Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2021

Supporting info for:

Self-organization of 1,6-dialkyl-3a,6a-diphenylglycolurils in the crystalline state

Valentina A. Karnoukhova,^a Vladimir V. Baranov,^b Anna V. Vologzhanina,^a Angelina N. Kravchenko^{b,c} and Ivan V. Fedyanin^{a,c*}

^aA.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova st. 28, 119991 Moscow, Russian Federation. Fax: +7 495 1355085;

^bN. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation, Fax: +7 499 135 5328;

^ePlekhanov Russian University of Economics, Stremyanny lane 36, Moscow, 117997, Russian Federation.

E-mail: octy@xrlab.ineos.ac.ru

Table of Contents

1. X-ray diffraction data	
2. Asymmetric unit and crystal packing images	
3. CE-B3LYP calculations	S6
4. Crystal morphology	S12
5. Powder diffraction	S14
6. Measurements of hydrophobic properties	S14
7. Analytical data for 2a and 2b	S15
8. NMR spectra for samples 1a MeOH, 1b, 2a,2b	

1. X-ray diffraction data

Table TS1 Crystal data and structure refinement for 1a solid forms.

	12		1 2,C,H,,O	1 2-1 5C.H.O	1 2,000	1 2,C,H,O,	1a,CH,OH
	10						
CCDC	2072843	2072840	2072846	2072849	2072844	2072841	2072842
Empirical formula	$C_{18}H_{18}N_4O_2$	$C_{22}H_{26}N_4O_6$	$C_{24}H_{28}N_4O_3$	$C_{24}H_{30}N_4O_5\\$	$C_{19}H_{20}N_4O_4$	$C_{22}H_{26}N_4O_5$	$C_{19}H_{22}N_4O_3$
Formula weight	322.36	442.47	420.50	454.52	368.39	426.47	354.40
Т, К	120	120	120	120	100	120	120
Crystal system	Monoclinic	Monoclinic	Monoclinic	Triclinic	Triclinic	Orthorhombic	Triclinic
Space group	P2₁/c	P21	P2₁/c	P-1	P-1	P212121	P-1
Z / Z'	4 / 1	4 / 2	4 / 1	4 / 2	2 / 1	4 / 1	2 / 1
<i>a</i> , Å	15.1775(15)	8.340(2)	10.5144(6)	10.8013(8)	9.2955(10)	10.8660(5)	9.4667(10)
b, Å	11.3912(11)	25.809(7)	13.2689(7)	14.8820(11)	9.6189(10)	12.6977(6)	9.5371(10)
<i>c</i> , Å	9.0508(9)	10.622(3)	15.6124(8)	16.5499(12)	11.1769(12)	15.5356(7)	10.9139(11)
α, °				100.2147(16)	68.975(2)		71.045(2)
β , °	99.279(2)	94.689(7)	91.5967(12)	108.5370(16)	70.514(2)		72.014(2)
γ, °				109.0343(17)	82.886(2)		82.789(2)
<i>V</i> , Å ³	1544.3(3)	2278.7(11)	2177.3(2)	2264.1(3)	879.38(16)	2143.50(17)	886.04(16)
<i>d</i> _{calc} , g cm ⁻³	1.386	1.290	1.283	1.333	1.391	1.322	1.328
µ, cm⁻¹	0.94	0.95	0.86	0.95	1.00	0.95	0.92
Refins collected	20184	40191	28543	50823	11709	27874	19210
Independent reflns [Rint]	4509 [0.0572]	13265 [0.1111]	6342 [0.0558]	13207 [0.0663]	5116 [0.0225]	6254 [0.0253]	5177 [0.0298]
Observed refls [I>2o(I)]	3354	7289	4582	8478	4354	5690	4058
Parameters	227	602	290	652	258	296	250
R1	0.0478	0.0765	0.0473	0.0500	0.0410	0.0353	0.0414
wR2	0.1224	0.1784	0.1177	0.1256	0.1090	0.0989	0.1085
GOF	1.019	1.022	1.009	1.020	1.037	1.014	1.025
Residual density, e Å ⁻³ (d _{min} /d _{max})	0.440/ -0.238	0.362/ -0.388	0.399/ -0.239	0.381/ -0.243	0.400/ -0.257	0.309/ -0.177	0.375/ -0.224

	1b	1b ·CH₃COOH	1b ·C ₄ H ₈ O ₂	1b ·C ₂ H₅OH	1b·CHOOH	1b ·(CH ₃) ₂ CO	1b ·CH₃CN	1b ·CH₃OH	1b·C₅H₅N
CCDC	2072845	2072855	2072853	2072848	2072847	2072850	2072854	2072852	2072851
Empirical formula	$C_{20}H_{22}N_4O_2$	$C_{22}H_{26}N_4O_4$	$C_{24}H_{30}N_4O_4\\$	$C_{22}H_{28}N_4O_3$	$C_{21}H_{24}N_4O_4\\$	$C_{23}H_{28}N_4O_3$	$C_{22}H_{25}N_5O_2$	$C_{21}H_{26}N_4O_3\\$	$C_{25}H_{27}N_5O_2$
Formula weight	350.41	410.47	438.52	396.48	396.44	408.49	391.47	382.46	429.51
Т, К	120	120	120	120	120	120	120	120	120
Crystal system	Monoclinic	Monoclinic	Triclinic	Triclinic	Monoclinic	Triclinic	Monoclinic	Monoclinic	Triclinic
Space group	P2₁/c	P2₁/c	P-1	P-1	P2₁/c	P-1	P2₁/c	P2₁/c	P-1
Z / Z'	8 / 2	8/2	2 / 1	4 / 2	4 / 1	2 / 1	4 / 1	4 / 1	4 / 2
<i>a</i> , Å	12.3392(12)	14.6755(14)	8.2337(9)	12.5231(9)	8.9850(4)	8.0523(10)	12.6677(14)	12.7245(7)	13.2527(11)
<i>b</i> , Å	8.4864(8)	17.8903(16)	10.7773(12)	12.9844(10)	23.1322(11)	10.7345(13)	9.9394(11)	9.4309(5)	13.5955(11)
<i>c</i> , Å	34.065(3)	16.1564(15)	12.9970(14)	13.4742(10)	9.9624(5)	13.0559(16)	16.7019(18)	17.0038(9)	14.5032(12)
α, °			98.025(3)	103.8760(16)		97.828(3)			112.4997(17)
β, °	99.814(2)	91.586(2)	97.959(3)	96.9424(17)	109.7820(10)	97.868(3)	101.334(2)	100.2190(10)	98.1336(17)
γ, °			91.457(3)	97.1860(17)		91.711(3)			104.9098(18)
V, Å ³	3515.0(6)	4240.2(7)	1129.8(2)	2084.3(3)	1948.42(16)	1106.1(2)	2061.9(4)	2008.15(19)	2247.1(3)
<i>d</i> _{calc} , g cm ⁻³	1.324	1.286	1.289	1.264	1.351	1.226	1.261	1.265	1.270
µ, cm⁻¹	0.88	0.90	0.89	0.86	0.95	0.83	0.84	0.86	0.83
Refls collected	45663	56043	15161	37248	16615	14838	44091	26222	30094
Independent refls [Rint]	10234 [0.0917]	12373 [0.0940]	6587 [0.0452]	12149 [0.0558]	5602 [0.0353]	6439 [0.0600]	6006 [0.0630]	5856 [0.0565]	13077 [0.0376]
Observed refls [I>2σ(I)]	6428	7075	4495	8319	4269	3845	4303	4144	8879
Parameters	489	571	299	578	276	302	273	268	597
R1	0.0586	0.0553	0.0532	0.0572	0.0483	0.0584	0.0474	0.0459	0.0530
wR2	0.1412	0.1302	0.1283	0.1510	0.1153	0.1403	0.1266	0.1213	0.1466
GOF	1.009	1.010	1.030	1.014	1.028	1.009	1.016	1.014	1.025
Residual density, e Å ⁻³ (d _{min} /d _{max})	0.344/ -0.270	0.255/ -0.327	0.422/ -0.262	0.681/ -0.294	0.411/ -0.241	0.331/ -0.253	0.366/ -0.233	0.357/ -0.222	0.375/ -0.234

 Table TS2 Crystal data and structure refinement for 1b solid forms.

2. Asymmetric unit and crystal packing images

1b·CH₃COOH

1b·C₂H₅OH

1b·CHOOH

1b·C₅H₅N

Fig. S1 Asymmetric units of the structures studied in representation of atoms with thermal ellipsoids (p=50%). The minor components of the disordered structures $1a \cdot C_4H_8O_2$, $1b \cdot (CH_3)_2CO$ and $1b \cdot C_2H_5OH$ and hydrogen atoms connected to carbon atoms are omitted for clarity.

Fig. S2 "Waved" and "zigzag" conformations of H-bonded chains in structures 1b (a) and $1b \cdot C_4 H_8 O_2$ (b). H-bonds are dotted blue.

3. CE-B3LYP calculations

Fig. S3 Coulomb (red), dispersion (green) and total (blue) energy frameworks for 1a and 1b.

Fig. S4 Coulomb (red), dispersion (green) and total (blue) energy frameworks for 1a and 1b.

Ν	Symop	R	Electron Density	E_ele	E_pol	E_dis	E_rep	E_tot
2	-x, y+1/2, -z+1/2	8.70	B3LYP/6-31G(d,p)	0.6	-4.9	-15.4	9.4	-10.6
2	x, -y+1/2, z+1/2	7.29	B3LYP/6-31G(d,p)	-37.9	-12.3	-36.7	46.3	-52.6
1	-x, -y, -z	7.71	B3LYP/6-31G(d,p)	-2	-7.3	-43.8	32.7	-25.4
1	-x, -y, -z	8.24	B3LYP/6-31G(d,p)	-76.8	-18.4	-18.6	67.7	-69.2
2	x, -y+1/2, z+1/2	7.26	B3LYP/6-31G(d,p)	-3	-2.8	-37.8	21.7	-24.8
1	-x, -y, -z	8.58	B3LYP/6-31G(d,p)	-6.1	-1.1	-33.7	22.7	-22.6
2	-x, y+1/2, -z+1/2	10.58	B3LYP/6-31G(d,p)	-1.4	-0.4	-12	8	-7.3

Table TS3 CE-B3LYP interaction energies (kJ mol⁻¹) for 1a

Table TS4 CE-B3LYP interaction energies (kJ mol $^{\text{-}1}$) for $1a\cdot\text{CH}_3\text{OH}$

Ν	Symop	R	Electron Density	E_ele	E_pol	E_dis	E_rep	E_tot
			1a					
1	-	4.96	B3LYP/6-31G(d,p)	-36.1	-9.1	-14.2	42.6	-31
1	-x, -y, -z	6.66	B3LYP/6-31G(d,p)	-6.9	-4.8	-39	17.5	-34
1	-x, -y, -z	8.00	B3LYP/6-31G(d,p)	-19.6	-7.5	-43	37.1	-40.7
1	-	6.54	B3LYP/6-31G(d,p)	-47.5	-11.7	-7.1	53.5	-32.1
1	-x, -y, -z	8.22	B3LYP/6-31G(d,p)	-88.5	-22	-21	85.7	-75.2
1	-	7.2	B3LYP/6-31G(d,p)	-2.1	-2.3	-5.3	4.7	-5.6
2	x, y, z	9.47	B3LYP/6-31G(d,p)	-3.2	-1.6	-13	4.8	-12.9
1	-x, -y, -z	9.64	B3LYP/6-31G(d,p)	0.7	-0.4	-20.7	12.5	-9.9
1	-x, -y, -z	6.61	B3LYP/6-31G(d,p)	-8.4	-2.5	-48.8	28.4	-35.6
1	-	8.05	B3LYP/6-31G(d,p)	-1.4	-0.4	-4.9	2.6	-4.4
1	-x, -y, -z	7.92	B3LYP/6-31G(d,p)	-4.4	-0.8	-31.9	15	-23.8
1	-	7.27	B3LYP/6-31G(d,p)	-5.8	-1.8	-5.7	9.6	-6.6
1	-	6.25	B3LYP/6-31G(d,p)	-3.1	-0.7	-12.4	8	-9.6
1	-x, -y, -z	10.46	B3LYP/6-31G(d,p)	-6.8	-0.5	-1.8	0	-9.1
1	-	8.8	B3LYP/6-31G(d,p)	0.7	0	-0.5	0	0.3
			CH₃OH					
1	-	6.54	B3LYP/6-31G(d,p)	0.8	-0.1	-1.2	0	-0.3
1	-	6.25	B3LYP/6-31G(d,p)	-8.4	-2.5	-48.8	28.4	-35.6
1	-x, -y, -z	4.85	B3LYP/6-31G(d,p)	-0.8	-0.1	-0.3	0	-1.2
1	-x, -y, -z	5.03	B3LYP/6-31G(d,p)	-0.2	0	-0.1	0	-0.3
1	-	8.05	B3LYP/6-31G(d,p)	-1.1	-0.3	-1.3	0	-2.6
1	-	7.27	B3LYP/6-31G(d,p)	-0.3	-0.1	-0.3	0	-0.6
1	-	7.5	B3LYP/6-31G(d,p)	-0.8	-0.1	-0.3	0	-1.2
1	-	4.96	B3LYP/6-31G(d,p)	-88.5	-22	-21	85.8	-75.2

N	Symop	R	Electron Density	E_ele	E_pol	E_dis	E_rep	E_tot
			1a					
1	-x, -y, -z	8.24	B3LYP/6-31G(d,p)	-79.7	-19.8	-19.3	66.3	-74.9
2	x, y, z	9.62	B3LYP/6-31G(d,p)	-1.2	-1.9	-11.1	3.9	-9.9
1	-x, -y, -z	7.95	B3LYP/6-31G(d,p)	-20.9	-7.9	-40.9	40.6	-38.6
1	-	7.91	B3LYP/6-31G(d,p)	0.4	-0.1	-1.3	0	-0.7
1	-x, -y, -z	6.50	B3LYP/6-31G(d,p)	-11.8	-5.4	-46.4	31.1	-37.7
1	-x, -y, -z	6.63	B3LYP/6-31G(d,p)	-11.2	-3.3	-45.8	27.7	-37.1
1	-x, -y, -z	9.69	B3LYP/6-31G(d,p)	0.6	-0.4	-20.6	12.7	-9.8
2	x, y, z	9.3	B3LYP/6-31G(d,p)	-0.9	-0.7	-16.7	9	-10.4
1	-x, -y, -z	7.84	B3LYP/6-31G(d,p)	-5.3	-1	-33.9	16.8	-25.5
1	-	7.8	B3LYP/6-31G(d,p)	0.6	-0.4	-20.6	12.7	-9.8
1	-	5.98	B3LYP/6-31G(d,p)	-1.2	-1.9	-11.1	3.9	-9.9
1	-	8.08	B3LYP/6-31G(d,p)	-0.9	-0.7	-16.7	9	-10.4
1	-	7.68	B3LYP/6-31G(d,p)	-11.8	-5.4	-46.4	31.1	-37.7
1	-	7.24	B3LYP/6-31G(d,p)	-4	-0.2	-1.1	0	-5.4
			НСООН					
1	-	7.68	B3LYP/6-31G(d,p)	-11.8	-5.4	-46.4	31.1	-37.7
1	-	7.24	B3LYP/6-31G(d,p)	-4	-0.2	-1.1	0	-5.4
1	-	8.08	B3LYP/6-31G(d,p)	-0.9	-0.7	-16.7	9	-10.4
1	-	7.8	B3LYP/6-31G(d,p)	0.6	-0.4	-20.6	12.7	-9.8
1	-	7.91	B3LYP/6-31G(d,p)	0.4	-0.1	-1.3	0	-0.7
1	-x, -y, -z	3.92	B3LYP/6-31G(d,p)	-0.3	0	-0.2	0	-0.5
1	-	6.35	B3LYP/6-31G(d,p)	-79.7	-19.8	-19.3	66.3	-74.9
1	-	5.98	B3LYP/6-31G(d,p)	-1.2	-1.9	-11.1	3.9	-9.9

Table TS5 CE-B3LYP interaction energies (kJ mol⁻¹) for $1a \cdot CHOOH$

Ν	Symop	R	Electron Density	E_ele	E_pol	E_dis	E_rep	E_tot
			1 st molecule					
1	-	7.39	B3LYP/6-31G(d,p)	-76.1	-19.9	-33.3	78.4	-75.8
1	-	8.4	B3LYP/6-31G(d,p)	-4.8	-1.1	-38.1	22.9	-25
1	-	12.05	B3LYP/6-31G(d,p)	0.1	-0.3	-6.2	2.9	-3.7
2	x, y, z	8.49	B3LYP/6-31G(d,p)	-2.9	-4.9	-22.2	11.2	-19.1
1	-	7.21	B3LYP/6-31G(d,p)	-87.8	-22.1	-46.2	110.1	-81.4
1	-	14.18	B3LYP/6-31G(d,p)	-0.3	-0.1	-0.3	0	-0.6
1	x, y, z	14.98	B3LYP/6-31G(d,p)	0	0	-0.2	0	-0.2
1	-x, -y, -z	14.36	B3LYP/6-31G(d,p)	0.7	-0.1	-0.3	0	0.4
1	x, y, z	12.34	B3LYP/6-31G(d,p)	-1.3	-0.2	-1.3	0	-2.6
1	-x, y+1/2, -z+1/2	12.99	B3LYP/6-31G(d,p)	-0.2	0	-0.5	0	-0.7
1	-	10.15	B3LYP/6-31G(d,p)	-8.1	-2.9	-18.1	12.2	-18.9
1	-	8.2	B3LYP/6-31G(d,p)	-8.2	-1.2	-38	27.2	-25.7
1	-	8.05	B3LYP/6-31G(d,p)	-10	-1.6	-44.3	34.6	-29
			2 nd molecule					
1	-	7.39	B3LYP/6-31G(d,p)	-76.1	-19.9	-33.3	78.4	-75.8
1	-	8.4	B3LYP/6-31G(d,p)	-4.8	-1.1	-38.1	22.9	-25
2	x, y, z	8.49	B3LYP/6-31G(d,p)	-2.9	-4.9	-22.2	11.2	-19.1
1	-	7.21	B3LYP/6-31G(d,p)	-87.8	-22.1	-46.2	110.1	-81.4
1	-	10.15	B3LYP/6-31G(d,p)	-8.1	-2.9	-18.1	12.2	-18.9
1	-	8.2	B3LYP/6-31G(d,p)	-8.2	-1.2	-38	27.2	-25.7
1	-	8.05	B3LYP/6-31G(d,p)	-10	-1.6	-44.3	34.6	-29
1	-x, -y, -z	7.13	B3LYP/6-31G(d,p)	-10.6	-1.7	-68.4	42.6	-45.7

Table TS6 CE-B3LYP interaction energies (kJ mol $^{\text{-}1}$) for 1b

N	Symop	R	Electron Density	E_ele	E_pol	E_dis	E_rep	E_tot
			1b					
1	-	8.55	B3LYP/6-31G(d,p)	-3.1	-1.5	-3.7	3.3	-5.5
2	-x, y+1/2, -z+1/2	8.09	B3LYP/6-31G(d,p)	-84	-20.7	-21.9	83.2	-71.8
1	-x, -y, -z	9.68	B3LYP/6-31G(d,p)	-6.6	-3.7	-18.3	9	-20.1
1	-	5.68	B3LYP/6-31G(d,p)	-18.8	-5.3	-15.3	20.1	-24.7
1	-x, -y, -z	9.51	B3LYP/6-31G(d,p)	-17.9	-8.8	-24.7	24.2	-32
1	-	5.85	B3LYP/6-31G(d,p)	-3.2	-2.8	-21	13.7	-15.2
2	-x, y+1/2, -z+1/2	8.25	B3LYP/6-31G(d,p)	-6.4	-0.8	-37	21.9	-26.1
2	x, -y+1/2, z+1/2	8.35	B3LYP/6-31G(d,p)	-4	-1.4	-36.7	20.6	-24.5
1	-	5.94	B3LYP/6-31G(d,p)	-4.3	-1.9	-13.2	9.1	-11.8
1	-	7.52	B3LYP/6-31G(d,p)	-2.3	-1.3	-5.8	7.3	-4
1	-x, -y, -z	11.88	B3LYP/6-31G(d,p)	0.4	-0.2	-3.3	0.2	-2.4
1	x, -y+1/2, z+1/2	13.74	B3LYP/6-31G(d,p)	-0.9	-0.1	-0.7	0	-1.6
			MeCN					
1	-	8.55	B3LYP/6-31G(d,p)	-3.1	-1.5	-3.7	3.3	-5.5
2	-x, y+1/2, -z+1/2	8.09	B3LYP/6-31G(d,p)	-84	-20.7	-21.9	83.2	-71.8
1	-x, -y, -z	9.68	B3LYP/6-31G(d,p)	-6.6	-3.7	-18.3	9	-20.1
1	-	5.68	B3LYP/6-31G(d,p)	-18.8	-5.3	-15.3	20.1	-24.7
1	-x, -y, -z	9.51	B3LYP/6-31G(d,p)	-17.9	-8.8	-24.7	24.2	-32
1	-	5.85	B3LYP/6-31G(d,p)	-3.2	-2.8	-21	13.7	-15.2
2	-x, y+1/2, -z+1/2	8.25	B3LYP/6-31G(d,p)	-6.4	-0.8	-37	21.9	-26.1
2	x, -y+1/2, z+1/2	8.35	B3LYP/6-31G(d,p)	-4	-1.4	-36.7	20.6	-24.5
1	-	5.94	B3LYP/6-31G(d,p)	-4.3	-1.9	-13.2	9.1	-11.8
1	-	7.52	B3LYP/6-31G(d,p)	-2.3	-1.3	-5.8	7.3	-4
1	-x, -y, -z	11.88	B3LYP/6-31G(d,p)	0.4	-0.2	-3.3	0.2	-2.4
1	x, -y+1/2, z+1/2	13.74	B3LYP/6-31G(d,p)	-0.9	-0.1	-0.7	0	-1.6

Table TS7 CE-B3LYP interaction energies (kJ mol $^{\text{-}1}$) for $1b\cdot\text{CH}_3\text{CN}$

Ν	Symop	R	Electron Density	E_ele	E_pol	E_dis	E_rep	E_tot
			1b					
1	-	5.55	B3LYP/6-31G(d,p)	-0.3	-1.4	-15.8	10.4	-8.7
2	-x, y+1/2, -z+1/2	8.05	B3LYP/6-31G(d,p)	-85.3	-21.6	-22.8	84.5	-73.9
1	-x, -y, -z	9.53	B3LYP/6-31G(d,p)	-9	-4.7	-23.6	18.5	-22
1	-	5.31	B3LYP/6-31G(d,p)	-33.3	-7.5	-15	35.4	-32
1	-x, -y, -z	9.86	B3LYP/6-31G(d,p)	-12.7	-7	-18.5	13.6	-26.4
2	-x, y+1/2, -z+1/2	8.05	B3LYP/6-31G(d,p)	-8.8	-1	-42.8	29.3	-29.2
2	x, -y+1/2, z+1/2	8.51	B3LYP/6-31G(d,p)	-4.4	-1.5	-36.7	20.8	-24.8
1	-	5.09	B3LYP/6-31G(d,p)	-8.2	-1.8	-14.2	10.2	-16.1
1	-	7.23	B3LYP/6-31G(d,p)	-6.4	-2.2	-6.7	6.3	-10.4
1	-	7.67	B3LYP/6-31G(d,p)	-0.9	-0.2	-5.6	3.1	-4
1	x, y, z	12.72	B3LYP/6-31G(d,p)	-1	-0.1	-0.9	0	-1.9
			MeOH					
1	-	5.55	B3LYP/6-31G(d,p)	-0.3	-1.4	-15.8	10.4	-8.7
2	-x, y+1/2, -z+1/2	8.05	B3LYP/6-31G(d,p)	-85.3	-21.6	-22.8	84.5	-73.9
1	-x, -y, -z	9.53	B3LYP/6-31G(d,p)	-9	-4.7	-23.6	18.5	-22
1	-	5.31	B3LYP/6-31G(d,p)	-33.3	-7.5	-15	35.4	-32
1	-x, -y, -z	9.86	B3LYP/6-31G(d,p)	-12.7	-7	-18.5	13.6	-26.4
2	-x, y+1/2, -z+1/2	8.05	B3LYP/6-31G(d,p)	-8.8	-1	-42.8	29.3	-29.2
2	x, -y+1/2, z+1/2	8.51	B3LYP/6-31G(d,p)	-4.4	-1.5	-36.7	20.8	-24.8
1	-	5.09	B3LYP/6-31G(d,p)	-8.2	-1.8	-14.2	10.2	-16.1
1	-	7.23	B3LYP/6-31G(d,p)	-6.4	-2.2	-6.7	6.3	-10.4
1	-	7.67	B3LYP/6-31G(d,p)	-0.9	-0.2	-5.6	3.1	-4
1	x, y, z	12.72	B3LYP/6-31G(d,p)	-1	-0.1	-0.9	0	-1.9
1	-x, -y, -z	12.04	B3LYP/6-31G(d,p)	1	-0.3	-6.3	2	-3.4

Table TS8 CE-B3LYP interaction energies (kJ mol $^{\text{-}1}$) for $1a\cdot\text{CH}_3\text{OH}$

4. Crystal morphology

Fig. S5 BFDH predicted morphology (blue, prismatic) and groups forming the main crystal faces for $1a \cdot 2(CH_3COOH)$ (amide and carboxylate), $1a \cdot 1.5(C_4H_8O_2)$ (a mixture of alkyl/aryl groups and amide residues/oxygen atoms of solvent molecules), $1a \cdot CHOOH$ a mixture of alkyl/aryl groups and amide residues/oxygen atoms of solvent molecules), $1a \cdot CHOOH$ a mixture of glycouril molecules), $1a \cdot C_4H_8O_3$, $1a \cdot C_6H_{10}O$.

Fig. S6. BFDH predicted morphology (blue, prismatic) and groups forming the main crystal faces for $1b \cdot C_2H_5OH$, $1b \cdot CHOOH$, $1b \cdot (CH_3)_2CO$, $1b \cdot CH_3CN$, $1b \cdot CH_3OH$, $1b \cdot CH_3COOH$, $1b \cdot C_4H_8O_2$, $1b \cdot C_5H_5N$.

Fig. S7 Experimentally assigned crystal faces of 1a.

Fig. S8 Experimentally assigned crystal faces of 1a.

5. Powder diffraction

Fig. S9 The experimental (blue), calculated (red) and their difference (grey) curves for powder XRD patterns for as crystallized solid (top) **1a** and (bottom) powdered **1a**. For the former and latter patterns Rwp/Rbragg = 33.57/17.91 and 8.53/5.82. Crystallite size for powder pattern is 900 nm.

Fig. S10 The experimental (blue) and calculated (red) powder XRD pattern for **1b** and their difference (grey) curves are depicted. Rwp/Rbragg= 10.3/8.7 % indicates purity of the sample.

6. Measurements of hydrophobic properties

Fig. S11 Drops of water on powder of 1a.

7. Analytical data for 2a and 2b

1,4-Dimethyl-3a,6a-diphenyltetrahydroimidazo[4,5-*d*]imidazole-2,5(1*H*,3*H*)-dione 2a.

White powder, yield 0.77 g (24%), mp 340 – 343 °C (HCOOH). ¹H NMR, δ, ppm.; *J*/Hz (300 MHz, DMSO-*d*₆): 2.51 (s, 6 H, Me), 6.92 – 7.01 (m, 4 H, Ph), 7.03 – 7.17 (m, 6 H, Ph), 8.41 (s, 2 H, NH). ¹³C **1a** NMR, δ, ppm.; (75 MHz, DMSO-*d*₆): 25.63 (Me), 83.41 (C-C), 127.37, 128.04, 128.36 (CH(Ph)), 135.11 (C(Ph)), 159.32 (C=O). HRMS, m/z, found: 323.1511 [M+H]⁺ (calcd for C₁₈H₁₈N₄O₂+H 323.1508).

1,4-Diethyl-3a,6a-diphenyltetrahydroimidazo[4,5-*d*]imidazole-2,5(1*H*,3*H*)-dione 2b.

White powder, yield 0.70 g (20%), mp > 335 °C (HCOOH). ¹H NMR, δ , ppm.; *J*/Hz (300 MHz, DMSO-*d*₆): 0.99 (t, 6 H, Me, J = 7.0 Hz), 2.70 – 2.88 (m, 2 H, CH₂), 3.12 – 3.30 (m, 2 H, CH₂), 6.92 – 7.01 (m, 4 H, Ph), 7.03 – 7.17 (m, 6 H, Ph), 8.26 (s, 2 H, NH). ¹³C NMR, δ , ppm.; (75 MHz, DMSO-*d*₆): 14.61 (Me), 35.02 (CH₂), 83.76 (C-C), 127.33, 127.61, 128.11 (CH(Ph)), 136.08 (C(Ph)), 159.02 (C=O). HRMS, m/z, found: 351.1817 [M+H]⁺ (calcd for C₂₀H₂₂N₄O₂+H 351.1821).

8. NMR spectra for samples 1a·MeOH, 1b, 2a,2b

