mathrm{C}$ NMR spectrum of 43 .

Preparation of 4-(dimethylamino)-9, 9-dimethyl-9H-fluorene-5-carbaldehyde, 44.
The $d i$-iodo-fluorene 43 ($0.4 \mathrm{~g}, 0.90 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{Et}_{2} \mathrm{O}(15 \mathrm{~mL})$ under nitrogen and cooled to $-78^{\circ} \mathrm{C} . n-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexanes, $0.62 \mathrm{~mL}, 0.99 \mathrm{mmol}$) was steadily added, and the orange solution was stirred at $-78^{\circ} \mathrm{C}$ for 2 h . Anhydrous DMF $(0.36 \mathrm{~mL}, 4.63$ mmol) was added and the reaction was allowed to warm to room temperature. After 16 h . the resulting green/yellow solution was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and stirred for 10 min . The aqueous solution was washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$ and the combined organic layers washed with $\mathrm{H}_{2} \mathrm{O}(40 \mathrm{~mL})$, brine $(40 \mathrm{~mL})$ and dried over MgSO_{4}. The solvent was removed in vacuo to give a yellow/green oil which was purified by flash column chromatography (5:95 EtOAc/petrol 40-60), to give 44 as a yellow solid ($100 \mathrm{mg}, 42 \%$), m.p. $80-83^{\circ} \mathrm{C} . \delta \mathrm{H}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 24^{\circ} \mathrm{C}\right): 10.86(1 \mathrm{H}, \mathrm{s}, \mathrm{CHO}), 7.61(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.3,0.9 \mathrm{~Hz}, 6-H), 7.52(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.3$, $0.9 \mathrm{~Hz}, 8-H), 7.34(2 \mathrm{H}, \mathrm{m}, 2-, 7-H), 7.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, 1-H), 7.12(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, 3-$ H), 2.63 ($\left.6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.47\left(6 \mathrm{H}, \mathrm{s}, 9-\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 24^{\circ} \mathrm{C}\right): 192.5(\mathrm{C}=\mathrm{O})$, 156.1, 154.0 ($\mathrm{Ar}-C_{2}$), 150.1 (4-C), 138.1 ($\mathrm{Ar}-C_{1}$), 133.5 (5-C), 131.8 ($\left.\mathrm{Ar}-C_{1}\right), 129.5 \& 127.1$ (2-,7-C), 126.3 (6-C), 125.8 (8-C), 118.3 (3-C), 118.1 (1-C), $\left.\left.47.0(9-C), 43.5\left(\mathrm{~N}_{(~(~}^{(1)}\right)_{3}\right)_{2}\right), 27.4$ $\left(9-\left(\mathrm{CH}_{3}\right)_{2}\right) ; v_{\max } / \mathrm{cm}^{-1}: 2950,2834,2786,1677$ (C=O), 1581, 1481, 1455, 1381, 1317, 1289, 1224, 1200 1181, 1118, 985, 795, 764, 726; HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 266.1545 , found: 266.1538 .
${ }^{1} \mathrm{H}$ NMR spectrum of 44.

${ }^{13} \mathrm{C}$ NMR spectrum of 44 .

Preparation of 2-cyano-2-(4'-dimethylamino-9',9'-dimethyl-9H-fluoren-5'-yl)propenenitrile, 45.
Dimethylamino-aldehyde 44 ($100 \mathrm{mg}, 0.38 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{MeOH}(15 \mathrm{~mL})$. Malononitrile ($30 \mathrm{mg}, 0.45 \mathrm{mmol}$) and ethylenediamine diacetate ($10 \mathrm{mg}, 0.06 \mathrm{mmol}$) were added and the solution was heated to reflux for 2 h . The solvent was removed in vacuo to yield a crude orange solid which was purified by flash column chromatography (3:97 EtOAc:petrol $40-60$), to give $\mathbf{4 5}$ as an orange solid ($70 \mathrm{mg}, 59 \%$), m.p. $122-125^{\circ} \mathrm{C} . \delta \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 24\right.$ $\left.{ }^{\circ} \mathrm{C}\right): 9.07(1 \mathrm{H}, \mathrm{s}, \mathrm{C} H), 7.67\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8 \mathrm{~Hz}, 6^{\prime}-H\right), 7.56\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, 8^{\prime}-H\right), 7.39(2 \mathrm{H}$, $\left.\mathrm{m}, 2^{\prime}-, 7^{\prime}-H\right), 7.22\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, 1^{\prime}-H\right), 7.19\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, 3^{\prime}-H\right), 2.68(6 \mathrm{H}, \mathrm{s}$,
$\left.\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.48\left(6 \mathrm{H}, \mathrm{s}, 9^{\prime}-\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2{ }^{\circ}{ }^{\circ} \mathrm{C}\right): 163.8$ (3-C), 156.1, 154.6, 149.1, 138.3, 131.6 ($\mathrm{Ar}-C_{5}$), 129.9 ($2^{\prime}-$ or $7^{\prime}-C$), $127.8\left(6^{\prime}-C\right), 127.4$ ($2^{\prime}-$ or $7^{\prime}-C$), 126.3 ($\mathrm{Ar}-$ C_{1}), 126.1 ($8^{\prime}-C$), $118.9\left(3^{\prime}-C\right), 118.8\left(1^{\prime}-C\right), 114.6(2 \times C \equiv \mathrm{~N}), 112.9\left(C(\mathrm{CN})_{2}\right), 46.9\left(9^{\prime}-C\right)$, $44.2\left(\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.1\left(9{ }^{\prime}-\left(\mathrm{CH}_{3}\right)_{2}\right) ; v_{\max } / \mathrm{cm}^{-1}: 2942,2862,2223(\mathrm{C} \equiv \mathrm{N}), 1582,1481,1459,1314$, 1183, 1043, 984, 879, 797, 764, 730; Found: C, 80.27; H, 6.23; N, 13.36\%. Calc. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3}$: C, 80.41 ; H, 6.06; N, 13.40\%.

Preparation of \boldsymbol{E}-2-(4'-Dimethylamino-9',9'-dimethyl-9H-fluorene-5'-yl)-1-nitroethene,

46.

Dimethylamino-aldehyde 44 ($55 \mathrm{mg}, 0.21 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{MeOH}(5 \mathrm{~mL})$. Nitromethane ($0.03 \mathrm{~mL}, 0.56 \mathrm{mmol}$) and ethylenediamine diacetate ($5 \mathrm{mg}, 0.03 \mathrm{mmol}$) were added and the solution was heated to reflux for 24 h . The solvent was removed in vacuo to yield a crude orange solid which was purified by flash column chromatography (5:95 EtOAc:petrol 40-60), to give 46 as an orange solid ($40 \mathrm{mg}, 63 \%$), m.p. $99-102^{\circ} \mathrm{C} . \delta \mathrm{H}(400$ $\mathrm{MHz}, \mathrm{CDCl}_{3}, 24^{\circ} \mathrm{C}$): $9.93(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.7 \mathrm{~Hz}, 2-H), 7.45-7.52\left(3 \mathrm{H}, \mathrm{m}, 1-, 6^{\prime}-, 8^{\prime}-H\right), 7.29-$ $7.39\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-, 7^{\prime}-H\right), 7.10-7.18\left(2 \mathrm{H}, \mathrm{m}, 1^{\prime}-, 3^{\prime}-H\right), 2.72\left(6 \mathrm{H}, \mathrm{s}, \mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right), 1.46\left(6 \mathrm{H}, \mathrm{s}, 9^{\prime}-\right.$ $\left.\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 2{ }^{\circ} \mathrm{C}\right): 156.7,155.2,150.1\left(\mathrm{Ar}-\mathrm{C}_{3}\right), 141.7(3-\mathrm{C}), 140.2,135.0$ $2-C), 131.1\left(\mathrm{Ar}-C_{2}\right), 129.5 \& 127.0\left(2^{\prime}-, 7{ }^{\prime}-C\right), 126.6,126.2,125.1$ ($\left.\mathrm{Ar}-C_{3}\right), 117.9 \& 117.2$ (1'-, 3'-C), $46.3\left(9^{\prime}-C\right), 43.8\left(\mathrm{~N}^{\prime}\left(\mathrm{CH}_{3}\right)_{2}\right), 27.7\left(9^{\prime}-\left(\mathrm{CH}_{3}\right)_{2}\right) ; v_{\max } / \mathrm{cm}^{-1}: 2957,2860,1623,1582$, 1545, 1500, 1481, 1332, 1259, 1090, 985, 969, 799, 732; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 309.1603$, found: 309.1594.
${ }^{1} \mathrm{H}$ NMR spectrum of 46.

${ }^{13} \mathrm{C}$ NMR spectrum of 46

Preparation of $1^{\prime}, 8^{\prime}, 8^{\prime}$-Trimethyl- $\mathbf{1}^{\prime}, 2^{\prime}, 3^{\prime}, \mathbf{4}^{\prime}$-tetrahydro- $\mathbf{8}^{\prime} \mathbf{H}$-spiro[cyclopentane-1,3'-fluoreno[4,5-bcd] azocine]-2,5-dione, 47.

Dimethylamino-aldehyde 44 ($100 \mathrm{mg}, 0.38 \mathrm{mmol}$) was dissolved in anhydrous DMSO (10 mL) under nitrogen and 1,3 -cyclopentandione ($44 \mathrm{mg}, 0.45 \mathrm{mmol}$) was added, and the deep orange solution was stirred at room temperature. After 24 h , the solution was diluted with water (15 mL) and extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organics were washed with brine ($1 \times 20 \mathrm{~mL}$), dried over MgSO_{4} and filtered. The solvent was removed in vacuo to yield a crude brown oil which was purified by flash column chromatography (10:90 EtOAc:petrol 40-60), to give 47 as an orange solid ($53 \mathrm{mg}, 41 \%$), m.p. $60-63^{\circ} \mathrm{C} . \delta \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 24^{\circ} \mathrm{C}\right.$): 7.30 $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, 7^{\prime}-H\right), 7.23\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 10^{\prime}-H\right), 7.12\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 6^{\prime}-H\right), 6.95$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, 9^{\prime}-H\right), 6.85\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 5^{\prime}-H\right), 6.77\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, 11^{\prime}-H\right), 4.26$ $\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.7 \mathrm{~Hz}, 4^{\prime}-H_{\alpha}\right), 3.86\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.1 \mathrm{~Hz}, 2^{\prime}-H_{\alpha}\right), 3.16\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.1,1.4 \mathrm{~Hz}, 4^{\prime}-\right.$ H_{β}), $3.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 2.75-2.90\left(4 \mathrm{H}, \mathrm{m}, 3-, 4-H_{2}\right), 2.57(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.7,1.9 \mathrm{~Hz}, 2-H), 1.47$ ($3 \mathrm{H}, \mathrm{s}, 8^{\prime}-\mathrm{CH}_{3}$), $1.40\left(3 \mathrm{H}, \mathrm{s}, 8^{\prime} \mathrm{CH}_{3}\right) ; ~ \delta \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 24^{\circ} \mathrm{C}\right): 215.3 \& 212.0(2 \times \mathrm{C}=\mathrm{O})$, 156.7, 153.3, 148.7, $139.8\left(\mathrm{Ar}-C_{4}\right), 130.7\left(5^{\prime}-C\right), 128.9\left(\mathrm{Ar}-C_{1}\right), 128.3\left(10^{\prime}-C\right), 126.7\left(\mathrm{Ar}-C_{1}\right)$, 126.1 ($6^{\prime}-C$), 121.6 ($7^{\prime}-C$), $113.8\left(9^{\prime}-C\right), 112.6$ ($11^{\prime}-C$), 57.8 ($3^{\prime}-C$), 57.1 ($2^{\prime}-C$), $46.2\left(8^{\prime}-C\right)$, $40.4\left(\mathrm{NCH}_{3}\right), 37.7\left(4^{\prime}-C\right), 36.1 \& 35.1(3-, 4-C), 28.2 \& 27.7\left(2 \times 8^{\prime}-\mathrm{CH}_{3}\right) ; v_{\max } / \mathrm{cm}^{-1}: 2957$, 2920, 2862, 1714 (C=O), 1584, 1485, 1442, 1420, 1280, 1168, 1153, 1129, 987, 907, 790, 728;
${ }^{1} \mathrm{H}$ NMR spectrum of 47.

${ }^{13} \mathrm{C}$ NMR spectrum of 47 .

Preparation of $\mathbf{1}^{\prime}, \mathbf{2 , 2 , 8 ^ { \prime }}, 8^{\prime}$-Pentamethyl-1', $\mathbf{2}^{\prime}, 3^{\prime}, 4^{\prime}$-tetrahydro- $\mathbf{8}^{\prime} \boldsymbol{H}$-spiro $[1,3$-dioxane-5,3'-fluoreno[4,5-bcd]azocine]-4,6-dione, 48.

Dimethylamino-aldehyde 44 ($143 \mathrm{mg}, 0.54 \mathrm{mmol}$) was dissolved in anhydrous $\mathrm{MeOH}(10 \mathrm{~mL})$. Meldrum's acid ($109 \mathrm{mg}, 0.76 \mathrm{mmol}$) and ethylenediamine diacetate ($9 \mathrm{mg}, 0.05 \mathrm{mmol}$) were added and the reaction heated to reflux for 5 h , with a precipitate forming after 15 min . The precipitate was filtered, washed with cold MeOH and dried in vacuo to give 48 as a pale yellow
solid ($150 \mathrm{mg}, 71 \%$), m.p. $204-207^{\circ} \mathrm{C} . \delta \mathrm{H}\left(400 \mathrm{MHz}\right.$, acetone- $\left.\mathrm{d}_{6}, 24^{\circ} \mathrm{C}\right): 7.34(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.8$ $\left.\mathrm{Hz}, 7^{\prime}-H\right), 7.20\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 10^{\prime}-H\right), 7.12\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 6^{\prime}-H\right), 7.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3$ $\left.\mathrm{Hz}, 9^{’}-H\right), 6.94\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.3 \mathrm{~Hz}, 5^{\prime}-H\right), 6.87\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 11^{\prime}-H\right), 4.51(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.3$ $\left.\mathrm{Hz}, 4^{\prime}-H_{\alpha}\right), 4.12\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.1 \mathrm{~Hz}, 2^{\prime}-H_{\alpha}\right), 3.71\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=15.6 \mathrm{~Hz}, 4^{\prime}-H_{\beta}\right), 3.04(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=$ $\left.13.7 \mathrm{~Hz}, 2^{\prime}-H_{\beta}\right), 2.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 1.81\left(6 \mathrm{H}, \mathrm{m}, 2-\left(\mathrm{CH}_{3}\right)_{2}\right), 1.39\left(6 \mathrm{H}, \mathrm{m}, 8^{\prime}-\left(\mathrm{CH}_{3}\right)_{2}\right) ; \delta \mathrm{C}(100$ MHz , acetone- $\mathrm{d}_{6}, 2{ }^{\circ} \mathrm{C}$): $168.9 \& 166.2(\mathrm{C}=\mathrm{O}), 156.6,152.9,148.9,139.4$ (Ar-C4), 131.5 (5’C), $129.7\left(\mathrm{Ar}-C_{1}\right), 128.4\left(10^{\prime}-C\right), 126.2\left(\mathrm{Ar}-C_{1}\right), 126.1\left(6^{\prime}-C\right), 121.4$ (7'-C), $114.0\left(9^{\prime}-C\right), 112.7$ (11'-C), 105.0 (2-C), 60.8 (2’-C), 50.1 ($\left.3^{\prime}-C\right), 45.8\left(8^{\prime}-C\right), 40.3\left(\mathrm{NCH}_{3}\right), 39.1\left(4^{\prime}-C\right), 28.6$ \& $28.3\left(2-\left(\mathrm{CH}_{3}\right)_{2}\right), 27.8 \& 27.0\left(8^{\prime}-\left(\mathrm{CH}_{3}\right)_{2}\right) ; v_{\max } / \mathrm{cm}^{-1}: 2965,2868,1778,1735(\mathrm{C}=\mathrm{O}), 1571$, 1477, 1436, 1379, 1278, 1258, 1198, 1026, 948, 795, 740; Found: C, 73.49; H, 6.36; N, 3.86\%. Calc. for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{4}$: C, 73.57; H, 6.39; N, 3.58\%.

Preparation of 3-Benzoyl-3-nitro-1,2,3,4-tetrahydro-1,8,8-trimethyl-8H-fluoreno[4,5bcd]azocine, 49.

Dimethylamino-aldehyde $44(55 \mathrm{mg}, 0.21 \mathrm{mmol})$ was dissolved in anhydrous $\mathrm{MeOH}(10 \mathrm{~mL})$. Benzoyl-nitromethane ($69 \mathrm{mg}, 0.42 \mathrm{mmol}$) and ethylenediamine diacetate ($5 \mathrm{mg}, 0.03 \mathrm{mmol}$) were added and the solution was refluxed for 4 h . The solvent was removed in vacuo to yield a crude yellow oil which was purified by flash column chromatography (5:95 EtOAc:petrol $40-60$), to give 49 as an orange solid ($65 \mathrm{mg}, 76 \%$), m.p. $172-175^{\circ} \mathrm{C} . \delta \mathrm{H}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 24\right.$ $\left.{ }^{\circ} \mathrm{C}\right): 7.87(2 \mathrm{H}, \mathrm{dd}, \mathrm{J}=8.2,0.91 \mathrm{~Hz}$, ortho- $\mathrm{Ph}-H), 7.65(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}$, para-Ph-H), $7.51(2 \mathrm{H}$, $\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}$, meta-Ph-H), 7.20-7.30 (2H, m, 7-, 10-H), $6.98(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.3,0.9 \mathrm{~Hz}, \mathrm{Ar}-H)$, $6.95(1 \mathrm{H}, \mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 6-H), 6.83(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, \operatorname{Ar}-H), 6.30(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=7.8,0.9 \mathrm{~Hz}, 5-$ $H), 4.89\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=13.3 \mathrm{~Hz}, 2-H_{\alpha}\right), 4.60\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=16.0 \mathrm{~Hz}, 4-H_{\alpha}\right), 3.90(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=16.0,2.3$ $\left.\mathrm{Hz}, 4-H_{\beta}\right), 3.60\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=13.3,2.3 \mathrm{~Hz}, 2-H_{\beta}\right), 2.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 1.44\left(3 \mathrm{H}, \mathrm{s}, 8-\mathrm{C}\left(\mathrm{CH} H_{3}\right)\right)$, $1.40\left(3 \mathrm{H}, \mathrm{s}, 8-\mathrm{C}\left(\mathrm{CH}_{3}\right)\right) ; \delta \mathrm{C}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 24^{\circ} \mathrm{C}\right): 189.4(\mathrm{C}=\mathrm{O}), 156.8$ ($8 \mathrm{a}-\mathrm{C}$), 153.5 (7aC), 148.4 (11a-C), 139.9 ($\mathrm{Ar}-C_{1}$), 134.1 ($p-\mathrm{Ph}-C$), 129.7 (6-C), 129.2 ($m-\mathrm{Ph}-C$), 128.7 ($\mathrm{Ar}-C_{1}$), 128.6 (o-Ph-C), 128.5 ($\mathrm{Ar}-C_{I}$), 126.5 (6-C), 126.4, 126.0, 120.0, 114.3, 112.3 ($\mathrm{Ar}-C_{5}$), 94.0 (3C), $62.6(2-\mathrm{C}), 46.4(8-\mathrm{C}), 39.7\left(\mathrm{NCH}_{3}\right), 38.2(4-\mathrm{C}), 28.1 \& 27.5\left(8-\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ; v_{\max } / \mathrm{cm}^{-1}: 2980$, 2821, 1686 (C=O), 1533, 1485, 1444, 1425, 1321, 1269, 1241, 1200, 1179, 1159, 1000, 922, 786, 728, 695; HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 413.1865$, found: 413.1854.
${ }^{1} \mathrm{H}$ NMR spectrum of 49 .

(some evidence two non-interconverting conformers).
${ }^{13} \mathrm{C}$ NMR spectrum of 49.

Preparation of 3-Nitro-1,2,3,4-tetrahydro-1,8,8-trimethyl-8H-fluoreno[4,5-bcd]azocine,
50.

Recrystallisation of the fused azocine 49 from a DCM/hexanes solution gave two separate crystal types. Separation of the two crystal systems under a microscope gave two samples; the first the starting azocine $\mathbf{4 9}$ and the second a decomposition product $\mathbf{5 0}$ as pale yellow plates, m.p. $115-118^{\circ} \mathrm{C}$. $v_{\max } / \mathrm{cm}^{-1}: 2957,2862,1584,1537,1474,1454,1438,1358,1269,1177,984$,

793, 730; HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 309.1603, found: 309.1595. Crystal structure was determined (p. 29 and main article).

II. X-Ray Crystallography.

General.

Low temperature (150 K) X-ray diffraction data ($\mathrm{MoK} \alpha$ for all compounds but for 22 and 44 which were measured with CuK_{α}) were measured on an Rigaku Oxford Diffraction Xcalibur diffractometer equipped with a Sapphire detector and an 700 series Cryostream low temperature system using the CrysAlis-Pro software package. ${ }^{S 4}$ Structures were solved and refined using the SHELXS and SHELXL suite of programs ${ }^{55}$ using the XSEED interface ${ }^{\text {S6 }}$ or OLEX ${ }^{2} .{ }^{\text {S7 }}$ Molecular illustrations were made with Mercury, ${ }^{58}$ and geometric analysis with PLATON. ${ }^{59}$ Data are deposited at the Cambridge Crystallographic Data Centre with code numbers CCDC: 2069090-2069106 and 2069108.

A. DIPHENYL DERIVATIVES.

Table S1. Crystallographic data for dimethylamino-diphenyl-naphthalene derivatives $\mathbf{1 6 - 1 9}$, and 21-22 and salts 26-27.

	$\mathbf{1 6}$		$\mathbf{1 7}$	$\mathbf{1 8}^{\mathbf{s 1}}$

	21	22	26	27
Formula	$\begin{aligned} & \mathrm{C}_{31} \mathrm{H}_{27} \mathrm{NO}_{2} . \\ & \mathrm{CHCl}_{3} \end{aligned}$	$\mathrm{C}_{52} \mathrm{H}_{46} \mathrm{~N}_{4}$	$\begin{aligned} & \mathrm{C}_{25} \mathrm{H}_{22} \mathrm{NO} . \\ & \mathrm{Cl}^{2} . \mathrm{CH}_{2} \mathrm{Cl}_{2} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{25} \mathrm{H}_{22} \mathrm{NO} . \\ & \mathrm{C}_{3} \mathrm{H}_{3} \mathrm{O}_{4} \end{aligned}$
Formula Weight	564.90	726.93	472.81	455.49
Crystal System	Monoclinic	Orthorhombic	Orthorhombic	Triclinic
Space group	I2/a	Pbca	$P 2.22_{1}$	$P-1$
$a[\AA]$	19.4622(12)	9.8042(2)	6.1138(3)	6.0395(3)
$\boldsymbol{b}_{[\boldsymbol{A}}$]	9.9340 (8)	15.4073(4)	11.1707(5)	13.8019(8)
$c[\AA]$	29.6756(15)	52.7317(11)	33.8350(17)	14.6137(9)
$\alpha\left[{ }^{\circ}\right]$	90	90	90	67.400(5)
$\beta\left[{ }^{\circ}\right]$	93.325(5)	90	90	86.108(4)
$\gamma\left[{ }^{\circ}\right]$	90	90	90	81.742(4)
$V\left[\AA^{3}\right]$	5727.7(6)	7965.5(3)	2310.78(19)	1112.84(12)
\boldsymbol{Z}	8	8	4	2
$\rho\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	1.310	1.212	1.359	1.359
$T[K]$	150	150	150	150
$\lambda(\AA)$	0.71073	1.54184	0.71073	0.71073
$\mu\left(\mathrm{mm}^{-1}\right)$	0.350	0.542	0.415	0.093
unique refl.	5880	7645	5702	6361
Refl, $\mathrm{I}>\mathbf{2} \boldsymbol{\sigma} \mathrm{I}$	2821	5584	4042	4061
R_{1}	0.0805	0.0524	0.0594	0.0644
$w R_{2}$	0.1734	0.1423	0.1217	0.1563
$\Delta \rho(\mathrm{r})\left[\mathrm{e} \AA^{-3}\right]$	0.40/-0.37	0.21/-0.19	0.49/-0.64	0.44/-0.29
Crystallisation solvent	CHCl_{3}	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $/ n$-hexane	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\mathrm{EtOAc} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$

Table S2. Phenyl Group Orientations for peri-Diphenylnaphthalene Derivatives.

	$\alpha^{\prime} /{ }^{\circ}$	$\beta^{\prime \prime} /{ }^{\circ}$	$\delta^{\prime \prime} /{ }^{\circ}$	$\varepsilon^{\prime \prime}{ }^{\circ}$	Phenyl/ Naphthyl planes/ ${ }^{0}$	Phenyl/ Phenyl plane ${ }^{\circ}$
Parent ${ }^{\text {S10 }}$	114.8(2)	125.8(2)	124.4(2)	115.8(2)	$\begin{aligned} & \hline 66.48(10) / \\ & 67.10(10) \end{aligned}$	20.49(12)
16	116.12(13)	125.11(13)	125.80(14)	115.16(14)	$\begin{aligned} & 59.36(4) / \\ & 57.01(4) \end{aligned}$	27.08(7)
17	116.5(2)	124.6(2)	125.1(2)	116.0(2)	$\begin{aligned} & 59.23(7) \\ & 56.71(7) \end{aligned}$	20.69(10)
18	115.44(12)	125.88(12)	124.50(12)	116.02(12)	$\begin{aligned} & 62.22(3) \\ & 63.21(3) \end{aligned}$	21.10(6)
19	116.75(9)	123.75(9)	123.10(9)	118.05(9)	$\begin{aligned} & 60.12(4) \\ & 62.98(5) \end{aligned}$	16.97(6)
21	116.2(3)	124.9(3)	123.6(3)	117.9(3)	$\begin{aligned} & 57.51(14) \\ & 53.06(13) \end{aligned}$	26.26(18)
22	115.75(18)	125.08(17)	124.91(17)	115.84(19)	$\begin{aligned} & 57.08(8) \\ & 48.78(8) \end{aligned}$	30.50(10)
	116.89(17)	123.87(17)	124.85(17)	115.96(18)	$\begin{aligned} & 56.71(8) \\ & 56.66(9) \end{aligned}$	34.21(11)
26	115.4(3)	125.6(3)	124.6(4)	116.3(4)	$\begin{aligned} & 61.90(18) \\ & 53.69(16) \end{aligned}$	25.1(2)
27	116.98(16)	123.93(16)	124.96(16)	115.84(16)	$\begin{aligned} & 55.78(8) \\ & 61.87(9) \\ & \hline \end{aligned}$	22.78(11)

Parent $=1,8$-diphenylnaphthalene, room temperature measurement.

Crystal packing diagrams of 16, 17 and 19.

There is a common packing motif with pairs of molecules oriented so that the two phenyls lie opposite a naphthalene.

Figure S1. Crystal packing in 16, and an isolated pair of molecules of $\mathbf{1 6}$ (top), crystal packing of $\mathbf{1 7}$ (middle) and crystal packing of $\mathbf{1 9}$ (with some molecules along the b axis omitted for clarity) (bottom).

B. ACENAPTHENE DERIVATIVES.

Table S3. Crystallographic data for the acenaphthene derivatives 28-30 and 34-36.

	28	$29^{\text {S1 }}$	30
Formula	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}$	$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3}$	$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$
Formula weight	225.28	273.33	306.35
Crystal system	Monoclinic	Triclinic	Triclinic
Space group	$P 2{ }_{1} / \mathrm{c}$	$P-1$	$P-1$
\boldsymbol{a} [£]	9.1836(6)	9.8149(4)	8.7457(5)
$\boldsymbol{b}[\mathbf{\AA}]$	$9.4806(5)$	9.9853(4)	9.3638(7)
	13.2584(8)	15.1587(6)	$11.2739(7)$
$\alpha\left[{ }^{\circ}\right]$	90	84.234(3)	108.887(6)
$\boldsymbol{\beta}\left[{ }^{\circ}\right]$	99.767(7)	78.977(4)	91.171(5)
$\gamma\left[{ }^{\circ}\right]$	90	80.518(3)	113.671(6)
$V\left[\AA^{3}\right]$	1137.62(12)	1434.64(10)	787.91(10)
Z	4	4	2
$\rho\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	1.315	1.265	1.291
$\boldsymbol{T}[K]$	150	150	150
$\lambda(\AA)$	0.71073	0.71073	0.71073
$\mu\left(\mathrm{mm}^{-1}\right)$	0.082	0.077	0.085
unique refl.	2341	5911	3915
Refl, $\mathrm{I}>\mathbf{2 \sigma I}$	1961	3884	2990
R_{1}	0.0487	0.0575	0.0506
$w R_{2}$	0.1119	0.1157	0.1360
$\Delta \rho(\mathrm{r})\left[\mathrm{e} \AA^{-3}\right]$	0.21/-0.21	0.23/-0.25	0.30/-0.21
Crystallisation solvent	CDCl_{3}	$\mathrm{CH}_{3} \mathrm{OH}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ n-hexane

	34	35	36
Formula	$\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{4}$	$\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{2}$	$\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{2}$
Formula	351.39	319.39	305.36
weight			
Crystal	Monoclinic	Monoclinic	Monoclinic
system			
Space group	$P 2_{1} / n$	$P 2{ }_{1} / \mathrm{c}$	$P 2_{1} / c$
$\boldsymbol{a}[\AA]$	10.4257(3)	15.2740(6)	10.7625(5)
$b[\AA]$	8.8243(3)	10.3218(4)	32.3176(10)
$c[\AA]$	18.7805(7)	10.2175(3)	8.6130(3)
$\alpha\left[{ }^{\circ}\right]$	90	90	90
$\boldsymbol{\beta}\left[^{\circ}\right]$	101.546(3)	93.356(3)	98.945(4)
$\gamma\left[{ }^{\circ}\right]$	90	90	90
$V\left[\AA^{\mathbf{3}}\right]$	1692.83(10)	1608.08(10)	2959.3(2)
Z	4	4	8
$\rho\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	1.379	1.319	1.371
$\boldsymbol{T}[\mathrm{K}]$	150	150	150
$\lambda(\AA)$	0.71073	0.71073	0.71073
$\mu\left(\mathrm{mm}^{-1}\right)$	0.096	0.084	0.088
unique refl.	3489	3307	6829
Refl, $\mathrm{I}>\mathbf{2 \sigma I}$	2736	2578	4795
R_{1}	0.0552	0.0514	0.1040
$w R_{2}$	0.1132	0.1111	0.2072
$\Delta \rho(\mathrm{r})\left[\mathrm{e} \AA^{-3}\right]$	0.22/-0.24	0.18/-0.26	0.53/-0.29
Crystallisation	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$	$\mathrm{CH}_{2} \mathrm{Cl}_{2} /$
Solvent	n-hexane	n-hexane	n-hexane

Table S4. Selected geometric details for the azepine ring for spiro acenaphtho-azepines 34-36.

$34 \mathrm{X}, \mathrm{X}=(\mathrm{C}(=\mathrm{O}) \mathrm{O})_{2} \mathrm{CMe}_{2}$
$35 \mathrm{X}, \mathrm{X}=\left(\mathrm{C}(=\mathrm{O}) \mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2}$
$36 \mathrm{X}, \mathrm{X}=\left(\mathrm{C}(=\mathrm{O}) \mathrm{CH}_{2}\right)_{2}$

	\mathbf{a} / \AA	\mathbf{b} / \AA	\mathbf{c} / \AA	$\boldsymbol{\Sigma}^{\mathbf{a} / \mathbf{0}}$
$\mathbf{3 4}$	$1.457(2)$	$1.549(2)$	$1.560(2)$	$349.5(3)$
$\mathbf{3 5}$	$1.470(2)$	$1.525(2)$	$1.562(2)$	$343.6(3)$
$\mathbf{3 6}$	$1.453(4)$	$1.551(4)$	$1.529(4)$	$346.9(9)$
	$1.447(5)$	$1.551(5)$	$1.520(5)$	$348.3(9)$

$\Sigma^{\mathbf{a}}=$ Sum of bond angles at nitrogen.

	$\boldsymbol{\eta} /{ }^{\mathbf{0}}$	$\boldsymbol{\kappa} /{ }^{\mathbf{0}}$	$\boldsymbol{\lambda} /{ }^{\circ}$	$\boldsymbol{\mu} /{ }^{\mathbf{o}}$
$\mathbf{3 4}$	$115.56(14)$	$113.02(14)$	$109.01(14)$	$116.19(14)$
$\mathbf{3 5}$	$113.57(13)$	$114.02(13)$	$109.23(13)$	$115.66(13)$
$\mathbf{3 6}$	$114.4(3)$	$113.3(3)$	$109.4(3)$	$117.0(3)$.
	$113.8(3)$	$113.3(3)$	$110.0(3)$	$117.2(3)$

Table S5: Selected angles around the acenaphthene ring, and deviations of selected atoms in the azepine ring from the acenaphthene plane for the spiro acenaphtho-azepines 34-36.

$$
\begin{aligned}
& 34 \mathrm{X}, \mathrm{X}=(\mathrm{C}(=\mathrm{O}) \mathrm{O})_{2} \mathrm{CMe}_{2} \\
& 35 \mathrm{X}, \mathrm{X}=\left(\mathrm{C}(=\mathrm{O}) \mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \\
& 36 \mathrm{X}, \mathrm{X}=\left(\mathrm{C}(=\mathrm{O}) \mathrm{CH}_{2}\right)_{2}
\end{aligned}
$$

	$\boldsymbol{\alpha} / \mathbf{0}$	$\boldsymbol{\beta} / \mathbf{0}$	$\boldsymbol{\varphi} /{ }^{\circ}$	$\boldsymbol{\delta} / \mathbf{0}$	$\boldsymbol{\varepsilon} /{ }^{\mathbf{o}}$	$\boldsymbol{\psi} /{ }^{\mathbf{o}}$
$\mathbf{3}$	$122.86(1$	$118.57(1$	$127.35(1$	$120.79(1$	$119.73(1$	$112.07(1$
$\mathbf{4}$	$6)$	$5)$	$7)$	$6)$	$6)$	$7)$
$\mathbf{3}$	$122.76(1$	$118.53(1$	$127.14(1$	$121.27(1$	$119.75(1$	$111.81(1$
$\mathbf{5}$	$5)$	$4)$	$5)$	$5)$	$5)$	$5)$
$\mathbf{3}$	$123.2(3)$	$118.3(3)$	$127.3(3)$	$121.8(3)$	$119.6(3)$	$111.8(3)$
$\mathbf{6}$						
	$121.6(2)$	$120.2(3)$	$126.1(3)$	$121.9(3)$	$118.8(4)$	$111.6(4)$

Deviations from the acenaphthene plane $/ \AA$.

	\mathbf{N}	$\mathbf{C}_{\mathbf{A}}$	$\mathbf{C}_{\boldsymbol{B}}$	$\mathbf{C}_{\mathbf{C}}$
$\mathbf{3 4}$	$0.303(2)$	$1.319(2)$	$0.731(3)$	$-0.383(2)$
$\mathbf{3 5}$	$0.249(2)$	$1.354(2)$	$0.919(2)$	$-0.246(2)$
$\mathbf{3 6}$	$0.242(4)$	$1.254(4)$	$0.670(4)$	$-0.389(4)$
	$0.183(4)$	$1.163(5)$	$0.551(5)$	$-0.450(4)$

C. FLUORENE DERIVATIVES.

Table S6. Crystallographic data for the fluorene derivatives 43-45, 48 and 50.

	43	44	45	48	50
Formula	$\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{I}_{2}$	$\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}$	$\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3}$	$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$	$\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{4}$
Formula	446.05	265.34	313.39	308.37	391.45
weight					
Crystal system	Monoclinic	Tetragonal	Monoclinic	Monoclinic	Monoclinic
Space group	$P 2{ }_{1} / \mathrm{c}$	I4, cd	I2/a	$P 2_{1}$	$P 2{ }_{1} / n$
\boldsymbol{a} [\AA]	8.4109(2)	24.79560 (10)	18.4256(4)	9.7431(3)	10.9539(3)
$\boldsymbol{b}[\mathbf{\AA}]$	9.6735(3)	24.79560 (10)	11.2921(3)	6.9459(2)	9.5493(3)
$c[\AA]$	17.0655(5)	9.47440 (10)	16.4939(4)	12.1403(4)	19.3902(6)
$\alpha\left[^{\circ}\right]$	90	90	90	90	90
$\boldsymbol{\beta}\left[^{\circ}{ }^{\text {] }}\right.$	90.496(2)	90	99.223(2)	105.257(4)	104.652(3)
$\gamma\left[{ }^{\circ}\right]$	90	90	90	90	90
$V\left[\AA^{3}\right]$	1388.45(7)	5825.07(8)	3387.42(14)	792.63(4)	1962.30(11)
\boldsymbol{Z}	4	16	8	2	4
$\rho\left[\mathrm{g} \mathrm{cm}^{-3}\right]$	2.134	1.210	1.229	1.292	1.325
$T[K]$	150	150	150	150	150
$\lambda(\AA)$	0.71073	1.54184	0.71073	0.71073	0.71073
$\mu\left(\mathrm{mm}^{-1}\right)$	4.506	0.579	0.074	0.085	0.090
unique refl.	2837	2152	3936	4532	3165
Refl, $\mathrm{I}>2 \boldsymbol{\sigma} \mathrm{I}$	2477	2108	3251	3645	2904
$R_{1}(\mathrm{I}>2 \boldsymbol{\sigma})$	0.0289	0.0314	0.0478	0.0462	0.0510
$w R_{2}$	0.0646	0.0803	0.1188	0.0961	0.1109

$\Delta \rho(\mathbf{r})\left[\mathbf{e} \AA^{-3}\right]$	$0.96 /-0.53$	$0.13 /-0.17$	$0.29 /-0.23$	$0.20 /-0.20$	$0.28 /-0.23$
Crystallisation solvent	$\mathrm{EtOAc} /$ Petrol	$\mathrm{CH}_{2} \mathrm{Cl}_{2} / n$ -	$\mathrm{CDCl}_{3} /$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}$
	$(40-60)$	hexane	n-hexane	/n-hexane	

Crystal Structure of 4,5-diiodo-9,9-dimethylfluorene 43.

The diiodo compound $\mathbf{4 3}$ crystallises in space group $P 2_{1} / c$ with four molecules in the unit cell. The molecule is strongly distorted to increase the $\mathrm{I} \cdots \mathrm{I}$ separation to 3.6392 (4) \AA (Fig. S2). This is achieved in three ways: (a) the C-I bonds are displaced apart in the plane of the fluorene, with the two bonds displaced from their symmetrical positions by 5.9 and 7.1°, (b) the iodo groups are displaced out of their respective phenyl ring planes by 0.614 and $0.598 \AA$ and (c) the fluorene is twisted about the bond connecting the phenyl rings, by $21.4(8)^{\circ}$. The C-I bonds are 2.106(4) and 2.114(4) \AA long. Similar distortions is seen in the 4,5-diiodophenanthrene $\mathbf{S 1},{ }^{\text {, } 10} 1,12$-diiodo-triphenylene $\mathbf{S 2},{ }^{\text {S11 }}$ and a polybenzenoid system $\mathbf{S 3}{ }^{\text {S12 }}: \mathrm{I} \cdots \mathrm{I}$ separations S1: $3.602 / 3.610 \AA, \mathbf{S 2}: 3.679 / 3.687 \AA$, S3: $3.636 \AA$, but with a larger twist about the bond between the relevant rings: S1: $33.7 / 34.6^{\circ}, \mathbf{S 2}: 33.5^{\circ}, \mathbf{S 3}: 40.3^{\circ}$.

43

S1

S2

Figure S2: Two views of the molecular structure of $\mathbf{4 3}$ (top) and its crystal packing arrangement (below).

Table S7. Selected molecular geometry for fluoreno-azocines $\mathbf{4 8}$ and $\mathbf{5 0}$.

$48 \mathrm{X}=\mathrm{Y}=-.(\mathrm{C}=\mathrm{O}) \mathrm{O}_{2} \mathrm{CMe}_{2}$
$50 \mathrm{X}=\mathrm{NO}_{2}, Y=\mathrm{H}$.

	\mathbf{a} / \AA	\mathbf{b} / \AA	\mathbf{c} / \AA	$\boldsymbol{\Sigma}^{\mathbf{a} / \mathbf{0}}$
$\mathbf{4 8}$	$1.454(2)$	$1.565(2)$	$1.561(2)$	$350.6(2)$
$\mathbf{5 0}$	$1.460(4)$	$1.525(4)$	$1.506(4)$	$348.8(4)$

$\Sigma^{\mathbf{a}}=$ Sum of bond angles at nitrogen.

	$\boldsymbol{\eta} / \mathbf{0}$	${ }^{\circ} /{ }^{\mathbf{o}}$	$\boldsymbol{\lambda} /{ }^{\circ}$	$\boldsymbol{\mu} /{ }^{\mathbf{o}}$
$\mathbf{4 8}$	$118.26(13)$	$113.75(13)$	$108.14(12)$	$116.44(12)$
$\mathbf{5 0}$	$116.1(2)$	$116.1(2)$	$112.0(2)$	$112.1(2)$

Table S8. Selected angles around the fluorene ring, and deviations of selected atoms in the azocine ring from the fluorene plane for the spiro fluoreno-azepines $\mathbf{4 8}$ and $\mathbf{5 0}$.

| | $\boldsymbol{\alpha} / \mathbf{0}$ | $\boldsymbol{\beta} / \mathbf{0}$ | $\boldsymbol{\gamma} / \mathbf{0}$ | $\boldsymbol{\gamma}^{\boldsymbol{\prime} / \mathbf{0}}$ | $\boldsymbol{\delta} / \mathbf{0}$ | $\boldsymbol{\varepsilon} / \mathbf{0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | |
| $\mathbf{4 8}$ | $120.14(14)$ | $122.97(14)$ | $133.50(14)$ | $133.35(14)$ | $124.02(14)$ | $117.80(14)$ |
| $\mathbf{5 0}$ | $121.5(2)$ | $121.0(2)$ | $133.4(2)$ | $134.0(2)$ | $124.2(3)$ | $117.6(2)$ |

Deviations from the fluorene plane / \AA

	\mathbf{N}	$\mathbf{C}_{\mathbf{A}}$	$\mathbf{C}_{\boldsymbol{B}}$	$\mathbf{C}_{\mathbf{C}}$
$\mathbf{4 8}$	$0.389(3)$	$1.458(4)$	$0.953(4)$	$-0.306(4)$
$\mathbf{5 0}$	$0.4379(19)$	$1.428(2)$	$0.829(2)$	$-0.391(2)$

References.

S1. J. C. Bristow, I. Naftalin, S. V. A. Cliff, S. Yang, M. Carravetta, R. Stern, I. Heinmaa and J. D. Wallis, CrystEngComm, 2020, 22, 6783-6795.

S2. N. Lardiés, I. Romeo, E. Cerrada, M. Laguna and P. J. Skabara, Dalton Trans., 2007, 5329-5338.

S3. V. D. B. Bonifácio, J. Morgado and U. Scherf, Synlett, 2010, 1333-1336.
S4. CrysAlisPro, Agilent Technologies, Version 1.171.35.15 (release 03-08-2011 CrysAlis171.NET).

S5. G. M. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112-122; Acta Crystallogr. Sect. C, 2015, 71, 3-8.

S6. L. J. Barbour, "X-Seed - A software tool for supramolecular crystallography" J. Supramol. Chem. 2001, 1, 189-191.

S7. OLEX ${ }^{2}$ O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard and H. Pushmann, J. Appl. Cryst., 2009, 42, 339-341.
S8. C.F. Macrae, P.R. Edgington, P. McCabe, E. Pidcock, G.P. Shields, R. Taylor, M. Towler and J. van de Streek, J. Appl. Crystallogr. 2006, 39, 453-457.

S9. PLATON, A Multipurpose Crystallographic Took, A. L. Spek, University of Utrecht, The Netherlands, https://www.platonsoft.nl/platon/.
S10. H. Bock, M. Sievert and Z. Havlas, Chem. Eur. J., 1998, 4, 677-685.
S11. A. J. Ashe, III, J. W. Kampf and P. M. Savia, J. Org. Chem., 1990, 55, 5558-5559.
S12. Y. Shi, H. Qian, Y. Li, W. Yue and Z. Wang, Org. Lett., 2008, 10, 2337-2340.

