Supporting information

Single-crystal-to-single-crystal Transformation of Tetrathiafulvalene-Based Hydrogen-bonded organic frameworks

Xiang-Yu Gao, ab Yu-Lin Li, ${ }^{\text {b }}$ Tian-Fu Liu, ${ }^{\text {b }}$ Xin-Song Huang, ${ }^{* b}$ and Rong Cao*ab
${ }^{\text {a }}$ School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
${ }^{\text {b }}$ State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R.
* Author for correspondence: xshuang@fjirsm.ac.cn, rcao@fjirsm.ac.cn.

TABLE OF CONTENTS

Experimental Section 3
1.1 Synthesis of PFC-77 3
1.2 Synthesis of PFC-78 3
1.3 Synthesis of PFC-78 3
1.4 Analysis of studied structures 3
Fig. S1. Microscope image of PFC-77, PFC-78 and PFC-79 4
Fig. S2. The transformation process from PFC-77 to PFC-78. 4
Fig. S3. The transformation process from PFC-78 to PFC-79. 4
Fig. S4. PXRD pattern of PFC-78 immersed in mother liquid of PFC-77 for 8 hours at $25{ }^{\circ} \mathrm{C}$ and $60{ }^{\circ} \mathrm{C}$5
Fig. S5. PXRD pattern of PFC-77 heated at $75{ }^{\circ} \mathrm{C}$ under vacuum for 8 hours 5
Fig. S6. TGA curves of PFC-77, activated PFC-78 and PFC-79 6
Fig. S7 N_{2} isotherm of MTV PFC-77, PFC-78 and PFC-79 at 77 K 7
Fig. S8 PXRD patterns of PFC-78 immersed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ after increasing minutes. 7
Fig. S9 Torsion angle of a) PFC-77 b) PFC-78 c) PFC-79 8
Fig. S10. ${ }^{1} \mathrm{HNMR}$ of H_{4} TTFTB 8
Single-Crystal X-ray Crystallography 9
Table S1 Crystal data of the PFC-77, PFC-78 and PFC-79 10
Cyclic voltammetry curve (CV) 11

Experimental Section

Unless otherwise mentioned, all reagents and solvents were purchased from commercial sources and used as received without further purification. Tetrathiafulvalene tetracarboxylic acid (H_{4} TTFTB) was supplied by Shanghai Tensus Biotech. The material is an amorphous powdery substance. It was characterized by ${ }^{1} \mathrm{HNMR}$ to verify its purity and the result is shown as Fig. S10.

1.1 Synthesis of PFC-77

Weigh 30 mg of H_{4} TTFTB into a vial, add 5 mL each of water and THF to dissolve H_{4} TTFTB. Without tightening the cap, put the vial in an oven at $60^{\circ} \mathrm{C}$ to allow the THF to gradually volatilize. After 72 h , dark brown-red crystals were obtained

1.2 Synthesis of PFC-78

Immerse PFC-77 in acetone, PFC-78 can be obtained after 8 h .

1.3 Synthesis of PFC-78

Immerse PFC-77 or PFC-78 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and PFC-79 can be obtained within 10 minutes.

1.4 Analysis of studied structures

1H-NMR spectra were recorded on Bruker AVANCE III 400MHz spectrometers. Single crystal X-ray diffraction data was collected at 150K on an Bruker D8 Venture diffractometer equipped with Cu-Ka radiation ($\lambda=0.71073 \AA$). PXRD was performed on Rikagu Miniflex 600 Benchtop X-ray diffraction instrument. TGA was performed on a Seiko S-II instrument, and the dried crystalline samples were heated at a rate of $5^{\circ} \mathrm{C} / \mathrm{min}$ up to $800^{\circ} \mathrm{C}$ and then cooled to room temperature under N_{2} atmosphere. The N_{2} gas isotherms of the samples were measured using ASAP 2460 from Micromeritics Co. Ltd.

Fig. S1. Microscope image of PFC-77, PFC-78 and PFC-79.

Fig. S2. The transformation process from PFC-77 to PFC-78.

Fig. S3. The transformation process from PFC-78 to PFC-79.

Fig. S4. PXRD pattern of PFC-78 immersed in mother liquid of PFC-77 for 8 hours at 25 ${ }^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$.

Fig. S5. PXRD pattern of PFC- 77 heated at $75{ }^{\circ} \mathrm{C}$ under vacuum for 8 hours.

Fig. S6. TGA curves of PFC-77, activated PFC-78 and PFC-79.

Fig. $\mathbf{S 7} \mathrm{N}_{2}$ isotherm of MTV PFC-77, PFC-78 and PFC-79 at 77 K .

Fig. S8 PXRD patterns of PFC-78 immersed in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ after increasing minutes.
a
b

C

Fig. S9 Torsion angle of a) PFC-77 b) PFC-78 c) PFC-79.

Fig. S10. ${ }^{1} \mathrm{HNMR}$ of H_{4} TTFTB

Single-Crystal X-ray Crystallography

Single-crystal X-ray diffraction data was collected at 150 K on an Bruker D8 Venture diffractometer equipped with Mo-K α radiation $(\lambda=0.71073 \AA)$. The structure was solved by direct method and refined using SHELXL-2014 software package. In addition, the "SQUEEZE" command was employed because of the seriously disordered solvent molecules $\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ and acetone) in pores. Additional crystallographic data with CCDC reference numbers 2077900, 2077917 and 2077923 for PFC-77, PFC-78 and PFC-79 have been deposited within the Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/deposit. Crystal data are summarized in Table S1.

Table S1 Crystal data of the PFC-77, PFC-78 and PFC-79

Identification code	PFC-77	PFC-78	PFC-79
Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~S}_{2}$	$\mathrm{C}_{34} \mathrm{H}_{20} \mathrm{O}_{8} \mathrm{~S}_{4}$	$\mathrm{C}_{34} \mathrm{H}_{20} \mathrm{O}_{8} \mathrm{~S}_{4}$
Formula weight	342.37	684.74	684.74
Temperature/K	140.15	149.99	149.99
Crystal system	triclinic	triclinic	triclinic
Space group	P-1	P-1	P-1
a / \AA	5.778(3)	8.301(7)	8.4537(17)
b/ \AA	13.713(7)	18.954(18)	14.128(3)
c/A	16.811(8)	20.558(15)	18.021(4)
$\alpha /{ }^{\circ}$	81.532(19)	114.88(5)	106.291(9)
$\beta /{ }^{\circ}$	81.28(2)	96.22(6)	97.991(9)
$\gamma /{ }^{\circ}$	86.70(2)	95.19(7)	103.267(10)
Volume/ \AA^{3}	1301.4(11)	2884(4)	1962.5(7)
Z	2	2	2
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	0.874	0.789	1.159
μ / mm^{-1}	0.214	0.194	0.284
F(000)	352	704	704
Crystal size/mm ${ }^{3}$	$0.3 \times 0.2 \times 0.1$	$1.0 \times 0.2 \times 0.1$	$1 \times 0.6 \times 0.6$
Radiation	$\operatorname{MoK} \alpha(\lambda=0.71073)$	$\operatorname{MoK} \alpha(\lambda=0.71073)$	$\operatorname{MoK} \alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	6.012 to 45.446	4.318 to 37.918	4.826 to 41.632
Index ranges	$\begin{gathered} -6 \leq h \leq 6,-14 \leq k \leq \\ 14,-18 \leq 1 \leq 18 \end{gathered}$	$\begin{gathered} -7 \leq \mathrm{h} \leq 7,-17 \leq \mathrm{k} \leq \\ 17,-18 \leq 1 \leq 18 \end{gathered}$	$\begin{gathered} -8 \leq h \leq 8,-14 \leq k \leq \\ 14,-18 \leq 1 \leq 18 \end{gathered}$
Reflections collected	8974	13491	12077
Independent reflections	$\begin{gathered} 3487\left[\mathrm{R}_{\text {int }}=0.0772,\right. \\ \left.\mathrm{R}_{\text {sigma }}=0.1183\right] \end{gathered}$	$\begin{gathered} 4544\left[\mathrm{R}_{\mathrm{int}}=0.1408\right. \\ \left.\mathrm{R}_{\text {sigma }}=0.1413\right] \end{gathered}$	$\begin{gathered} 4074\left[\mathrm{R}_{\text {int }}=0.1757,\right. \\ \left.\mathrm{R}_{\text {sigma }}=0.1751\right] \end{gathered}$
Data/restraints/parameters	3487/1/113	4544/55/200	4074/50/418
Goodness-of-fit on F^{2}	1.395	1.882	1.442
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})$]	$\begin{gathered} \mathrm{R}_{1}=0.1420, \mathrm{wR}_{2}= \\ 0.4046 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.1960, \mathrm{wR}_{2}= \\ 0.4930 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.1693, \mathrm{wR}_{2}= \\ 0.4086 \end{gathered}$
Final R indexes [all data]	$\mathrm{R}_{1}=$ $0.1810, \mathrm{wR}_{2}=$ 0.4283	$\begin{gathered} \mathrm{R}_{1}=0.2800, \mathrm{wR}_{2}= \\ 0.5540 \end{gathered}$	$\begin{gathered} \mathrm{R}_{1}=0.2913, \mathrm{wR}_{2}= \\ 0.4897 \end{gathered}$
Largest diff. peak/hole / e \AA^{-3}	0.72/-0.51	1.61/-0.84	0.71/-0.74

Cyclic voltammetry curve (CV)

The cyclic voltammetry (CV) test is done on the rotating ring disk electrode system. 5 mg of the sample to be tested was soaked in 1 mL of acetone and sonicated for 30 min for dispersion. Then $100 \mu \mathrm{~L}$ of naphthol solution was added to the mixed solution. Leave a space of $1 \mathrm{~cm}^{2}$ at both ends on the 1 cm wide conductive glass, and brush nail polish on the remaining area to isolate the conductive glass from contacting the electrolyte. $20 \mu \mathrm{~L}$ pipette was used to drop the dispersed sample mixture evenly on a blank area of the conductive glass and wait for it to dry. Repeat five times. The electrolyte used are 250 mL each of 0.1 M tetrabutylammonium hexafluorophosphate $\left(\mathrm{TBAPF}_{6}\right)$ acetonitrile solution for PFC-77 and PFC-78 or 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF 6) trichloromethane solution for PFC-79.

