Electronic Supplementary Information (ESI) for

# 3D Ln-MOFs as multi-responsive luminescent probe for efficient sensing of $Fe^{3+}$ , $Cr_2O_7^{2-}$ , and antibiotics in aqueous solution

Yun-Shan Xue,<sup>a</sup> Ji Ding,<sup>a</sup> Dan-Ling Sun,<sup>a</sup> Wei-Wei Cheng,<sup>b</sup> Xing-Cai Huang,<sup>\*a</sup> Jun Wang<sup>\*a</sup>

<sup>a</sup>School of Chemistry & Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China. <sup>b</sup>School of Chemistry and Bioengineering, Nanjing Normal University Taizhou College, Taizhou 225300, China.

*E-mail:* <u>wjyctu@hotmail.com; huangxc82@126.com.</u>

### **Table of Contents**

#### 1. Experimental section

#### 2. Tables

Table S1. Crystallographic Data collection and Refinement result for compounds 1-7.

Table S2. Selected bond lengths (Å) and angles (deg) for compounds 1-7.

Table S3. Comparison of various MOFs sensors for the detection of  $Fe^{3+}$  and  $Cr_2O_7^{2-}$  ions.

Table S4. Comparison of various MOFs sensors for the detection of NZF and NFT.

#### 3. Figures

Figure S1. PXRD pattern of compound Ce(1).

Figure S2. PXRD pattern of compound Pr(2).

Figure S3. PXRD pattern of compound Sm(3).

Figure S4. PXRD pattern of compound Eu(4).

Figure S5. PXRD pattern of compound Gd(5).

Figure S6. PXRD pattern of compound Dy(6).

Figure S7. PXRD pattern of compound Ho(7).

Figure S8. TGA curves for compounds 1-7.

Figure S9. The solid state photoluminescence spectra for H<sub>3</sub>L ligand.

Figure S10. The photoluminescence spectra for Eu(4) (Inset: the excitation spectra of (4).

Figure S11. PXRD pattern of Eu(4) soaked into aqueous solutions with different pH values.

Figure S12. (a) pH-dependent emission spectra of Eu(4) in the aqueous solution with pH ranging

from 1.00 to 13.00; (b) Histogram showed fluorescence emission of Eu(4) at 614 nm at different pH values.

Figure S13. The emission spectra of Eu(4) dispersed in 0.01 M metal ion aqueous solutions.

Figure S14. The emission spectra of Eu(4) dispersed in 0.01 M anion aqueous solutions.

Figure S15. UV-vis spectra of different metal ions in aqueous solutions, and the excitation spectra of Eu(4).

Figure S16. UV-vis spectra of different anions in aqueous solutions, and the excitation spectra of Eu(4).

Figure S17. The HOMO and LUMO energy levels for different antibiotics.

Scheme S1. The structures of selected antibiotics.

#### **1. Experimental section**

#### X-ray crystallography

Suitable single crystals of the seven compounds were performed on Bruker APEX D8 QUEST diffractometer with a Photon 100 CMOS detector (Mo-K $\alpha$  radiation,  $\lambda = 0.71073$  Å). SADABS and SAINT programs were applied for absorption correction and data processing. The structures were solved by direct methods and refined with full-matrix least-squares on  $F^2$  using the SHELXTL-2014 software package.<sup>1</sup> All the non-hydrogen atoms were refined anisotropically. The hydrogen atoms of organic ligands were placed in geometrically calculated positions and refined using the riding model. In compound **1**, **2**, **3** and **5**, coordinated DMF molecules were disordered and split over two sites. In compound **6**, one coordinated water molecule and O3 atom were disordered and split over two sites. In compound **7**, one coordinated water molecule was disordered and split over two sites. Some C–C bond distances were restrained because of disorder. Details of the crystallographic data are listed in Table S1. Selected bond lengths and angles for compounds **1-7** are provided in Table S2. CCDC numbers: 2071646, 2071647, 2071648, 2071649, 2071650, 2071651, 2071652 for compounds **1-7**, respectively.

#### Calculations

The calculation of the ligand was performed using the Gaussian 09 program. The structure was completely optimized to the ground state by the DFT method at D-B3LYP/6-31G\* level. Then the singlet and triplet energy of structures were calculated based on TD-SCF method.

## 2. Tables

Table S1. Crystallographic Data collection and Refinement result for compounds 1-7.

| Compound reference                                                          | 1                           | 2                           | 3                           | 4                             | 5                             | 6                           | 7                           |
|-----------------------------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-------------------------------|-------------------------------|-----------------------------|-----------------------------|
| chemical formula                                                            | $C_{47}H_{55}Ce_2N_5O_{20}$ | $C_{47}H_{53}Pr_2N_5O_{19}$ | $C_{47}H_{53}Sm_2N_5O_{19}$ | $C_{44}H_{46}Eu_2N_4O_{18}\\$ | $C_{47}H_{53}Gd_2N_5O_{19}\\$ | $C_{32}H_{23}Dy_2O_{16.50}$ | $C_{32}H_{23}Ho_2O_{16.50}$ |
| Crystal system                                                              | monoclinic                  | monoclinic                  | monoclinic                  | monoclinic                    | monoclinic                    | trigonal                    | trigonal                    |
| Space group                                                                 | C2/c                        | C2/c                        | C2/c                        | C2/c                          | C2/c                          | <i>R</i> -3                 | <i>R</i> -3                 |
| a/Å                                                                         | 28.6190(12)                 | 28.5809(12)                 | 28.531(2)                   | 28.698(4)                     | 28.4297(13)                   | 19.6983(10)                 | 19.6548(11)                 |
| b/Å                                                                         | 14.2049(5)                  | 14.1925(6)                  | 14.3021(9)                  | 14.307(2)                     | 14.2555(6)                    | 19.6983(10)                 | 19.6548(11)                 |
| c/Å                                                                         | 14.1485(6)                  | 14.1130(5)                  | 13.7731(9)                  | 13.8772(19)                   | 13.8161(5)                    | 45.340(2)                   | 45.295(3)                   |
| α/ °                                                                        | 90                          | 90                          | 90                          | 90                            | 90                            | 90                          | 90                          |
| β/ °                                                                        | 100.1739(14)                | 99.9937(13)                 | 100.718(2)                  | 99.521(4)                     | 100.144(2)                    | 90                          | 90                          |
| γ/ °                                                                        | 90                          | 90                          | 90                          | 90                            | 90                            | 120                         | 120                         |
| Unit cell volume/Å3                                                         | 5661.4(4)                   | 5637.9(4)                   | 5522.1(6)                   | 5619.2(13)                    | 5511.9(4)                     | 15235.8(17)                 | 15153.5(19)                 |
| Temperature/K                                                               | 150(2)                      | 150(2)                      | 150(2)                      | 293(2)                        | 150(2)                        | 150(2)                      | 150(2)                      |
| Z                                                                           | 4                           | 4                           | 4                           | 4                             | 4                             | 9                           | 9                           |
| $\mu(mm^{-1})$                                                              | 1.662                       | 1.780                       | 2.180                       | 2.278                         | 2.459                         | 2.228                       | 2.371                       |
| No. of reflections measured                                                 | 37048                       | 38021                       | 19960                       | 16134                         | 25032                         | 33351                       | 50520                       |
| No. of independent reflections                                              | 5585                        | 5762                        | 4849                        | 4861                          | 4868                          | 6948                        | 6930                        |
| R <sub>int</sub>                                                            | 0.0378                      | 0.0324                      | 0.0503                      | 0.0654                        | 0.0374                        | 0.0248                      | 0.0397                      |
| Final $R_I$ values                                                          | 0.0419                      | 0.0437                      | 0.0428                      | 0.0721                        | 0.0441                        | 0.0371                      | 0.0424                      |
| $(I \ge 2\sigma(I))$<br>Final $wR(E^2)$ values                              |                             |                             |                             |                               |                               |                             |                             |
| $(I > 2\sigma(I))$                                                          | 0.1000                      | 0.1029                      | 0.1071                      | 0.2097                        | 0.1195                        | 0.1042                      | 0.1246                      |
| Final $R_1^a$ values                                                        | 0.0464                      | 0.0466                      | 0.0566                      | 0 1102                        | 0.0492                        | 0.0436                      | 0.0522                      |
| (all data)                                                                  | 0.0404                      | 0.0400                      | 0.0300                      | 0.1102                        | 0.0492                        | 0.0430                      | 0.0555                      |
| Final <i>wR</i> ( <i>F</i> <sup>2</sup> ) <sup>b</sup> values<br>(all data) | 0.1019                      | 0.1042                      | 0.1125                      | 0.2330                        | 0.1218                        | 0.1087                      | 0.1305                      |
| Goodness of fit on $F^2$                                                    | 1.233                       | 1.169                       | 1.060                       | 1.091                         | 1.087                         | 1.057                       | 1.086                       |

 ${}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|. {}^{b}wR_{2} = \Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}] / \Sigma [w(F_{o}^{2})^{2}]^{1/2}.$ 

| Con              | npoun             | d 1               |            |                   |                   |                   |            |                   |                  |                   |            |                  |     |                   |            |
|------------------|-------------------|-------------------|------------|-------------------|-------------------|-------------------|------------|-------------------|------------------|-------------------|------------|------------------|-----|-------------------|------------|
| Cel              | O1 <sup>i</sup>   |                   | 2.475(4)   | Cel               | O4 <sup>ii</sup>  |                   | 2.705(4)   | Cel (             | D7 <sup>iv</sup> |                   | 2.488(3)   | Cel              | 011 |                   | 2.462(8)   |
| Cel              | 02                |                   | 2.463(3)   | Cel               | O4 <sup>iii</sup> |                   | 2.462(4)   | Cel (             | O8 <sup>i</sup>  |                   | 2.665(4)   | Cel              | O3A |                   | 2.421(10)  |
| Cel              | O3                |                   | 2.461(6)   | Cel               | O5 <sup>ii</sup>  |                   | 2.569(4)   | Cel (             | 09               |                   | 2.537(6)   |                  |     |                   |            |
| $O1^i$           | Cel               | O4 <sup>ii</sup>  | 128.38(13) | 02                | Cel               | 09                | 143.21(19) | O3A               | Cel              | 011               | 80.4(11)   | O5 <sup>ii</sup> | Cel | O8 <sup>i</sup>   | 123.48(12) |
| $O1^i$           | Cel               | O5 <sup>ii</sup>  | 81.91(13)  | 03                | Cel               | $O1^i$            | 92.4(3)    | O4 <sup>iii</sup> | Cel              | $O1^i$            | 135.69(12) | O7 <sup>iv</sup> | Cel | O4 <sup>ii</sup>  | 68.46(12)  |
| O1 <sup>i</sup>  | Cel               | O7 <sup>iv</sup>  | 140.99(14) | 03                | Cel               | 02                | 133.4(3)   | O4 <sup>iii</sup> | Cel              | 02                | 72.97(12)  | O7 <sup>iv</sup> | Cel | O5 <sup>ii</sup>  | 93.37(13)  |
| O1 <sup>i</sup>  | Cel               | O8 <sup>i</sup>   | 50.65(12)  | 03                | Cel               | O4 <sup>iii</sup> | 80.7(4)    | O4 <sup>iii</sup> | Cel              | O4 <sup>ii</sup>  | 75.69(12)  | O7 <sup>iv</sup> | Cel | O8 <sup>i</sup>   | 142.29(13) |
| $O1^i$           | Cel               | 09                | 71.9(2)    | 03                | Cel               | O4 <sup>ii</sup>  | 138.1(3)   | O4 <sup>iii</sup> | Cel              | O5 <sup>ii</sup>  | 122.56(12) | O7 <sup>iv</sup> | Cel | 09                | 69.26(19)  |
| 02               | Cel               | $O1^i$            | 81.23(14)  | 03                | Cel               | O5 <sup>ii</sup>  | 151.1(4)   | O4 <sup>iii</sup> | Cel              | O7 <sup>iv</sup>  | 78.81(12)  | O8 <sup>i</sup>  | Cel | O4 <sup>ii</sup>  | 140.58(12) |
| 02               | Ce1               | O4 <sup>ii</sup>  | 70.68(11)  | 03                | Cel               | O7 <sup>iv</sup>  | 73.4(3)    | O4 <sup>iii</sup> | Cel              | O8 <sup>i</sup>   | 86.50(12)  | 09               | Cel | O4 <sup>ii</sup>  | 107.1(2)   |
| 02               | Cel               | O5 <sup>ii</sup>  | 73.91(13)  | 03                | Cel               | O8 <sup>i</sup>   | 70.1(3)    | O4 <sup>iii</sup> | Cel              | 09                | 143.45(19) | 09               | Cel | O5 <sup>ii</sup>  | 77.7(2)    |
| 02               | Cel               | O7 <sup>iv</sup>  | 134.73(12) | 03                | Cel               | 09                | 73.6(4)    | O4 <sup>iii</sup> | Cel              | 011               | 148.6(4)   | 09               | Cel | O8 <sup>i</sup>   | 108.0(2)   |
| 02               | Cel               | O8 <sup>i</sup>   | 70.55(13)  | O3A               | Cel               | 02                | 135.5(9)   | O5 <sup>ii</sup>  | Cel              | O4 <sup>ii</sup>  | 49.45(11)  | 011              | Cel | 02                | 134.6(4)   |
| Con              | npoun             | d <b>2</b>        |            |                   |                   |                   |            |                   |                  |                   |            |                  |     |                   |            |
| Pr1              | 01                |                   | 2.457(4)   | Pr1               | O5 <sup>iii</sup> |                   | 2.466(3)   | Pr1               | O7 <sup>v</sup>  |                   | 2.442(3)   | Pr1              | 08  |                   | 2.447(4)   |
| Pr1              | 02                |                   | 2.652(4)   | Pr1               | O6 <sup>iv</sup>  |                   | 2.550(4)   | Pr1               | O7 <sup>iv</sup> |                   | 2.684(3)   | Pr1              | 09  |                   | 2.516(5)   |
| Pr1              | O4 <sup>ii</sup>  |                   | 2.444(3)   |                   |                   |                   |            |                   |                  |                   |            |                  |     |                   |            |
| 01               | Pr1               | 02                | 51.09(12)  | O4 <sup>ii</sup>  | Pr1               | O6 <sup>iv</sup>  | 74.08(13)  | O6 <sup>iv</sup>  | Pr1              | O7 <sup>iv</sup>  | 49.81(11)  | 08               | Pr1 | 01                | 90.64(16)  |
| 01               | Pr1               | O5 <sup>iii</sup> | 140.62(14) | O4 <sup>ii</sup>  | Pr1               | O7 <sup>iv</sup>  | 70.74(11)  | O7 <sup>v</sup>   | Pr1              | 01                | 135.87(12) | 08               | Pr1 | 02                | 69.69(14)  |
| 01               | Pr1               | O6 <sup>iv</sup>  | 81.98(13)  | O4 <sup>ii</sup>  | Pr1               | 08                | 133.82(15) | O7 <sup>v</sup>   | Pr1              | 02                | 86.06(12)  | 08               | Pr1 | O5 <sup>iii</sup> | 74.08(15)  |
| 01               | Pr1               | O7 <sup>iv</sup>  | 128.78(13) | O4 <sup>ii</sup>  | Pr1               | 09                | 141.36(14) | O7 <sup>v</sup>   | Pr1              | O4 <sup>ii</sup>  | 73.23(12)  | 08               | Pr1 | O6 <sup>iv</sup>  | 149.87(16) |
| 01               | Pr1               | 09                | 71.48(15)  | O5 <sup>iii</sup> | Pr1               | 02                | 142.24(13) | O7 <sup>v</sup>   | Pr1              | O5 <sup>iii</sup> | 78.80(12)  | 08               | Pr1 | O7 <sup>iv</sup>  | 139.30(14) |
| 02               | Pr1               | O7 <sup>iv</sup>  | 140.11(12) | O5 <sup>iii</sup> | Pr1               | O6 <sup>iv</sup>  | 93.32(14)  | O7 <sup>v</sup>   | Pr1              | O6 <sup>iv</sup>  | 122.83(12) | 08               | Pr1 | 09                | 74.65(18)  |
| O4 <sup>ii</sup> | Pr1               | 01                | 81.38(14)  | O5 <sup>iii</sup> | Pr1               | O7 <sup>iv</sup>  | 68.51(12)  | O7 <sup>v</sup>   | Pr1              | O7 <sup>iv</sup>  | 75.50(12)  | 09               | Pr1 | 02                | 109.61(16) |
| O4 <sup>ii</sup> | Pr1               | 02                | 70.14(13)  | O5 <sup>iii</sup> | Pr1               | 09                | 69.53(14)  | O7 <sup>v</sup>   | Pr1              | 08                | 82.21(15)  | 09               | Pr1 | O6 <sup>iv</sup>  | 75.31(16)  |
| O4 <sup>ii</sup> | Pr1               | O5 <sup>iii</sup> | 134.98(12) | O6 <sup>iv</sup>  | Pr1               | 02                | 123.65(12) | O7 <sup>v</sup>   | Pr1              | 09                | 144.72(13) | O9               | Pr1 | O7 <sup>iv</sup>  | 105.63(16) |
| Con              | npoun             | d <b>3</b>        |            |                   |                   |                   |            |                   |                  |                   |            |                  |     |                   |            |
| Sm4              | 01 <sup>i</sup>   |                   | 2.432(4)   | Sm4               | O4 <sup>iv</sup>  |                   | 2.393(4)   | Sm4               | O6 <sup>ii</sup> |                   | 2.629(4)   | Sm4              | 08  |                   | 2.405(5)   |
| Sm4              | 02                |                   | 2.402(4)   | Sm4               | O4 <sup>iii</sup> |                   | 2.678(4)   | Sm4               | O7 <sup>ii</sup> |                   | 2.421(4)   | Sm4              | 09  |                   | 2.494(5)   |
| Sm4              | O3 <sup>iii</sup> |                   | 2.477(4)   |                   |                   |                   |            |                   |                  |                   |            |                  |     |                   |            |
| O1 <sup>i</sup>  | Sm4               | O3 <sup>iii</sup> | 91.99(15)  | 02                | Sm4               | 09                | 140.90(15) | O4 <sup>iv</sup>  | Sm4              | 08                | 82.12(16)  | O7 <sup>ii</sup> | Sm4 | O6 <sup>ii</sup>  | 51.51(14)  |
| Oli              | Sm4               | O4 <sup>iii</sup> | 68.53(13)  | 02                | Sm4               | O6 <sup>ii</sup>  | 70.42(14)  | O4 <sup>iv</sup>  | Sm4              | O4 <sup>iii</sup> | 76.01(14)  | 08               | Sm4 | O3 <sup>iii</sup> | 148.25(16) |
| Oli              | Sm4               | 09                | 69.04(15)  | O3 <sup>iii</sup> | Sm4               | O4 <sup>iii</sup> | 50.38(12)  | O4 <sup>iv</sup>  | Sm4              | O6 <sup>ii</sup>  | 84.24(13)  | 08               | Sm4 | O4 <sup>iii</sup> | 139.78(16) |
| O1 <sup>i</sup>  | Sm4               | O6 <sup>ii</sup>  | 141.58(15) | O3 <sup>iii</sup> | Sm4               | 09                | 74.18(17)  | O4 <sup>iv</sup>  | Sm4              | 09                | 144.51(15) | O8               | Sm4 | O9                | 74.15(17)  |
| 02               | Sm4               | O7 <sup>ii</sup>  | 80.66(15)  | O3 <sup>iii</sup> | Sm4               | O6 <sup>ii</sup>  | 125.59(13) | O6 <sup>ii</sup>  | Sm4              | O4 <sup>iii</sup> | 139.79(14) | 08               | Sm4 | O6 <sup>ii</sup>  | 68.78(16)  |

Table S2. Selected bond lengths (Å) and angles (deg) for compounds 1-7.

| 02                | Sm4               | O1 <sup>i</sup>   | 135.41(13) | O4 <sup>iv</sup>  | Sm4              | 02                | 74.02(14)  | O7 <sup>ii</sup>  | Sm4               | O1 <sup>i</sup>   | 140.81(15) | 08                | Sm4              | O7 <sup>ii</sup>  | 89.72(19)  |
|-------------------|-------------------|-------------------|------------|-------------------|------------------|-------------------|------------|-------------------|-------------------|-------------------|------------|-------------------|------------------|-------------------|------------|
| 02                | Sm4               | O3 <sup>iii</sup> | 74.97(15)  | O4 <sup>iv</sup>  | Sm4              | O7 <sup>ii</sup>  | 134.52(14) | O7 <sup>ii</sup>  | Sm4               | O3 <sup>iii</sup> | 82.79(15)  | 08                | Sm4              | $O1^i$            | 74.62(17)  |
| 02                | Sm4               | 08                | 134.24(16) | O4 <sup>iv</sup>  | Sm4              | $O1^i$            | 79.54(14)  | O7 <sup>ii</sup>  | Sm4               | O4 <sup>iii</sup> | 129.39(15) | O9                | Sm4              | O4 <sup>iii</sup> | 105.96(15) |
| 02                | Sm4               | O4 <sup>iii</sup> | 70.60(13)  | O4 <sup>iv</sup>  | Sm4              | O3 <sup>iii</sup> | 124.34(14) | O7 <sup>ii</sup>  | Sm4               | 09                | 72.19(16)  | 09                | Sm4              | O6 <sup>ii</sup>  | 110.29(16) |
| Con               | npound            | d <b>4</b>        |            |                   |                  |                   |            |                   |                   |                   |            |                   |                  |                   |            |
| Eu1               | 01                |                   | 2.475(6)   | Eu1               | O6 <sup>iv</sup> |                   | 2.594(6)   | Eu2               | 02                |                   | 2.690(8)   | Eu2               | O6 <sup>iv</sup> |                   | 2.610(7)   |
| Eu1               | O2 <sup>i</sup>   |                   | 2.370(5)   | Eu1               | O7 <sup>iv</sup> |                   | 2.412(7)   | Eu2               | O2 <sup>i</sup>   |                   | 2.388(7)   | Eu2               | O7 <sup>iv</sup> |                   | 2.404(8)   |
| Eu1               | 02                |                   | 2.711(6)   | Eu1               | 08               |                   | 2.485(8)   | Eu2               | O3 <sup>ii</sup>  |                   | 2.439(7)   | Eu2               | 08               |                   | 2.480(9)   |
| Eu1               | O3 <sup>ii</sup>  |                   | 2.433(5)   | Eu1               | 09               |                   | 2.427(9)   | Eu2               | O4 <sup>iii</sup> |                   | 2.396(7)   | Eu2               | 09               |                   | 2.458(11)  |
| Eu1               | O4 <sup>iii</sup> |                   | 2.410(6)   | Eu2               | 01               |                   | 2.442(8)   |                   |                   |                   |            |                   |                  |                   |            |
| 01                | Eu1               | 02                | 49.10(19)  | O4 <sup>iii</sup> | Eu1              | O6 <sup>iv</sup>  | 71.25(18)  | 01                | Eu2               | 02                | 49.6(2)    | O4 <sup>iii</sup> | Eu2              | 02                | 70.4(2)    |
| 01                | Eu1               | O6 <sup>iv</sup>  | 126.8(2)   | O4 <sup>iii</sup> | Eu1              | O7 <sup>iv</sup>  | 79.4(2)    | 01                | Eu2               | O6 <sup>iv</sup>  | 127.6(3)   | O4 <sup>iii</sup> | Eu2              | O3 <sup>ii</sup>  | 135.0(3)   |
| 01                | Eu1               | 08                | 73.9(3)    | O4 <sup>iii</sup> | Eu1              | 08                | 140.0(2)   | 01                | Eu2               | 08                | 74.6(3)    | O4 <sup>iii</sup> | Eu2              | O6 <sup>iv</sup>  | 71.2(2)    |
| O2 <sup>i</sup>   | Eu1               | 01                | 123.7(2)   | O4 <sup>iii</sup> | Eu1              | 09                | 134.5(2)   | 01                | Eu2               | 09                | 148.7(3)   | O4 <sup>iii</sup> | Eu2              | O7 <sup>iv</sup>  | 79.8(3)    |
| O2 <sup>i</sup>   | Eu1               | 02                | 76.21(19)  | O6 <sup>iv</sup>  | Eu1              | 02                | 140.0(2)   | O2 <sup>i</sup>   | Eu2               | 01                | 124.4(3)   | O4 <sup>iii</sup> | Eu2              | 08                | 141.2(3)   |
| O2 <sup>i</sup>   | Eu1               | O3 <sup>ii</sup>  | 80.12(19)  | O7 <sup>iv</sup>  | Eu1              | 01                | 82.5(2)    | O2 <sup>i</sup>   | Eu2               | 02                | 76.3(2)    | O4 <sup>iii</sup> | Eu2              | 09                | 133.5(3)   |
| O2 <sup>i</sup>   | Eu1               | O4 <sup>iii</sup> | 74.35(19)  | O7 <sup>iv</sup>  | Eu1              | 02                | 127.1(2)   | O2 <sup>i</sup>   | Eu2               | O3 <sup>ii</sup>  | 79.6(2)    | O6 <sup>iv</sup>  | Eu2              | 02                | 140.3(3)   |
| O2 <sup>i</sup>   | Eu1               | O6 <sup>iv</sup>  | 84.9(2)    | O7 <sup>iv</sup>  | Eu1              | O3 <sup>ii</sup>  | 141.5(2)   | O2 <sup>i</sup>   | Eu2               | O4 <sup>iii</sup> | 74.3(2)    | O7 <sup>iv</sup>  | Eu2              | 01                | 83.4(3)    |
| O2 <sup>i</sup>   | Eu1               | O7 <sup>iv</sup>  | 134.9(2)   | O7 <sup>iv</sup>  | Eu1              | O6 <sup>iv</sup>  | 51.8(2)    | O2 <sup>i</sup>   | Eu2               | O6 <sup>iv</sup>  | 84.2(3)    | O7 <sup>iv</sup>  | Eu2              | 02                | 128.5(3)   |
| O2 <sup>i</sup>   | Eu1               | 08                | 145.2(2)   | O7 <sup>iv</sup>  | Eu1              | 08                | 71.9(2)    | O2 <sup>i</sup>   | Eu2               | O7 <sup>iv</sup>  | 134.3(3)   | O7 <sup>iv</sup>  | Eu2              | O3 <sup>ii</sup>  | 141.6(3)   |
| O2 <sup>i</sup>   | Eu1               | O9                | 81.2(2)    | O7 <sup>iv</sup>  | Eu1              | 09                | 92.3(3)    | O2 <sup>i</sup>   | Eu2               | 08                | 144.2(3)   | O7 <sup>iv</sup>  | Eu2              | O6 <sup>iv</sup>  | 51.7(2)    |
| O3 <sup>ii</sup>  | Eu1               | 01                | 89.2(2)    | 08                | Eu1              | 02                | 106.6(2)   | O2 <sup>i</sup>   | Eu2               | O9                | 80.2(3)    | O7 <sup>iv</sup>  | Eu2              | 08                | 72.1(3)    |
| O3 <sup>ii</sup>  | Eu1               | 02                | 67.89(19)  | 08                | Eu1              | O6 <sup>iv</sup>  | 108.9(3)   | O3 <sup>ii</sup>  | Eu2               | 01                | 89.9(3)    | O7 <sup>iv</sup>  | Eu2              | 09                | 91.7(3)    |
| O3 <sup>ii</sup>  | Eu1               | O6 <sup>iv</sup>  | 143.0(2)   | 09                | Eu1              | 01                | 148.5(3)   | O3 <sup>ii</sup>  | Eu2               | 02                | 68.2(2)    | 08                | Eu2              | 02                | 107.4(3)   |
| O3 <sup>ii</sup>  | Eu1               | 08                | 69.7(2)    | 09                | Eu1              | 02                | 139.6(2)   | O3 <sup>ii</sup>  | Eu2               | O6 <sup>iv</sup>  | 141.6(3)   | 08                | Eu2              | O6 <sup>iv</sup>  | 108.6(3)   |
| O4 <sup>iii</sup> | Eu1               | 01                | 75.2(2)    | 09                | Eu1              | O3 <sup>ii</sup>  | 75.6(3)    | O3 <sup>ii</sup>  | Eu2               | 08                | 69.7(3)    | O9                | Eu2              | 02                | 139.0(3)   |
| O4 <sup>iii</sup> | Eu1               | 02                | 69.81(19)  | 09                | Eu1              | O6 <sup>iv</sup>  | 68.8(2)    | O3 <sup>ii</sup>  | Eu2               | 09                | 74.9(3)    | O9                | Eu2              | O6 <sup>iv</sup>  | 68.1(3)    |
| O4 <sup>iii</sup> | Eu1               | O3 <sup>ii</sup>  | 134.5(2)   | 09                | Eu1              | 08                | 75.0(3)    | O4 <sup>iii</sup> | Eu2               | 01                | 76.1(3)    | 09                | Eu2              | 08                | 74.5(3)    |
| Con               | npound            | d 5               |            |                   |                  |                   |            |                   |                   |                   |            |                   |                  |                   |            |
| Gd4               | 01                |                   | 2.605(5)   | Gd4               | O4 <sup>v</sup>  |                   | 2.362(4)   | Gd4               | O5 <sup>iv</sup>  |                   | 2.454(5)   | Gd4               | O7 <sup>ii</sup> |                   | 2.380(5)   |
| Gd4               | 02                |                   | 2.387(5)   | Gd4               | O4 <sup>iv</sup> |                   | 2.656(5)   | Gd4               | O6 <sup>iii</sup> |                   | 2.400(4)   | Gd4               | 08               |                   | 2.373(5)   |
| Gd4               | 09                |                   | 2.467(6)   |                   |                  |                   |            |                   |                   |                   |            |                   |                  |                   |            |
| 01                | Gd4               | O4 <sup>iv</sup>  | 138.90(17) | O4 <sup>v</sup>   | Gd4              | O6 <sup>iii</sup> | 79.91(16)  | O6 <sup>iii</sup> | Gd4               | O4 <sup>iv</sup>  | 68.04(15)  | 08                | Gd4              | 02                | 91.5(2)    |
| 02                | Gd4               | O6 <sup>iii</sup> | 140.91(17) | O4 <sup>v</sup>   | Gd4              | O5 <sup>iv</sup>  | 124.56(16) | O6 <sup>iii</sup> | Gd4               | 09                | 69.31(17)  | 08                | Gd4              | O7 <sup>ii</sup>  | 133.41(19) |
| 02                | Gd4               | O5 <sup>iv</sup>  | 81.78(17)  | O4 <sup>v</sup>   | Gd4              | O4 <sup>iv</sup>  | 75.57(16)  | O6 <sup>iii</sup> | Gd4               | 01                | 143.26(17) | 08                | Gd4              | O6 <sup>iii</sup> | 75.60(19)  |
| 02                | Gd4               | O4 <sup>iv</sup>  | 128.30(16) | O4 <sup>v</sup>   | Gd4              | 01                | 84.58(16)  | O7 <sup>ii</sup>  | Gd4               | 02                | 79.81(17)  | 08                | Gd4              | $O5^{iv}$         | 148.93(19) |
| 02                | Gd4               | 01                | 51.93(16)  | O4 <sup>v</sup>   | Gd4              | 09                | 144.62(17) | O7 <sup>ii</sup>  | Gd4               | O6 <sup>iii</sup> | 135.21(16) | 08                | Gd4              | O4 <sup>iv</sup>  | 139.36(18) |
| 02                | Gd4               | 09                | 71.73(18)  | O5 <sup>iv</sup>  | Gd4              | O4 <sup>iv</sup>  | 50.75(14)  | O7 <sup>ii</sup>  | Gd4               | O5 <sup>iv</sup>  | 75.42(16)  | 08                | Gd4              | 01                | 69.14(19)  |

| O4 <sup>v</sup> Gd4 O8                 | 80.89(19)  | O5 <sup>iv</sup> Gd4 O1                 | 125.31(16) | O7 <sup>ii</sup> Gd4 O4 <sup>iv</sup>  | 70.37(15)  | O8 Gd4 O9                             | 75.0(2)    |
|----------------------------------------|------------|-----------------------------------------|------------|----------------------------------------|------------|---------------------------------------|------------|
| O4 <sup>v</sup> Gd4 O2                 | 135.13(16) | O5 <sup>iv</sup> Gd4 O9                 | 74.05(19)  | O7 <sup>ii</sup> Gd4 O1                | 69.75(17)  | O9 Gd4 O4 <sup>iv</sup>               | 107.05(18) |
| $O4^v$ $Gd4$ $O7^{ii}$                 | 74.35(15)  | O6 <sup>iii</sup> Gd4 O5 <sup>iv</sup>  | 90.58(17)  | O7 <sup>ii</sup> Gd4 O9                | 140.59(18) | O9 Gd4 O1                             | 109.8(2)   |
| Compound 6                             |            |                                         |            |                                        |            |                                       |            |
| Dyl O0AA                               | 2.447(6)   | Dyl Ol                                  | 2.300(3)   | Dy1 O5 <sup>iii</sup>                  | 2.408(3)   | Dy1 O7 <sup>ii</sup>                  | 2.839(3)   |
| Dyl OlAA                               | 2.447(6)   | Dyl O2 <sup>iv</sup>                    | 2.318(4)   | Dy1 O6 <sup>ii</sup>                   | 2.346(3)   | Dyl O7 <sup>i</sup>                   | 2.276(3)   |
| Dyl O2AA                               | 2.215(12)  | Dyl O4 <sup>iii</sup>                   | 2.399(3)   |                                        |            |                                       |            |
| O1 Dy1 O7 <sup>ii</sup>                | 66.12(13)  | O2 <sup>iv</sup> Dy1 O0AA               | 139.3(2)   | O6 <sup>ii</sup> Dy1 O4 <sup>iii</sup> | 133.05(14) | O0AA Dy1 O7 <sup>ii</sup>             | 112.6(2)   |
| O1 Dy1 O6 <sup>ii</sup>                | 80.88(16)  | O2 <sup>iv</sup> Dy1 O1AA               | 141.1(2)   | O6 <sup>ii</sup> Dy1 O0AA              | 72.5(2)    | O0AA Dyl O1AA                         | 69.2(3)    |
| O1 Dy1 O5 <sup>iii</sup>               | 142.59(13) | O4 <sup>iii</sup> Dy1 O7 <sup>ii</sup>  | 142.46(15) | O6 <sup>ii</sup> Dy1 O1AA              | 137.4(2)   | O2AA Dy1 O1                           | 77.7(3)    |
| O1 Dy1 O2 <sup>iv</sup>                | 131.09(12) | O4 <sup>iii</sup> Dy1 O5 <sup>iii</sup> | 54.26(13)  | O7 <sup>i</sup> Dy1 O7 <sup>ii</sup>   | 76.21(11)  | O2AA Dy1 O4 <sup>iii</sup>            | 73.6(4)    |
| O1 Dy1 O4 <sup>iii</sup>               | 143.58(17) | O4 <sup>iii</sup> Dy1 O0AA              | 100.2(2)   | O7 <sup>i</sup> Dy1 O6 <sup>ii</sup>   | 125.52(11) | O2AA Dy1 O7 <sup>ii</sup>             | 143.0(3)   |
| O1 Dy1 O0AA                            | 75.12(17)  | O4 <sup>iii</sup> Dy1 O1AA              | 72.7(2)    | O7 <sup>i</sup> Dy1 O5 <sup>iii</sup>  | 138.75(13) | O2AA Dyl O7 <sup>i</sup>              | 104.2(4)   |
| Ol Dyl OlAA                            | 71.9(2)    | O5 <sup>iii</sup> Dy1 O7 <sup>ii</sup>  | 121.88(12) | O7 <sup>i</sup> Dy1 O2 <sup>iv</sup>   | 76.83(15)  | O2AA Dy1 O6 <sup>ii</sup>             | 119.0(4)   |
| O2 <sup>iv</sup> Dy1 O7 <sup>ii</sup>  | 67.69(13)  | O5 <sup>iii</sup> Dy1 O0AA              | 68.23(18)  | O7 <sup>i</sup> Dy1 O1                 | 77.50(14)  | O2AA Dy1 O5 <sup>iii</sup>            | 82.7(4)    |
| O2 <sup>iv</sup> Dy1 O6 <sup>ii</sup>  | 81.26(16)  | O5 <sup>iii</sup> Dy1 O1AA              | 100.9(2)   | O7 <sup>i</sup> Dy1 O4 <sup>iii</sup>  | 88.13(13)  | O2AA Dy1 O2 <sup>iv</sup>             | 149.2(3)   |
| O2 <sup>iv</sup> Dy1 O5 <sup>iii</sup> | 77.66(13)  | O6 <sup>ii</sup> Dy1 O7 <sup>ii</sup>   | 49.32(10)  | O7 <sup>i</sup> Dy1 O0AA               | 143.8(2)   | O2AA Dy1 O0AA                         | 46.9(4)    |
| O2 <sup>iv</sup> Dy1 O4 <sup>iii</sup> | 75.65(16)  | O6 <sup>ii</sup> Dy1 O5 <sup>iii</sup>  | 81.29(12)  | O7 <sup>i</sup> Dy1 O1AA               | 80.1(2)    |                                       |            |
| Compound 7                             |            |                                         |            |                                        |            |                                       |            |
| Hol Ol                                 | 2.263(4)   | Ho1 O3 <sup>i</sup>                     | 2.336(4)   | Ho1 O6 <sup>ii</sup>                   | 2.384(4)   | Hol O9                                | 2.451(7)   |
| Ho1 O1 <sup>i</sup>                    | 2.837(4)   | Ho1 O4 <sup>iii</sup>                   | 2.294(4)   | Hol O8                                 | 2.416(6)   | Ho1 O10                               | 2.333(9)   |
| Ho1 O2 <sup>ii</sup>                   | 2.396(4)   | Ho1 O5 <sup>iv</sup>                    | 2.298(4)   |                                        |            |                                       |            |
| Ol Hol Oli                             | 76.30(13)  | O2 <sup>ii</sup> Ho1 O9                 | 68.0(2)    | O4 <sup>iii</sup> Ho1 O8               | 72.4(2)    | O6 <sup>ii</sup> Ho1 O1 <sup>i</sup>  | 142.70(17) |
| O1 Ho1 O2 <sup>ii</sup>                | 139.33(15) | O3 <sup>i</sup> Ho1 O1 <sup>i</sup>     | 49.33(11)  | O4 <sup>iii</sup> Ho1 O9               | 75.1(2)    | O6 <sup>ii</sup> Ho1 O2 <sup>ii</sup> | 54.52(15)  |
| O1 Ho1 O3 <sup>i</sup>                 | 125.63(13) | O3 <sup>i</sup> Ho1 O2 <sup>ii</sup>    | 81.20(14)  | O4 <sup>iii</sup> Ho1 O10              | 76.9(4)    | O6 <sup>ii</sup> Ho1 O8               | 72.0(2)    |
| O1 Ho1 O4 <sup>iii</sup>               | 77.26(16)  | O3 <sup>i</sup> Ho1 O6 <sup>ii</sup>    | 133.32(15) | O5 <sup>iv</sup> Ho1 O1 <sup>i</sup>   | 67.35(14)  | O6 <sup>ii</sup> Ho1 O9               | 99.7(2)    |
| O1 Ho1 O5 <sup>iv</sup>                | 77.29(17)  | O3 <sup>i</sup> Ho1 O8                  | 138.2(3)   | O5 <sup>iv</sup> Ho1 O2 <sup>ii</sup>  | 77.97(14)  | O8 Ho1 O1i                            | 135.2(2)   |
| O1 Ho1 O6 <sup>ii</sup>                | 88.37(15)  | O3 <sup>i</sup> Ho1 O9                  | 72.8(3)    | O5 <sup>iv</sup> Ho1 O3 <sup>i</sup>   | 81.18(17)  | O8 Ho1 O9                             | 69.8(4)    |
| O1 Ho1 O8                              | 78.9(3)    | O4 <sup>iii</sup> Ho1 O1 <sup>i</sup>   | 66.14(15)  | O5 <sup>iv</sup> Ho1 O6 <sup>ii</sup>  | 76.25(18)  | O9 Ho1 O1 <sup>i</sup>                | 113.0(2)   |
| O1 Ho1 O9                              | 143.1(3)   | O4 <sup>iii</sup> Ho1 O2 <sup>ii</sup>  | 142.21(15) | O5 <sup>iv</sup> Ho1 O8                | 140.5(3)   | O10 Ho1 Oli                           | 142.0(4)   |
| O1 Ho1 O10                             | 104.4(6)   | O4 <sup>iii</sup> Ho1 O3 <sup>i</sup>   | 80.59(18)  | O5 <sup>iv</sup> Ho1 O9                | 139.6(2)   | O10 Ho1 O6 <sup>ii</sup>              | 74.5(4)    |
| O2 <sup>ii</sup> Ho1 O1 <sup>i</sup>   | 121.79(14) | O4 <sup>iii</sup> Ho1 O5 <sup>iv</sup>  | 130.86(14) | O5 <sup>iv</sup> Ho1 O10               | 150.6(4)   | O10 Ho1 O9                            | 45.6(6)    |
| O2 <sup>ii</sup> Ho1 O8                | 101.2(3)   | O4 <sup>iii</sup> Ho1 O6 <sup>ii</sup>  | 143.44(19) |                                        |            |                                       |            |

Symmetry codes for 1:(i) 1-x, y, 0.5-z; (ii) 0.5-x, -0.5+y, 0.5-z; (iii) x, 1-y, 0.5+z; (iv) 0.5-x, 0.5-y, 1-z; (v) x, 1-y, -0.5+z; (vi) 0.5-x, 0.5+y, 0.5-z. For 2: (i) 0.5-x, 0.5-y, 1-z; (ii) 1-x, y, 0.5-z; (iii) -0.5+x, 0.5-y, 0.5+z; (iv) -0.5+x, 0.5+y, z; (v) 1-x, -y, 1-z; (vi) 0.5+x, 0.5-y, -0.5+z; (vii) 0.5+x, -0.5+y, z. For 3: (i) 0.5-x, 0.5-y, 1-z; (ii) 1-x, y, 0.5-z; (iii) 0.5-x, -0.5+y, 0.5-z; (iv) x, 1-y, 0.5+z; (v) 0.5-x, 0.5+y, 0.5-z; (vi) x, 1-y, -0.5+z; (v) 0.5-x, 0.5+y, 0.5-z; (vi) x, 1-y, -0.5+z; (v) 0.5-x, 0.5+y, 0.5-z; (vi) x, 1-y, -0.5+z. For 4: (i) 0.5-x, -0.5-y, 1-z; (ii) x, -y, -0.5+z; (iii) 0.5-x, -0.5+y, 1.5-z; (iv) -0.5+x, -0.5+y, z. For 5: (i) 1.5-x, 1.5-y, 1-z; (ii) 1-x, y, 1.5-z; (iii) 0.5+x, 1.5-y, -0.5+z; (vi) 0.5+x, 1.5-y, -0.5+z; (vi) 0.5+x, 0.5+y, z. For 5: (v) x, -y, -0.5+z; (vi) 1-x, y, 1.5-z; (vi) 0.5+x, 1.5-y, -0.5+y, z. For 5: (vi) 1.5-x, 1.5-y, 1-z; (vi) 1-x, y, 1.5-z; (vi) 0.5+x, 1.5-y, -0.5+y, 1.5-z; (vi) 0.5+x, 0.5+y, z. For 5: (vi) 1.5-x, 1.5-y, 1-z; (vi) 1-x, y, 1.5-z; (vi) 0.5+x, 1.5-y, -0.5+y, 1.5-z; (vi) 0.5+x, 0.5+y, z. For 5: (vi) 1.5-x, 1.5-y, 1-z; (vi) 1-x, y, 1.5-z; (vi) 0.5+x, 1.5-y, -0.5+y, 1.5-z; (vi) 0.5+x, 0.5+y, z. For 5: (vi) 1.5-x, 1.5-y, 1-z; (vi) 1-x, y, 1.5-z; (vi) 0.5+x, 1.5-y, -0.5+y, 1.5-z; (vi) 0.5+x, 0.5+y, z. For 5: (vi) 1.5-x, 1.5-y, 1-z; (vi) 1-x, y, 1.5-z; (vi) 0.5+x, 1.5-y, -0.5+y, 1.5-y, 1-z; (vi) 0.5+x, 0.5+y, 1.5-z; (vi) 0.5+x, 0.5+y, 2.5+y, 2.5+

-0.5+z; (iv) 0.5+x, 0.5+y, z; (v) 1-x, 1-y, 1-z; (vi) -0.5+x, 1.5-y, 0.5+z; (vii) -0.5+x, -0.5+y, z. For **6**: (i) 0.33333+y, 0.66667-x+y, 1.66667-z; (ii) 1-y, 1+x-y, z; (iii) 0.66667-x+y, 1.33333-x, 0.33333+z; (iv) 1.33333-x, 1.66667-y, 1.66667-z; (v) 0.33333+x-y, -0.33333+x, 1.66667-z; (vi) -x+y, 1-x, z; (vii) 1.33333-y, 0.66667+x-y, -0.33333+z. For **7**: (i) 0.33333-x, 0.66667-y, 0.66667-z; (ii) x-y, x, 1-z; (iii) 0.33333+y, 0.66667-z; (iv) -y, x-y, z; (v) y, -x+y, 1-z; (vi) 0.33333+x, 0.66667-z; (vii) -x+y, -x, z.

|    | Analyte                                      | CPs-based fluorescent Materials                                                                                      | Quenching constant $(K_{SV} \times 10^4 \text{ M}^{-1})$ | Detection Limits<br>(DL) | Ref       |
|----|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|--------------------------|-----------|
| 1  |                                              | ${[Tb(CmdcpBr)(H_2O)_3]_2(NO_3)_2 \cdot 5H_2O}_n$                                                                    | 0.5532                                                   | 1.5 mM                   | 2         |
| 2  |                                              | ${[Eu(L)(HCOO)] \cdot H_2O}_n$                                                                                       | 0.7461                                                   | 1 µM                     | 3         |
| 3  |                                              | $[Eu_2(2,3'-oba)_3(phen)_2]_n$                                                                                       | 1.37                                                     | 7.93 μM                  | 4         |
| 4  |                                              | [Tb(HMDIA)(H <sub>2</sub> O) <sub>3</sub> ]·H <sub>2</sub> O                                                         | 1.73                                                     |                          | 5         |
| 5  |                                              | [Eu(L <sub>1</sub> )(H <sub>2</sub> O)]·1.5H <sub>2</sub> O                                                          | 6.607                                                    | 0.87 μΜ                  | 6         |
|    | Fe <sup>3+</sup>                             | $[[Tb(\mu_6\text{-}H_2\text{cpboda})(\mu_2\text{-}OH_2)_2]\cdot H_2O]_n$                                             | 6.50                                                     | 0.84 μΜ                  | 7         |
| 6  |                                              | [Tb(TATAB)(H <sub>2</sub> O)] ·2H <sub>2</sub> O                                                                     | 12.5                                                     | 0.0221µM                 | 8         |
| 7  |                                              | Eu-MOF                                                                                                               | 13.4                                                     | 3.69 µM                  | This work |
| 8  |                                              | [H <sub>2</sub> N(CH <sub>3</sub> ) <sub>2</sub> ] <sub>2</sub> [Zn <sub>2</sub> L(HPO <sub>3</sub> ) <sub>2</sub> ] | 39.6                                                     | 0.116 µM                 | 9         |
| 9  |                                              | $\{[Zn_3(HL)_2H_2O]\cdot 4H_2O\}_n$                                                                                  | 50                                                       |                          | 10        |
| 10 |                                              | CTGU-1 (Tb)                                                                                                          | 188.3                                                    | 0.001 µM                 | 11        |
|    |                                              |                                                                                                                      |                                                          |                          |           |
| 1  |                                              | $[Cd_2(L_1)(1,4-NDC)_2]_n$                                                                                           | 5.86                                                     | 0.031 ppm                | 12        |
| 2  |                                              | $[Zr_6O_4(OH)_8(H_2O)_4(TCPP)_4]$ $\Box 9DMF \Box 3.5H_2O$                                                           | 5.91                                                     |                          | 13        |
| 3  |                                              | ${[Zn(H_2BCA)(m-bib)] \cdot H_2O}_n$                                                                                 | 5.3                                                      | 0.07 µM                  | 14        |
|    | Cr <sub>2</sub> O <sub>7</sub> <sup>2-</sup> | $\{[Zn_2(tpeb)_2(2,3\text{-ndc})_2]\cdot H_2O\}_n$                                                                   | 7.09                                                     | 2.623 ppb                | 15        |
| 4  |                                              | [Zn(NH <sub>2</sub> -bdc)(4,4'-bpy)]                                                                                 | 7.62                                                     | 1.30 µM                  | 16        |
| 5  |                                              | [Ln(Hbptc)(H <sub>2</sub> O) <sub>4</sub> ]·H <sub>2</sub> O                                                         | 10.4                                                     | 2.36 µM                  | 17        |
| 6  |                                              | Eu-MOF                                                                                                               | 11.3                                                     | 4.01 μΜ                  | This work |

Table S3. Comparison of various MOFs sensors for the detection of  $Fe^{3+}$  and  $Cr_2O_7^{2-}$  ions.

|   | Analyte | CPs-based fluorescent Materials                                   | Quenching constant<br>(K <sub>SV</sub> × 10 <sup>4</sup> M <sup>-1</sup> ) | Detection Limits<br>(DL) | Ref       |
|---|---------|-------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------|-----------|
| 1 |         | $[Zn(L)_2]$ ·CH <sub>2</sub> Cl <sub>2</sub> ·CH <sub>3</sub> OH  | 1.62                                                                       |                          | 18        |
| 2 |         | ${[Tb(TATMA)(H_2O) \cdot 2H_2O]_n}$                               | 3.00                                                                       |                          | 19        |
| 3 |         | Eu-MOF                                                            | 4.38                                                                       |                          | This work |
| 4 | NZF     | [Cd(tptc) <sub>0.5</sub> (o-bimb)] <sub>n</sub>                   | 4.4                                                                        |                          | 20        |
| 5 |         | ${[Cd_3(TDCPB) \cdot 2DMAc] \cdot DMAc \cdot 4H_2O_n}$            | 7.46                                                                       |                          | 21        |
| 6 |         | [Zn <sub>2</sub> (azdc) <sub>2</sub> (dpta)]·(DMF) <sub>4</sub>   | 13                                                                         | 0.63 ppm                 | 22        |
| 7 |         | [Cd(H <sub>2</sub> tptc) <sub>0.5</sub> (mbimb)(Cl)] <sub>n</sub> | 21                                                                         |                          | 20        |
|   |         |                                                                   |                                                                            |                          |           |
| 1 |         | $[Zn(L)_2]$ ·CH <sub>2</sub> Cl <sub>2</sub> ·CH <sub>3</sub> OH  | 1.58                                                                       |                          | 18        |
|   |         | ${[Tb(TATMA)(H_2O) \cdot 2H_2O]_n}$                               | 3.35                                                                       |                          | 19        |
|   |         | [Cd(tptc) <sub>0.5</sub> (o-bimb)] <sub>n</sub>                   | 3.4                                                                        |                          | 20        |
| 2 | NET     | [TbL·2H <sub>2</sub> O] <sub>n</sub>                              | 5.26                                                                       |                          | 23        |
| 3 | INF I   | Eu-MOF                                                            | 5.29                                                                       |                          | This work |
|   |         | [Zn <sub>2</sub> (azdc) <sub>2</sub> (dpta)]·(DMF) <sub>4</sub>   | 7.14                                                                       |                          | 22        |
| 6 |         | ${[Cd_3(TDCPB) \cdot 2DMAc] \cdot DMAc \cdot 4H_2O_n}$            | 10.5                                                                       |                          | 21        |
| 7 |         | [Cd(H <sub>2</sub> tptc) <sub>0.5</sub> (mbimb)(Cl)] <sub>n</sub> | 26                                                                         |                          | 20        |

Table S4. Comparison of various MOFs sensors for the detection of NZF and NFT.

3. Figures



Figure S1. PXRD pattern of compound Ce(1).



Figure S2. PXRD pattern of compound Pr(2).



Figure S3. PXRD pattern of compound Sm(3).



Figure S4. PXRD pattern of compound Eu(4).



Figure S5. PXRD pattern of compound Gd(5).



Figure S6. PXRD pattern of compound Dy(6).



Figure S7. PXRD pattern of compound Ho(7).



Figure S8. TGA curves for compounds 1-7.



Figure S9. The solid state photoluminescence spectra for H<sub>3</sub>L ligand.



Figure S10. The photoluminescence spectra for Eu(4) (Inset: the excitation spectra of (4).



Figure S11. PXRD pattern of Eu(4) soaked into aqueous solutions with different pH

values.



Figure S12 (a) pH-dependent emission spectra of Eu(4) in the aqueous solution with pH ranging from 1.00 to 13.00; (b) Histogram showed fluorescence emission of Eu(4) at 614 nm at different pH values.



Figure S13. The emission spectra of Eu(4) dispersed in 0.01 M metal ion aqueous

solutions.



Figure S14. The emission spectra of Eu(4) dispersed in 0.01 M anion aqueous solutions.



Figure S15. UV-vis spectra of different metal ions in aqueous solutions, and the excitation spectra of Eu(4).



Figure S16. UV-vis spectra of different anions in aqueous solutions, and the excitation spectra of Eu(4).



Figure S17. The HOMO and LUMO energy levels for different antibiotics.



Scheme S1. The structures of selected antibiotics.

Reference:

1. Sheldrick GM, Acta Crystallog C 2015, 71, 3.

2. K.-Y. Wu, L. Qin, C. Fan, S.-L. Cai, T.-T. Zhang, W.-H. Chen, X.-Y. Tang and J.-X. Chen, *Dalton Trans.*, 2019, **48**, 8911.

- 3. Y. Liu, J. Ma, C. Xu, Y. Yang, M. Xia, H. Jiang, W. Liu, *Dalton Trans.*, 2018, 47, 13543.
- 4. J.-M. Li, R. Li, X. Li, CrystEngComm., 2018, 20, 4962.
- 5. P. Wu, L. Xia, F. Fu, M. Wang, B. Wen, Z. Yang and J. Wang, Inorg. Chem., 2020, 59, 264.
- Y. Tao, P. Zhang, J. Liu, X. Chen, X. Guo, H. Jin, J. Chai, L. Wang, Y. Fan, New J. Chem., 2018,
  42, 19485.
- 7. D. Yang, L. Lu, S. Feng, M. Zhu, Dalton Trans., 2020, 49, 7514.
- J.-H. Wei, J.-W. Yi, M.-L. Han, B. Li, S. Liu, Y.-P. Wu, L.-F. Ma, D.-S. Li, *Chem. Asian J.*, 2019, 14, 3694.
- 9. S.-F. Tang and X. Hou, Cryst. Growth Des., 2019, 19, 45.
- 10. W.-Q. Tong, W.-N. Liu, L.-L. Ma, Y. Wang, J.-M. Wang, L. Hou, Y.-Y. Wang, *Dalton Trans.*, 2019, **48**, 7786.
- 11. M.-L. Han, G.-W. Xu, D.-S. Li, Azofra, M. L, J. Zhao, B. Chen, C. Sun, *ChemistrySelect.*, 2016, 1, 3555.
- 12. Y.-J. Yang, Y.-H. Li, D. Liu and G.-H. Cui, CrystEngComm., 2020, 22, 1166.
- 13. J. Liu, Y. Ye, X. Sun, B. Liu, G. Li, Z. Liang and Y. Liu, J. Mater. Chem. A., 2019, 7, 1683.
- 14. X. Zhang, H. Chen, B. Li, G. Liu and X. Liu, CrystEngComm., 2019, 21, 1231.
- 15 T. Y. Gu, M. Dai, D. J. Young, Z. G. Ren, J. P. Lang, Inorg. Chem., 2017, 56, 4668.
- 16. T. Wiwasuku, J. Boonmak, K. Siriwong, V. Ervithayasuporn and S. Youngme, *Sensor Actuat B-Chem.*, 2019, **284**, 403.
- 17. Y.-N. Wang, Sh.-D. Wang, W.-J. Wang, X.-X. Hao, H. Qi. Spectrochim. Acta A., 2020, 229, 117915.
- Y. Liu, Y. Zhao, Z.-Q. Liu, X.-H. Liu, X.-D. Zhang and W.-Y. Sun, *CrystEngComm.*, 2020, 22, 304.
- 19. Q.-Q. Zhu, H. He, Y. Yan, J. Yuan, D.-Q. Lu, D.-Y. Zhang, F. Sun and G. Zhu, *Inorg. Chem.*, 2019, **58**, 7746.
- 20. Y. Zhang, J. Yang, D. Zhao, Z. Liu, D. Li, L. Fan and T. Hu, CrystEngComm., 2019, 21, 6130.

- 21. Q.-Q. Zhu, Q.-S. Zhou, H.-W. Zhang, W.-W. Zhang, D.-Q. Lu, M.-T. Guo, Y. Yuan, F. Sun and H. He, *Inorg. Chem.*, 2020, **59**, 1323.
- 22. R. Goswami, S. C. Mandal, N. Seal, B. Pathak and S. Neogi, J. Mater. Chem. A., 2019, 7, 19471.
- 23. F. Guo, C. Su, Y. Fan and W. Shi, Dalton Trans., 2019, 48, 12910.