Electronic Supplementary Information: Theoretical investigation of polymorph- and coformer-dependent photoluminescence in molecular crystals

Xibo Feng,^{1, a)} Axel D. Becke,^{1, b)} and Erin R. Johnson^{1, c)} Department of Chemistry, Dalhousie University, 6274 Coburg Road, P.O. Box 15000, Halifax, Nova Scotia B3H 4R2, Canada

(Dated: 15 April 2021)

TABLE I: Absorption of the 8 ROY polymorphs: calculated triplet-excitation energies for the crystal (ΔE_{0T}^{cryst}) and the excised 9-ACA molecule (ΔE_{0T}^{mol}), along with the molecular singlet-triplet splittings (ΔE_{ST}^{mol}). All values are in eV.

Species	ΔE_{0T}^{cryst}	ΔE_{0T}^{mol}	$\Delta E_{\rm ST}^{\rm mol}$
R	1.52	2.66	0.74
R05	1.40	2.61	0.77
ORP	1.44	2.62	0.76
OP	1.55	2.76	0.81
ON	1.50	2.52	0.78
YN	1.92	2.90	0.99
Y	1.92	2.97	0.96
YT04	1.84	2.93	0.96

TABLE II: Emission of 9-ACA (A) and its cocrystals (A·B–A·E): calculated triplet-excitation energies for the crystal (ΔE_{0T}^{cryst}) and the excised 9-ACA molecule (ΔE_{0T}^{mol}), along with the molecular singlet-triplet splittings (ΔE_{ST}^{mol}). All values are in eV.

Species	ΔE_{0T}^{cryst}	ΔE_{0T}^{mol}	$\Delta E_{\rm ST}^{\rm mol}$
Α	1.47	1.62	1.59
A·B	1.38	1.57	1.58
A·C	1.39	2.07	1.43
A·D	1.48	1.59	1.60
A·E	1.01	2.07	1.44

TABLE III: Band structures of the 8 ROY polymorphs: calculated valence band edges (maximum, E_{val}^{max}) and conduction band edges (minimum, E_{cond}^{min}), along with the corresponding valence-conduction band gaps (ΔE_{BG}). All values are in eV.

Species	$E_{\rm val}^{\rm max}$	$E_{\rm cond}^{\rm min}$	$\Delta E_{\rm BG}$
R	2.12	3.24	1.12
R05	0.95	2.21	1.25
ORP	1.92	3.28	1.37
OP	1.96	3.34	1.38
ON	2.02	3.32	1.30
YN	1.68	3.30	1.62
Y	1.73	3.57	1.84
YT04	1.86	3.53	1.67

^{a)}Electronic mail: frederick.hillsfeng@dal.ca

^{b)}Electronic mail: axel.becke@dal.ca

^{c)}Electronic mail: erin.johnson@dal.ca; http://schooner.chem.dal.ca

TABLE IV: Band structures of 9-ACA (A) and its cocrystals ($\mathbf{A} \cdot \mathbf{B} - \mathbf{A} \cdot \mathbf{E}$): calculated valence band edges (maximum, E_{val}^{max}) and conduction band edges (minimum, E_{cond}^{min}), along with the corresponding valence-conduction band gaps (ΔE_{BG}). All values are in eV.

Species	$E_{\rm val}^{\rm max}$	$E_{\rm cond}^{\rm min}$	$\Delta E_{\rm BG}$
Α	1.78	3.52	1.74
A·B	2.03	3.68	1.65
A·C	1.83	3.41	1.58
A·D	1.98	3.79	1.81
A·E	1.62	2.42	0.80

TABLE V: The ROY molecule: calculated values of molecular triplet-excitation energies (ΔE_{0T}^{mol}) and molecular S₁-T₁ splittings (H_{12}), across the 0-180° range of θ_{thio} .

θ_{thio} (°)	ΔE_{0T}^{mol} (eV)	$H_{12} (eV)$
0	3.69	0.68
10	3.73	0.65
20	3.78	0.68
30	3.85	0.73
40	3.95	0.79
50	4.06	0.85
60	4.17	0.92
70	4.26	0.98
80	4.31	1.01
90	4.33	1.02
100	4.30	1.01
110	4.24	0.97
120	4.16	0.93
130	4.08	0.89
140	4.00	0.84
150	3.93	0.79
160	3.87	0.73
170	3.83	0.68
180	3.80	0.62

TABLE VI: ROY polymorphs: internal rotation angles (in degrees) calculated using fixed-cell (θ_{thio}^{fc}) and variable-cell optimization (θ_{thio}^{vc}) of the ground-state crystal geometries, compared to experiment (θ_{thio}^{exp}). The mean absolute percent errors (MAPE's) are also given.

Species	$\theta_{\rm thio}^{\rm exp}$	$\theta_{\rm thio}^{\rm fc}$	$\theta_{\rm thio}^{\rm vc}$
R	21.7	22.1	19.8
R05	34.0/44.9	42.5	23.3
ORP	39.4	36.4	29.0
OP	46.1	43.1	37.7
ON	52.6	50.5	42.2
YN	104.1	106.2	113.0
Y	104.7	106.4	112.0
YT04	112.8	114.4	119.9
MAPE	-	3.8%	15.8%

TABLE VII: 9-ACA (A) and its cocrystals ($A \cdot B - A \cdot E$): the amounts of absolute charge per 9-ACA molecule (e⁻) in S₀ and T₁.

Species	S ₀	T ₁
Α	0.001	0.001
A·B	0.05	0.06
A·C	0.13	0.12
A·D	0.11	0.11
A·E	0.08	0.28

FIG. 1: The ROY molecule: calculated molecular singlet-excitation energies ($\Delta E_{0S}^{\text{mol,rel.}}$), molecular S₁-T₁ splitting ($H_{12}^{\text{rel.}}$), and S₀ and T₁ energies ($E_{S_0/T_1}^{\text{rel.}}$), across the 0-180° range of θ_{thio} , all relative to their respective values at $\theta_{\text{thio}} = 0^\circ$.

