# **Electronic Supplementary Information**

# The Design of Dihalogenated TPE Monoboronate

# **Complexes as Mechanofluorochromic Crystals**

Ma. Carmen García-González,<sup>a</sup>\* Armando Navarro-Huerta,<sup>a</sup> Fanny Chantal Rodríguez-Muñoz,<sup>a</sup> Estefania Vera-Alvizar,<sup>a</sup> Marco A. Vera Ramirez,<sup>b</sup> Joelis Rodríguez-Hernández,<sup>c</sup> Mario Rodríguez<sup>d</sup> and Braulio Rodríguez-Molina<sup>a</sup>.\*

<sup>a</sup>Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior S.N.,

Ciudad Universitaria, Coyoacán, Ciudad de México, 04510, México

<sup>b</sup>Laboratorio de RMN, Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, C.P. 09340 Ciudad de México, México

<sup>c</sup>Centro de Investigación en Química Aplicada (CIQA), Blvd. Enrique Reyna Hermosillo No. 140, Saltillo, Coahuila 25294, Mexicoç

<sup>d</sup>Centro de Investigaciones en Óptica, CIO, Apdo., Postal 1-948, 37000 León Gto, México

\*M.C.G.G. e-mail: mcgg@unam.mx

\*B. R. M. e-mail: brodriguez@iquimica.unam.mx

# **Table of Contents**

| EXPERIMENTAL SECTION                                                                              |  |
|---------------------------------------------------------------------------------------------------|--|
| GENERAL PROCEDURE FOR THE SYNTHESIS OF SCHIFF BASES<br>Melting points and representative IR bands |  |
| SOLUTION NMR SPECTRA                                                                              |  |
| X-RAY DIFFRACTION STUDIES                                                                         |  |
| CRYSTALLOGRAPHIC DATA                                                                             |  |
| SOLID-STATE PHOTOLUMINESCENCE SPECTRA AND TAUC PLOTS                                              |  |
| THEORETICAL COMPUTATIONS                                                                          |  |
| PXRD DIFFRACTOGRAMS                                                                               |  |
| LEBAIL FITTING METHOD OF THE SAMPLES EXPOSED TO DCM VAPORS                                        |  |
| REFERENCES                                                                                        |  |

### **Experimental Section**

#### General procedure for the synthesis of Schiff Bases

Equimolar quantities of amine **1** and the appropriate amine were added into a round-bottom flask using methanol, the reaction was stirred under reflux for 1 hour, the solid obtained was filtered and washed with hexane and recrystallized with DCM/ EtOH.

#### 2,4-dichloro-6-(((4-(1,2,2-triphenylvinyl)phenyl)imino)methyl)phenol (2a)



The title compound was prepared according to general procedure from **1** (0.300 g, 0.863 mmol) and 3,5-dichlorosalicylaldehyde (0.165 g, 0.863 mmol) to give **2a** (0.332 g, 74% yield) as an yellow solid, m.p. 195-197 °C. **IR** ( $v_{max}$ , cm<sup>-1</sup>): 3060, 3054, 1619, 1444, 872, 848, 744, 698. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$ : 14.35 (s, 1H), 8.50 (s, 1H), 7.43 (d, *J* = 2.5 Hz, 1H), 7.25 (d, *J* = 2.5 Hz, 1H), 7.15-7.04 (m, 19H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$ : 159.5, 156.3, 144.6, 144.0, 143.6 (2C), 143.5, 142.0, 140.0, 132.8 (2C), 131.5 (2C), 129.7, 128.0 (2C), 127.8, 126.9, 126.8 (2C), 123.4, 123.0, 120.7, 120.3. **HRMS** (DART+) calculated for C<sub>33</sub>H<sub>24</sub>Cl<sub>2</sub>NO [M+H]<sup>+</sup> 520.1234; found 520.1210.

2,4-dibromo-6-(((4-(1,2,2-triphenylvinyl)phenyl)imino)methyl)phenol (2b)



The title compound was prepared according to general procedure from **1** (0.300 g, 0.863 mmol) and 3,5-dibromosalicylaldehyde (0.242 g, 0.863 mmol) to give **2b** (0.469 g, 89% ield) as a red solid, **m.p.** 155-156 °C. **IR** ( $v_{max}$ , cm<sup>-1</sup>): 3465, 3054, 1617, 1475, 850, 830, 754, 699. **<sup>1</sup>H NMR** (300 MHz, CDCl<sub>3</sub>)  $\delta$ : 14.51 (s, 1H), 8.47 (s, 1H), 7.72 (d, *J* = 2.4 Hz, 1H), 7.43 (d,  $J = 2.4 \text{ Hz}, 1\text{H}, 7.11-7.04 \text{ (m, 19H)}. \ ^{13}\text{C NMR} (75 \text{ MHz}, \text{CDCl}_3) \ \delta: 159.2, 157.7, 144.5, 144.1, 143.6 (2C), 143.5, 142.0, 140.0, 138.1, 133.4, 132.8, 131.5, 131.4, 128.0 (2C), 127.8, 126.9, 126.8 (2C), 120.8, 120.7, 112.4, 110.3.$ **HRMS**(DART+) calculated for C<sub>33</sub>H<sub>24</sub>Br<sub>2</sub>NO [M+H]<sup>+</sup> 608.0219; found 608.0237.

2,4-diiodo-6-(((4-(1,2,2-triphenylvinyl)phenyl)imino)methyl)phenol (2c)



The title compound was prepared according to general procedure from **1** (0.030 g, 0.863 mmol) and 3,5-diiodosalicylaldehyde (0.323 g, 0.863 mmol) to give **2c** (0.546 g, 90% yield) as a red solid, **m.p.** 145-146 °C. **IR** ( $v_{max}$ , cm<sup>-1</sup>): 3443, 3053, 1749, 1613, 1586, 1438, 864, 818, 751, 700. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>)  $\delta$ : 14.76 (s, 1H), 8.38 (s, 1H), 8.06 (d, J = 2.1 Hz, 1H), 7.60 (d, J = 2.1 Hz, 1H), 7.12-7.02 (m, 19H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$ : 160.7, 158.8, 149.1, 144.3, 144.0, 143.6, 143.5, 142.0, 140.5, 140.0, 132.8, 131.5 (2C), 128.0(2C), 127.8, 126.9, 126.8 (2C), 120.7 (2C), 87.7, 79.9. **HRMS** (DART+) calculated for C<sub>33</sub>H<sub>24</sub>I<sub>2</sub>NO [M+H]<sup>+</sup> 702.9947; found 703.9923.

#### Melting points and representative IR bands

| Compound   | Melting point (°C) | O-H <sub>stretching</sub> (cm <sup>-1</sup> ) | C=N <sub>stretching</sub> (cm <sup>-1</sup> ) |
|------------|--------------------|-----------------------------------------------|-----------------------------------------------|
| 2a         | 195-197            | 3460                                          | 1619                                          |
| <b>2b</b>  | 155-156            | 3465                                          | 1617                                          |
| 2c         | 145-146            | 3443                                          | 1613                                          |
| <b>3</b> a | 235-237            | -                                             | 1631                                          |
| 3b         | 220-221            | -                                             | 1628                                          |
| <b>3</b> c | 185-186            | -                                             | 1624                                          |
| <b>4</b> a | 236-238            | -                                             | 1620                                          |
| <b>4b</b>  | 223-225            | -                                             | 1615                                          |
| <b>4</b> c | 238-240            | -                                             | 1622                                          |

Table S1. Melting point of compounds and IR stretching vibration of functional groups



Figure S2. <sup>13</sup>C NMR of compound 2a in CDCl<sub>3</sub> at 75 MHz.



**Figure S3.** <sup>1</sup>H NMR of compound **2b** in CDCl<sub>3</sub> at 300 MHz.





Figure S6. <sup>13</sup>C NMR of compound 2c in CDCl<sub>3</sub> at 75 MHz.



Figure S7. <sup>1</sup>H NMR of compound 3a in CDCl<sub>3</sub> at 400 MHz



Figure S8. <sup>1</sup>H NMR of compound 3b in CDCl<sub>3</sub> at 300 MHz



Figure S10. <sup>1</sup>H NMR of compound 3c in CDCl<sub>3</sub> at 300 MHz



200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

Figure S11. <sup>13</sup>C NMR of compound 3c in CDCl<sub>3</sub> at 75 MHz.



Figure S12. <sup>1</sup>H NMR of compound 4a in CDCl<sub>3</sub> at 400 MHz





Figure S14. <sup>1</sup>H NMR of compound 4c in CDCl<sub>3</sub> at 400 MHz

## X-Ray diffraction studies

Data collections were performed on a Bruker D8 diffractometer equipped with a PHOTON II CPAD detector with synchrotron radiation (Beamline 12.2.1 at Advanced Light Source, Lawrence Berkeley National Laboratory), and on a Bruker D8 Venture equipped with Smart APEX II CCD<sup>1</sup> with MoK $\alpha$  or CuK $\alpha$  radiation. The refinement of unit cell was made using SAINT V8.38A.<sup>2</sup> The structures were solved by direct methods and refined using SHELXL-2014.<sup>3</sup> Non-hydrogen atoms were refined anisotropically and hydrogen atoms were placed in geometrically calculated positions using a riding model, with isotropic thermal parameters  $U_{iso}(H) = 1.2U_{eq}(C)$  for aromatic hydrogens and  $1.5U_{eq}(C)$  for hydroxyls. Images and crystal structures were generated with Mercury 2020.3.1.<sup>4</sup>

For Powder X-Ray Diffraction collections, the samples were grounded in an agate mortar and the loose powder was pressed into a diffractometer sample holder. The diffraction patterns were collected in Bragg-Brentano geometry at room temperature with CuK $\alpha$  radiation ( $\lambda = 1.54183$  Å) in an Ultima IV diffractometer (from Rigaku) equipped with a D/teX detector. The patterns of samples were recorded from 4 to 60° (20) and 5°/min scan speed. The cell parameters were refined using the Le Bail pattern fitting method using the FULLPROF program.<sup>5</sup> Peak profiles were calculated within ten times the full width at half maximum (FWHM) and pseudo-Voigt peak shape functions. The background was modeled by a third-order polynomial fitting. The structural data for each phase was obtained from their respective CIF. The obtained patterns for **4b** and **4b** after DCM vapors were indexed using the DICVOL and TREOR programs.<sup>6,7</sup>

# Crystallographic data

# Table S2. Selected crystallographic information from the X-ray structures

| Compound                            | 2b                      | 2c                      | <b>3</b> a              | 3c                                                                | 4c                      |
|-------------------------------------|-------------------------|-------------------------|-------------------------|-------------------------------------------------------------------|-------------------------|
| Formula                             | C33H23Br2NO·C4H8O       | C33H23I2NO·C3H6O        | C37H31BCl2F2NO          | C <sub>37</sub> H <sub>31</sub> BI <sub>2</sub> F <sub>2</sub> NO | C45H32BI2NO             |
| Formula weight                      | 681.45                  | 761.40                  | 568.22                  | 751,12                                                            | 867.32                  |
| Temperature (K)                     | 296(2)                  | 298(2)                  | 150(2)                  | 100(2)                                                            | 200(2)                  |
| System                              | Triclinic               | Triclinic               | Triclinic               | Triclinic                                                         | Triclinic               |
| Space Group                         | P-1                     | P-1                     | P-1                     | P-1                                                               | P-1                     |
| a (Å)                               | 9.4088(7)               | 9.330(3)                | 6.0896(4)               | 6.2357(3)                                                         | 10.864(4)               |
| b (Å)                               | 12.5525(9)              | 12.726(3)               | 9.3799(6)               | 9.7731(4)                                                         | 12.004(4)               |
| c (Å)                               | 15.2532(11)             | 15.427(3)               | 24.4891(15)             | 24.6541(10)                                                       | 14.739(5)               |
| α (°)                               | 71.5265(15)             | 72.271(10)              | 84.352(2)               | 79.7070(10)                                                       | 99.378(10)              |
| β (°)                               | 77.3805(15)             | 76.816(12)              | 86.909(2)               | 88.857(2)                                                         | 91.705(10)              |
| γ (°)                               | 71.2592(15)             | 70.156(10)              | 87.232(2)               | 85.753(2)                                                         | 91.595(10)              |
| $\rho$ (g/cm <sup>3</sup> )         | 1.411                   | 1.556                   | 1.359                   | 1.692                                                             | 1.520                   |
| V (Å <sup>3</sup> )                 | 1604.3(2)               | 1625.2(7)               | 1388.70(15)             | 1474.20(11)                                                       | 1894.5(12)              |
| Z                                   | 2                       | 2                       | 2                       | 2                                                                 | 2                       |
| Abs coefficient (mm <sup>-1</sup> ) | 2.559                   | 15.437                  | 0.275                   | 2.294                                                             | 1.695                   |
| F(000)                              | 692                     | 748                     | 584                     | 728                                                               | 856                     |
| Crystal size (mm)                   | 0.529 x 0.341 x 0.198   | 0.355 x 0.240 x 0.106   | 0.350 x 0.094 x 0.069   | 0.140 x 0.020 x 0.015                                             | 0.385 x 0.096 x 0.067   |
| Radiation (Å)                       | ΜοΚα (0.71073)          | ΜοΚα (0.71073)          | ΜοΚα (0.71073)          | Synchrotron (0.7288)                                              | ΜοΚα (0.71073)          |
| Collected reflections               | 24786                   | 20040                   | 37443                   | 44417                                                             | 47545                   |
| Independent reflections             | 5863                    | 5926                    | 7777                    | 11143                                                             | 10586                   |
| Data/rest/param                     | 5863/250/428            | 5926/0/374              | 7777/0/361              | 11143/0/361                                                       | 10586/0/451             |
| GooF                                | 1.044                   | 1.044                   | 1.018                   | 1.151                                                             | 1.024                   |
| Final R indexes                     | $R_1 = 0.0489$          | $R_1 = 0.0495$          | R <sub>1</sub> =0.0613  | R <sub>1</sub> =0.0305                                            | R <sub>1</sub> =0.0557  |
| $[I_0 > 2\sigma(I_0)]$              | wR <sub>2</sub> =0.1378 | wR <sub>2</sub> =0.1183 | wR <sub>2</sub> =0.1016 | wR <sub>2</sub> =0.0604                                           | wR <sub>2</sub> =0.1352 |
| Final R indexes                     | R <sub>1</sub> =0.0576  | R <sub>1</sub> =0.0664  | R <sub>1</sub> =0.1301  | R <sub>1</sub> =0.0343                                            | R <sub>1</sub> =0.1126  |
| [all data]                          | wR <sub>2</sub> =0.1451 | wR <sub>2</sub> =0.1304 | wR <sub>2</sub> =0.1212 | wR <sub>2</sub> =0.0634                                           | wR <sub>2</sub> =0.1629 |
| Diff. peak/hole (eA-3)              | 1.169/-0.885            | 1.248/-0.921            | 0.329/-0.287            | 0.728/-0.678                                                      | 1.625/-0.770            |
| CCDC number                         | 2075068                 | 2075069                 | 2075070                 | 2075071                                                           | 2075072                 |



**Figure S15.** a) Overlap of crystal structures of compounds **2b** (blue) and **2c** (red), showing isostructurality. The angle formed by the planes of the halogenated ring and the TPE-bonded fragment in b) **2b** and c) **2c**. Thermal ellipsoids set at 50% level probability.



**Figure S16.** Overlapp of crystal structures of compounds **3a** and **3c**, showing isostructurality. Thermal ellipsoids set at 50% level probability.



# Solid-state photoluminescence spectra and Tauc plots

Figure S17. Solid-state photoluminescence spectra and Tauc plots of compounds 3b and 3c.



Figure S18. Solid-state photoluminescence spectra and Tauc plots of compounds 4a and 4b.

## Theoretical computations



Figure S19. Optimized molecular structures of compounds a) 2a, b) 2b and 2c.



Figure S20. Optimized molecular structures of compounds a) 3a, b) 3b and 3c.



Figure S21. Optimized molecular structures of compounds a) 4a, b) 4b and 4c.



**Figure S22.** Frontier Molecular Orbitals (FMO) of compounds **2a**, **3a** and **4a**, calculated at the level of theory B3LYP/6-31G(d)



**Figure S23.** Frontier Molecular Orbitals (FMO) of compounds **2b**, **3b** and **4b**, calculated at the level of theory B3LYP/6-31G(d).



**Figure S24.** Frontier Molecular Orbitals (FMO) of compounds **2c**, **3c** and **4c**, calculated at the level of theory B3LYP/LANL2DZ.



**Figure S25.** 350 - 550 nm window from the experimental absorption profiles for the crystalline solid of **3a** (panel a) and its ground counterpart (panel b), shown as a solid black line. The profile was fitted with a sum (red dashed line) of three gaussian functions centered at  $\lambda_1$ - $\lambda_3$  values.



Figure S26. a) Agreement between experimental excitation wavelengths and those calculated using TDDFT for the crystalline and ground states of 3a; b) Changes in the intensity of each excitation wavelength because of grinding.



**Figure S27.** Frontier molecular orbitals, corresponding to  $\lambda_3$  in **3a** calculated at the B3LYP(D3)/def2TZVP level of theory. Surfaces are displayed at a 0.04 isocontour.



**Figure S28.** Experimental powder diffractograms of compound **3a**: a) Before grinding, b) Ground powder, and c) After exposure to DCM vapors.



**Figure S29.** Experimental powder diffractograms of compound **3c**: a) Before grinding, b) Ground powder, and c) After exposure to DCM vapors.



**Figure S30.** Experimental powder diffractograms of compound **4a**: a) Before grinding, b) Ground powder, and c) After exposure to DCM vapors.



**Figure S31.** Experimental powder diffractograms of compound **4b**: a) Before grinding, b) Ground powder, and c) After exposure to DCM vapors.



LeBail fitting method of the samples exposed to DCM vapors

**Figure S32.** LeBail fitting of the experimental powder X-Ray diffraction of **3a**: a) As synthesized, and b) After exposure to DCM vapors. Cell parameters taken from CIF.



**Figure S33.** LeBail fitting of the experimental Powder X-Ray Diffraction of **4b**: a) As synthesized, and b) After exposure to DCM vapors. Cell parameters taken from CIF.



**Figure S34.** LeBail fitting of the experimental Powder X-Ray Diffraction of **4c**: a) As synthesized, and b) After exposure to DCM vapors. Cell parameters taken from CIF.



Figure S35. LeBail fitting of the experimental Powder X-Ray Diffraction of 3c.

| Compound   | Reference (CIF)                | Initial parameters          | %Powdered<br>sample | Final parameters<br>(After DCM vapors)      |
|------------|--------------------------------|-----------------------------|---------------------|---------------------------------------------|
| <b>3</b> a | a = 6.0896(4)  Å               | a = 6.093(1)  Å             |                     | a = 6.120(1)  Å                             |
|            | b = 9.3799(6) Å                | b = 9.368(2) Å              |                     | b = 9.396(2) Å                              |
|            | c = 24.4891(15) Å              | c = 24.622(6) Å             |                     | c = 24.865(6)  Å                            |
|            | $\alpha = 84.352(2)^{\circ}$   | $\alpha = 85.14(1)^{\circ}$ | 100%                | $\alpha = 85.08(1)^{\circ}$                 |
|            | $\beta = 86.909(2)^{\circ}$    | $\beta = 86.65(1)^{\circ}$  |                     | $\beta = 86.46(1)^{\circ}$                  |
|            | $\gamma = 87.232(2)^{\circ}$   | $\gamma = 87.75(1)^{\circ}$ |                     | $\gamma = 87.67(1)^{\circ}$                 |
|            | $V = 1388.70(15) Å^3$          | $V = 1397.4(5) Å^3$         |                     | $V = 1420.8(6) Å^3$                         |
|            | a = 6.2357(3) Å                | a = 6.164(1)Å               |                     |                                             |
|            | b = 9.7731(4) Å                | b = 9.753(2)Å               |                     |                                             |
| Зс         | c = 24.6541(10)  Å             | c = 24.512(4)Å              |                     | Different crystalline<br>phase than initial |
|            | $\alpha = 79.7070(10)^{\circ}$ | $\alpha = 79.99(1)^{\circ}$ | 100%                |                                             |
|            | $\beta = 88.857(2)^{\circ}$    | $\beta = 89.57(1)^{\circ}$  |                     |                                             |
|            | $\gamma = 85.753(2)^{\circ}$   | $\gamma = 86.18(1)^{\circ}$ |                     |                                             |
|            | $V = 1474.20(11) Å^3$          | $V = 1448.0(4) Å^3$         |                     |                                             |
|            |                                |                             |                     | Same phase as initial,                      |
| <b>4</b> a |                                |                             | 85%                 | changes in intensity of                     |
|            |                                | 0                           |                     | reflections                                 |
| 4b*        |                                | a = 12.483(1) A             |                     | a = 12.485(3) A                             |
|            |                                | b = 21.454(3) A             | 1000                | b = 21.465(5) A                             |
|            |                                | c = 9.34/(1) A              | 100%                | c = 9.318(2) A                              |
|            |                                | $\beta = 97.16(1)^{\circ}$  |                     | $\beta = 97.06(1)^{\circ}$                  |
|            | 10.064(4) 8                    | $V = 2483.7(5) A^{3}$       |                     | $V = 2478(1) A^{3}$                         |
| 4c         | a = 10.864(4) A                | a = 10.838(3) A             |                     | a = 10.851(1) A                             |
|            | b = 12.004(4) A                | b = 12.025(3) A             |                     | b = 12.000(1) A                             |
|            | c = 14.739(5) A                | c = 14./12(3) A             | 1000/               | c = 14.722(1) A                             |
|            | $\alpha = 99.3/8(10)^{\circ}$  | $\alpha = 99.34(1)^{\circ}$ | 100%                | $\alpha = 99.40(1)^{\circ}$                 |
|            | $\beta = 91.705(10)^{\circ}$   | $\beta = 91.64(1)^{\circ}$  |                     | $\beta = 91.61(1)^{\circ}$                  |
|            | $\gamma = 91.595(10)^{\circ}$  | $\gamma = 91.40(1)^{\circ}$ |                     | $\gamma = 91.46(1)^{\circ}$                 |
|            | $V = 1894.5(12) A^{3}$         | $V = 1890.3(7) A^{3}$       |                     | $V = 1889.5(3) A^{3}$                       |

Table S3. Summary of LeBail fitting parameters for compounds herein reported.

\*Cell parameters obtained from DICVOL and TREOR softwares.

## References

- S1. APEX2 Version 2008.3-0/2.2-0, Bruker AXS, Inc., Madison, WI, 2007.
- S2. Bruker. (2006b). SAINT, Version 8.38 (Bruker AXS Inc.).
- S3. G. M. Sheldrick, Acta Cryst. A., 2008, 64, 112–122.
- S4. C. F. Macrae, I. Sovago, S. J. Cottrell, P. T. A. Galek, P. McCabe, E. Pidcock, M. Platings, G. P. Shields, J. S. Stevens, M. Towler and P. A. Wood, *J. Appl. Cryst.*, 2020, **53**, 226–235.
- S5. J. Rodríguez-Carvajal, "*The FullProf Program*", Institute Leon Brillouin, Saclay, France, 2000.
- S6. A. Boultif and D. Louer. J. Appl. Crystallogr., 1991, 24, 987.
- S7. P.E. Werner, L. Ericksson and M. Westdahl, J. Appl. Cryst., 1985, 18, 367–370.