Electronic Supplementary Material (ESI) for CrystEngComm. This journal is © The Royal Society of Chemistry 2021

Coordination polymers with embedded recognition sites: lessons from cyclotriveratrylene-type ligands.

Matthew P. Snelgrove and Michaele J. Hardie

School of Chemistry, University of Leeds, UK

Supplementary Information

CSD Refcodes for coordination polymers

Composition	Refcode	Reference*
$[Ag(L5)(NC(CH_2)_3CN)] \cdot (NC(CH_2)_3CN) \cdot [Co(C_2B_9H_{11})_2]$	GEGWIZ	11
$[Ag(L5)(NC(CH_2)_3CN)] \cdot 2(NC(CH_2)_3CN) \cdot PF_6$	GEGWEV	11
$[Cd(L5)(OAc)_2] \cdot (C_2B_{10}H_{12}) \cdot (H_2O)$	PUQKAO	14
$[Ag_9(L16)_7(H_2O)_3]\cdot(L16)\cdot9(SbF_6)$	AVOSEK	15
$[Mn_6(OH)_3(ctc)_4] \cdot Cs_{10}Na_5(H_2O)_n$	TUWWUE	22
[Eu(L22)(DMF) ₂]	SEMFIC	25
[Tb(L22)(DMF) ₂]	SEMFOI	25
[Gd(L22)(DMF) ₂]	SEMFUO	25
[Eu(L23)(DMF)(H ₂ O)]·1.5(DMF)(H ₂ O)	ZIDHEB	18
$[Cu_2(L1)_2(OTf)_2(NMP)_2(H_2O)_2]\cdot 2(OTf)\cdot 2NMP$	CUQSOY	20
[Sm(L17)Cl(DMF) ₃]·[SmCl₅(DMF)]·1.5(DMF)	ZIDHAX	18
$[Cd_2(L9)(NO_3)_3(H_2O)_2(DMA)_2] \cdot (NO_3) \cdot (DMA)$	BAJYAO	16
$[Ag_2(L16)_2] \cdot 2(SbF_6)$	AVOSIO	15
[Yb(L22)(H ₂ O)(DMF)]	SEMGAV	25
$[Ag_{2}(L16)(H_{2}O)_{2}]\cdot 2(BF_{4})\cdot 2(MeNO_{2})$	AVOSUA	15
[Ag ₂ (L16)(CF ₃ SO ₃) ₂]	AVOTAH	15
[Ag(L16)(CF ₃ SO ₃)]	AVOTEL	15
$[Cu(L1)(NCMe)] \cdot BF_4 \cdot 1.5(CH_3CN) \cdot 2(H_2O)$	CUQSUE	20
[Zn ₂ (OAc)(L20)(DMF)]	OYOVOP	24
[Co ₂ (OAc)(L20)(DMF)]	ΟΥΟΥUV	24
[Cd(L19)(NO ₃) ₂]·2(DMF)	REJQAA	17
$[Ag_{2}(L13)_{2}] \cdot [Co(C_{2}B_{9}H_{11})]_{2} \cdot 1.5(NO_{2}Me)$	ZOBTOB	19
[Ag(L14)]·ReO₄·CH₃CN	WOLSOG	12
[Ag(L12)]·SbF ₆ ·3(DMF)·H ₂ O	WOLSUM	12
[Ag(L6)(H ₂ O)]·SbF ₆	GEGVOE	11
[Co(L7)(NO ₃) ₂]·4(NMP)	BAJYIW	16
$[Cd(L18)_2(DMF)_2] \cdot 2ClO_4 \cdot 8(DMF)$	REJQUU	17
$[Cu(L18)_2(DMF)_2] \cdot 2ClO_4 \cdot 8(DMF)$	REJRAB	17
[Gd(L19)(NO ₃) ₃]·DMF	ZIDWAM	18
$[Co(L18)_2(DMF)_2] \cdot 2NO_3 \cdot 4(DMF) \cdot H_2O$	REJREF	17
$[Co_2(L8)_2(NO_3)(H_2O)_5]\cdot 3(NO_3)\cdot n(DMF)$	BAJZAP	16
$[Ag_3(L10)_2(CH_3CN)_3CI] \cdot 2BF_4 \cdot n(CH_3CN)$	TOHZIA	13
$[Ag_3(L10)_2(CH_3CN)_3CI] \cdot 2AsF_6 \cdot n(CH_3CN)$	TOHZOG	13
$[Ag_3(L10)_2(CH_3CN)_3CI] \cdot 2CIO_4 \cdot n(CH_3CN)$	TOHZUM	13
$[Cu_3(L3)_4(H_2O)_3] \cdot 6(OTf) \cdot n(DMSO)$	CUQSEO	20
[Zn ₆ (L21) ₄ (DMA) ₆ (H ₂ O) ₅]	OYOWAC	24
$[{Re(CO)Br}_{3}(L2)_{2}] \cdot n(CH_{3}NO_{2})$	DIDFEE	21
$[{Co(H_2O)_2}_3(L2)_2] \cdot 6(NO_3) \cdot n(DMF)$	DIDFOO	21
$[{Cu(H_2O)_2}_3(L2)_2] \cdot 6(NO_3) \cdot n(DMF)$	DIDFUU	21
$[{CoCl_2}_3(L2)_2] \cdot n(DMF)$	DIDGAB	21
$[{CoBr_2}_3(L2)_2] \cdot n(DMF)$	DIDGEF	21
[Co ₃ I ₂ (L2) ₂]·4I·n(DMF)	DIDGIJ	21
[Cu ₂ (L11) ₂ Br ₂ (H ₂ O)(DMSO)]·2Br·n(DMSO)	CUQSIS	20
$[Ag_3(NMP)_6(L17)_2] \cdot 3(ClO_4) \cdot n(NMP)$	REJPED	17
$[Cu'_4Cu''_{1.5}(L1)_3(CN)_6]\cdot CN\cdot n(DMF)$	CUQSAK	20
$[Cd_3(L15)(BDC)_3]$ ·DMF·6(H ₂ O)	MIQTUE	26

[Zn ₃ (L15)(BDC) ₃]·DMF·6(H ₂ O)	MIQVAM	26
[Cu ₃ (L20) ₂ (EtOH)(PY) ₂ (H ₂ O) ₂]·9(DEF)·8(H ₂ O)	FAHGUS	23
$[Ag(L1p)[Co(C_2B_9H_{11})_2]]\cdot 2(DMF)\cdot (H_2O)$	ZOBTIV	19
$[Cd(L1p)(NO_3)_2(H_2O)] \cdot DMF \cdot 2(Et_2O)$	ZOBYAS	19
[Cu ₂ (L3) ₂ Br ₃ (DMSO)]·Br·n(DMSO)	CUQTEP	20
${[Zn(L17)_2]} \cdot 2(BF_4) \cdot n(NMP)$	REJPIH	17
$\{[Co(L17)_2] \cdot 2(BF_4) \cdot n(NMP)\}$	REJPON	17
$[Cu(L17)_2] \cdot [Cu(H_2O)(NMP)_4] \cdot 4(BF_4) \cdot 8(NMP) \cdot 2(H_2O)$	REJPUT	17
[Cu ₂ (L2)(TFA) ₃ (INIC)]	DIDFAA	21
$[Ag(L1)_2] \cdot [Co(C_2B_9H_{11})_2 \cdot 9(CH_3CN)$	BIJROC	9
$[Zn(L9)_2(CF_3COO)(H_2O)] \cdot (CF_3COO) \cdot 7(NMP)$	BAJYES	16
$[Ag_2(L2)(DMF)_2] \cdot 2(BF_4) \cdot 2(H_2O)$	DIDDUS	21
[Cu ₅ (L19) ₂ Cl ₁₀ (NMP) ₄]·n(NMP)	REJQEE	17
[Cd ₂ (L9) ₂ (NO ₃) ₄ (NMP)]·9(NMP)·4(H ₂ O)	BAJYOC	16
$[Co(L9)(H_2O)_2] \cdot 2(NO_3) \cdot 2(DMF)$	BAJYUI	16
$[Ag_3(L4)_2] \cdot 3(PF_6)$	MASCIT	10
[Cu ₂ (L1) ₂ (NMP)(H ₂ O)]·4(BF ₄)·12(NMP)·1.5(H ₂ O)	CUQTAL	20

* Reference numbering is the same as used in the manuscript

Additional Crystal Structure Diagrams

Figure S1. From the crystal structure of $[Ag(L5)(NC(CH_2)_3CN)] \cdot (NC(CH_2)_3CN) \cdot PF_6$, showing **fes** 2D coordination polymer of $Ag(L5)(NC(CH_2)_3CN)]^+$ with guest glutaronitrile in space filling mode.

Figure S2. Packing diagram of [Eu(L22)(DMF)₂] with unit cell indicated and viewed down the *a* unit cell axis.²⁵

Figure S3. Unit cell diagram of {Cd(L19)(NO₃)₂]·2(DMF)} showing small isolated cavities of approximately 44 Å³ volume (red wireframe) at the L19 bowl.¹⁷

Figure S4. Crystal structure of [Co₂(L8)₂(NO₃)₂(H₂O)₅]·2(NO₃)·n(DMF). Disordered groups shown in averaged positions throughout. (a) Single **bex** network; (b) hand-shake inclusion between different networks; (c) 2D-to-3D polycatenation with different networks in different colours.¹⁶

Figure S5. Unit cell diagram of $[Ag_3(L10)_2(CH_3CN)_3CI]$.2AsF₆.n(CH₃CN) and void space shown in wireframe. The actual void space will be smaller than this appears as F atoms could not be located for one of the disordered AsF₆ sites.

Figure S6. Unit cell diagram of $[Zn_6(L21)_4(DMA)_6(H_2O)_5]$ and void space shown in wireframe. Uncomplexed solvent molecules have been excluded.²⁴

Figure S7. Unit cell diagram of [{Re(CO)Br}₃(L2)₂] and void space shown in wireframe. Uncomplexed solvent molecules have been excluded.²¹

Figure S8. Packing diagram of $[{CoBr_2}_3(L2)_2]$ with solvent excluded.²¹

Figure S9. Crystal structure of $[Cd_3(L15)(BDC)_3]$ ·DMF·6(H₂O). (a) illustration of linkages from one expanded cage (see Figure 11c of manuscript) to six others in a trigonal prismatic fashion via BDC²⁻ ligands; (b) connectivity diagram showing **acs** topology of cages where each connecting centre represents an expanded cage construct; (c) interpenetrating $(6.10^2)_3(6^3)$ nets considering L15 and metal positions as 3-connectors.²⁶

Figure S10. Unit cell diagram of $[Cd_3(L15)(BDC)_3]$ ·DMF·6(H₂O) with voids shown as wireframe and uncomplexed solvent removed.²⁶

Figure S11. Unit cell of $[Ag(L1p)[Co(C_2B_9H_{11})_2]] \cdot 2(DMF) \cdot (H_2O)$ viewed down the *a* unit cell axis.

References

- 9. M. J. Hardie and C. J. Sumby, Inorg. Chem., 2004, 43, 6872-6874.
- 10. C. J. Sumby and M. J. Hardie, Cryst. Growth & Des., 2005, 5, 1321-1324
- 11. C. J. Sumby, J. Fisher, T. J. Prior and M. J. Hardie, Chem. Eur. J., 2006, 12, 2945-2959

12. C. Carruthers, T. K. Ronson, C. J. Sumby, A. Westcott, L. P. Harding, T. J. Prior, P. Rizkallah, M. J. Hardie, *Chem. Eur. J.*, 2008, **14**, 10286-10296.

- 13. T. K. Ronson and M. J. Hardie, CrystEngComm, 2008, 10, 1731-1734.
- 14. C. Carruthers, J. Fisher, L. P. Harding and M. J. Hardie, *Dalton Trans.*, 2010, 355-357.
- 15. M. A. Little, M. A. Halcrow, L. P. Harding and M. J. Hardie, Inorg. Chem., 2010, 49, 9486-9496.
- 16. M. A. Little, T. K. Ronson and M. J. Hardie, *Dalton Trans.*, 2011, 40, 12217–12227.
- 17. J. J. Henkelis, S. A. Barnett, L. P. Harding and M. J. Hardie, Inorg. Chem., 2012, 51, 10657-10674.

- 18. J. J. Henkelis, T. K. Ronson and M. J. Hardie, *CrystEngComm*, 2014, **16**, 3688 3693.
- 19. J. J. Henkelis and M. J. Hardie, CrystEngComm, 2014, 16, 8138-8146.
- 20. F. L. Thorp-Greenwood, T. K. Ronson and M. J. Hardie, *Chem. Sci.*, 2015, **6**, 5779-5792.
- 21. F. L. Thorp-Greenwood, G. T. Berry, S. S. Boyadjieva, S. Oldknow and M. J. Hardie, *CrystEngComm*, 2018, **20**, 3960 3970.
- 22. B. F. Abrahams, N. J. FitzGerald and R. Robson, Angew. Chem., Int. Ed., 2010, 49, 2896-#.
- 23. J.-T. Yu, J. Sun, Z.-T. Huang and Q.-Y. Zheng, *CrystEngComm*, 2012, **14**, 112-115.
- 24. A. D. Martin, T. L. Easun, S. P. Argent, W. Lewis, A. J. Blake and M. Schröder, CrystEngComm, 2017, 19, 603-607.
- 25. L. Ma, Q. Zhang, H. Wu, J. Yang, Y.-Y. Liu and J.-F. Ma, Eur. J. Inorg. Chem., 2017, 4221-4230.
- 26. D.-W. Kang, X. Han, X.-J. Ma, Y.-Y. Liu and J.-F. Ma, *Dalton Trans.*, 2018, 47, 16197-16204.