Insight into amoxicillin sodium heterosolvates and non-solvated form: crystal structures, phase transformation behaviors and desolvation mechanism

Pingping Cui^a, Qiuxiang Yin^{a,b,c}, Shihao Zhang^a, Wenchao Yang^a, Lihong Jia^a,

Jiayu Dai ^a, Ling Zhou ^a, Zhao Wang^{a,b,c,*}

a. School School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People's Republic of China. E-mail: wangzhao@tju.edu.cn

b. Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.

c. State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China.

Computational Analysis

The interaction energy ($\Delta E_{\rm C}({\rm A-B})$) between methanol and amoxicillin sodium of S_{M-M} could be calculated by the following equation¹⁻³,

$\Delta E_{\rm C}({\rm A-B}) = \Delta E({\rm A-BC}) - \Delta E({\rm A-C})$	(1)
$\Delta E(\text{A-BC}) = E(\text{ABC}) - E(\text{A}) - E(\text{BC})$	(2)
$\Delta E(A-C) = \Delta E(AC) - \Delta E(A) - \Delta E(C)$	(3)

Therefore,

$$\Delta E_{\rm C}({\rm A-B}) = E({\rm ABC}) - E({\rm BC}) - E({\rm AC}) + E({\rm C})$$
(4)

The interaction energy ($\Delta E_A(B-C)$) between methanol and methyl acetate of S_{M-M} could be calculated as follows

$$\Delta E_{A}(B-C) = E(ABC) - E(AB) - E(AC) + E(A)$$
(5)

where molecule A, B, and C represent amoxicillin sodium, methanol and methyl acetate, respectively.

Figure S1. Different structures of S_{M-M} in the computational analysis.

Figure S2. The PXRD patterns of $S_{M\text{-}M}$ before and after drying.

Figure S3. The PXRD patterns of S_{M-E} before and after drying.

Figure S5. The FTIR spectra of Amoxicillin sodium form I and three heterosolvates.

Figure S6. Polarizing microscopy images of three heterosolvates.

Figure S7. Experimental and simulated PXRD patterns of form I and S_{M-M} .

Figure S8. Coordinate bonds in crystal structure (a. S_{M-M} , b. Form I).

Figure S9. Detailed distribution of different interactions in form I.

Figure S10. Detailed distribution of different interactions in S_{M-M} .

Figure S11. TGA curves of three solvates using different heating rates: (a) S_{M-M} (b) S_{E-M} (c) S_{M-E}

Figure S12. DSC curves of these three solvates using different heating rates: (a) S_{M-M}
(b) S_{E-M} (c) S_{M-E} (d) S_{M-M} and S_{E-M} with 2 K/min (wide endothermic peaks are marked with dotted line)

Figure S13. HSM images of S_{E-M} during the heating process.

Figure S14. HSM images of S_{M-E} during the heating process.

		, ,		111 111	
	D-H···A	d(D-H), Å	d(H…A), Å	d(D-A), Å	∠(DHA), °
Form I	O₅-H…O₂	0.942	1.817	2.565	133.580
	C_{15A} -H···O ₄	0.93	1.992	2.875	157.818
S_{M-M}	O_{MT} -H···O _{MAC}	0.848	2.337	2.863	174.366
	N_2 -H···O ₁	0.880	2.063	2.941	175.080
	O ₅ -H…O ₂	0.840	1.808	2.610	159.150

Table S1 Relevant hydrogen bond data of form I and $S_{M\mbox{-}M}$

Table S2 The relevant data in the calculation of the packing coefficient C_k

	$V_{\rm mol}$	V_{cell}	$C_{ m k}$
Form I	337.84	1852.9	0.7293
Structure 2	372.71	2388.6	0.6322
S_{M-M}	442.05	2388.6	0.7403

Notes and references

- 1. D. J. J.J. McKinnon, M.A. Spackman, , Chem Commun (Camb), 2007 3814-3816.
- 2. R. Li, Q. Li, J. Cheng, Z. Liu and W. Li, Chemphyschem, 2011, 12, 2289-2295.
- 3. J. Rezac, Y. Huang, P. Hobza and G. J. Beran, J Chem Theory Comput, 2015, 11, 3065-3079.